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Molecular dynamics (‘Newton’)

@ A molecular dynamics algorithm for hard spheres (billiard):
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.. starting point of Molecular dynamics, in 1957 ...

.. treats positions and velocities ...

.. useful for N > 4, but times extremely short . ..

.. converges towards thermal equilibrium. m



Markov-chain Monte Carlo (‘Boltzmann’)

A

local Markov-chain Monte Carlo algorithm for hard

spheres (billiard):
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.. Starting point of Markov chain Monte Carlo, in 1953 ...
.. treats only positions ...

..usefulforN >4 ...

.. converges towards thermal equilibrium. m



Physics of crystallization in 2D
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@ At low density, disks move easily (liquid)

@ ...at high density, MC algorithms slow down and disks
crystallize ...

@ ...but the crystal cannot have long-range (positional) order ﬁﬁ



Single discrete hard sphere (‘3 x 3 pebble game’)

@ Monte Carlo algorithm for one hard sphere on a lattice:

initial conf.
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@ Move ‘up’, ‘down’, ‘left’, ‘right’, each with probability 1/4.
@ Reject moves if necessary (i = 2,1 = 5).



Transfer matrix of 3 x 3 pebble game

@ Transfer matrix of algorithmic probabilities p(a — b):
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Exponential convergence in the 3 x 3 pebble game

@ 7(site 1) for simulation started in the right upper corner
(site 9):
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@ Exponential convergence = scale:
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@ 7 exists, but it is large (7 > 25600 000 000).



Minimum running time of a Monte Carlo algorithm

@ Knowing correlation time = would be nice (Part I).
@ A faster algorithm would be nice (Part II).
@ An infinitely long simulation would be nice (Part Il1).



Mixing time (square box)
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@ Correlation time = correlation time of order parameter
@ much better than diffusion-constants criterion . ..
@ ... hypothesis, but more cautious than what others do... ﬁ&



Cluster algorithm for hard spheres

return move

@ Satisfies p(a — b) = p(b — a), is ergodic.
@ Cluster move, rejection-free (Dress & Krauth '95).
@ Many applications, but algorithm no good for 2d melting. ﬁi



Event-chain ... maximizing local moves
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@ rejection-free

@ detailed balance OK (0 € [0, 27])

@ moves each disk as far as possible

@ E. Bernard, W. Krauth, D. B. Wilson (arXiv:0903.2954)



Giving up detailed balance




Timing issues
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Equilibrated configuration




Dislocations




Return of the ‘3 x 3 pebble game’

initial conf.
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To prove that Monte Carlo simulation is in equilibrium, we must
@ either compute correlation time 7 = 3.476... ...
@ or do an infinitely long simulation (reach i = ) ...

@ or both w‘



Infinite simulations (in 3 x 3 pebble game)

@ Do notstartatt = 0, start in the past, ati = —oc:

@ The configuration ati = 0 is an ‘exact sample’. m
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NB: Proof of coupling by naive enumeration and exhaustion.



Infinite simulation with random maps
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@ The configuration ati = 0 is a perfect sample.
@ It can be computed through finite back-track.
@ Propp & Wilson (1995): landmark paper.

@ Can work for spin glasses and hard spheres (Chanal & m
Krauth ('08, '09)).



More transfer matrices...

@ The dynamics of the new pebble game is again described
by a transfer matrix:

Tt T2
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@ Triangular matrix: second-largest eigenvalue >
second-largest eigenvalue of T 11,

@ therefore: coupling time > convergence time



Updates on large lattices (spin systems)

@ 64 x 64 Ising spin glass
has 232><64 ~ 3 x 10616
states.

@ We must rigorously
show that they ‘all
couple.

@ Non-monotone model.

@ Using patches k on the lattice, and sets of patches Sy on
patch k (k =1,...,N), we define

Q=S5;®S,®---® Sy/(pairwise compat.).
@ Q is overcomplete, but storage linear in lattice size
N x 2Mm?/2

for N lattice sites and patches of size m x m.



Patches and compatibilities
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Exact sampling for hard spheres

@ Continuous system...with hidden discrete structure...

@ Patch algorithm reaches finite densities < 0.3 for
N — oo...

@ ...improves on Wilson’s algorithm.



Conclusion

We discussed Monte Carlo methods for hard spheres
@ Convergence issues
@ new algorithms
@ new insight into melting transition..

@ Exact sampling, coupling from the past (doing an infinitely
long Monte Carlo simulation).



