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Outline

General question

Glassy materials are ubiquitous, but the nature of glass still remains to be
unclear.
One of the most fundamental questions is that

existence of thermodynamical glass transition?

The spin-glass transitions are found both in experiments and in theoretical
models.
Does the lattice model in finite dimensions exhibit a thermodynamic
transition?
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A simple lattice glass model : Biroli-Mézard (BM) model

A simple lattice glass model: Biroli-Mézard model (2002)

A given graph G(V,E)

Random graph
Regular graph ...

An occupation variable σi is
defined on each site

σi =

{
1 for occupied,
0 for empty

Particle configuration:
σ = (σi )i=1,··· ,N

.
BM model with l = 1
..

.

. ..

.

.

Energy :
H(σ) = ∞ # of particles in the neighbor sites is

greater than a parameter l .
H(σ) = 0 Otherwise
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A simple lattice glass model : Biroli-Mézard (BM) model

Equilibrium statisitcal mechanics of BM model

Grand partition function

Z (µ) =
∑
σ

C (σ)eµ
PN

i=1 σi

where C (σ) is a indicator function,

C (σ) =

{
1 for a possible configuration σ
0 otherwise.

C (σ) is generally expressed as multi-body interactions.

Probability P(σ):

P(σ) =
1

Z (µ)
C (σ) exp

(
µ

N∑
i=1

σi

)

Expectation value A(µ) = 〈Â〉µ =
∑

σ Â(σ)P(σ).
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A simple lattice glass model : Biroli-Mézard (BM) model

Phase transition of the BM model.
A typical snapshot of BM model with l = 1
..

.
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.

.

.
A typical snapshot of BM model with l = 1
..

.

. ..

.

.

low density crossover? high density
liquid state phase transition? glass??

Equation of state

ρ(µ) =
1

N
〈
∑

i

σi 〉 =
∂ lnZ (µ)

∂µ

Does equilibirum value of ρ
have a singularity at a certain
µ?

.ρ-µ curve

..

.

. ..

.

.
ρ

µ

Liquid

Glass??

Singularity  or Crossover?
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A simple lattice glass model : Biroli-Mézard (BM) model

Theoretical analyses: Rivoire et al(2004) , Krzakala-Tarzia-Zdeborová(2008)

The model in a random graph by
cavity method.

One-step replica-symmetry-breaking
transition occurs at ρc .

Aaverage density ρ(µ) is continuous,
but smooth at some density ρc .

Dynamical transition occurs at
ρd < ρ. For ρ > ρd local-update
algorithm, like simulated annealing,
cannot reach equilibrium.

.ρ vs µ curve

..

.
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.

.
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µ
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Glass
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A simple lattice glass model : Biroli-Mézard (BM) model

Questions

Physics: Does there exits thermodynamic glass transition in a
statistical-mechnical model beyond mean-field analysis?

the BM model defined on a honeycomb lattice where
connectivity is 3.

Algorithm: How can we go across “dynamical transition” to reveal
thermodynamic transition?

Florent provided a promising strategy in his talk, but...
we study in a straightforward way by using an extended
ensemble MC method
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Extended ensemble MC

Slow relaxation in MCMC

Under some circumstances, transitions in Markov chain are strongly
suppressed. Configurations get trapped into some small area of
configuration space.�� ��ergodicity breaking' slow relaxation/mixing

One may often face this difficulty in some physically interesting problems.

...1 slowing down of phase transition

critical slowing down of 2nd
order transition
nucleation of 1st order transition

...2 rugged free energy
(Spin) Glasses, proteins,

optimizations...

T

many metastable
states

=
multi-modal
dist.
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Extended ensemble MC

Some development of MCMC algorithm

...1 non-local update (cluster algorithm)
Swendsen-Wang (1987), Wolf (88): based on Fortuin-Kasteleyn
representation.
pivot update algorithm for polymer simulation

...2 Extended ensemble MC
Original probability distribution to be solved is modified or extended.

Multicanonical MC : Berg-Neuhaus, (1991)

entropic sampling : Lee
Broad histogram MC : Oliveira (1998)
Flat histogram MC，Transition Matrix MC : Wang (1999)
Wang-Landau method....

Simulated tempering : Marinari-Parisi(1992),

Expanded ensemble method : Lyubartsev et. al. (1992)

Exchange MC method : Hukushima-Nemoto(1996),

Metropolis coupled Markov chain MC(Geyer) , Parallel tempering
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Extended ensemble MC

From SA to exchange MC

...1 Temperature schedule
Practically important.
Temperature is always lowered, but heating may be useful for escaping
from local minima.

...2 Sampling from distribution
Detailed balance conditions are not satisfied when temperature is
lowered.
When temperature is fixed, this corresponds to MCMC. At low
temperatures, the difficulty of slow relaxation(mixing) is faced.

A goal is to construct an MCMC algorithm in which temperature
keeps changing back and forth with preserving detailed balance con-
ditions.

Simulated tempering and exchange MC(parallel tempering).

A dual method is multicanonical MC, where energy value changes in
a wide range.
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Extended ensemble MC

Exchange Monte Carlo Method (1)

Replicated System：For a given model H(X ), M replicas of the system
is introduced:

Heff({X}) =
M∑

m=1

βmH(Xm),

“extended state” : {X} = {X1, X2, · · · , XM}.
“Extended” probability distribution

Peq({X}; {β}) =
M∏

m=1

Peq(Xm; βm) =
M∏

m=1

1

Z (βm)
exp(−βmH(Xm))

Monte Carlo steps

...1 Update each replica configuration (Local update)

Xm =⇒ X
′
m

...2 Exchange of two configurations of two replicas Xm and Xn

{Xm, Xn} =⇒ {Xn,Xm}
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Extended ensemble MC

Exchange Monte Carlo Method (2)

Detailed Balance conditions

P({· · · , X , · · · , X ′, · · · }; {· · · , βm, · · · , βn, · · · }) × W (X , X ′;βm, βn)

= P({· · · , X ′, · · · , X , · · · }; {· · · , βm, · · · , βn, · · · })W (X ′, X ; βm, βn).

W (X , X ′; βm, βn)

W (X ′, X ; βm, βn)
= exp(−∆),

where

∆(X , X ′; βm, βn) = (βn − βm)(H(X ) −H(X ′)).

Transition Probability for exchange process

W (X ,X ′; βm, βn) =


min[1, exp(−∆)], for Metropolis type,

1
2

(
1 + tanh(−∆

2 )
)
, for heat-bath type.
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Extended ensemble MC

Exchange Monte Carlo Method (3)

Monte Carlo Procedure

0 20 40 60 80 100 120 140 160 180 200

T
em

pe
ra

tu
re

...1 Each replica is updated
simultaneously and independently
as a canonical ensemble for a few
MC steps

{Xm} =⇒ {X ′
m}

...2 An exchange process between Xm

and Xm+1 is tried and accepted
with probability W (Xm, Xm+1).

{Xm,Xm+1} =⇒ {Xm+1, Xm}
Each replica wonders in the parameter space like random walker.

Self-organized annealing and heating
one may have a chance to escape from meta-stable state at high temp.

Sampling from equilibrium distribution at each temperature.

K. Hukushima (U. of Tokyo) MCMC for glassy physics Santa Fe, September 2009 15 / 29



Extended ensemble MC

Strategy of extended ensemble MCs

Acceleration of relaxation ... (reduction of mixing time)

Target Source
Low temperature ⇐ temperature ⇒ High temperature

exchange MC High entropy

Mixing !!

Multi-canonical MC
Low energy ⇐ Energy ⇒ High energy

=⇒ Slow relaxation =⇒fast relaxation

Slow relaxation found in the “TARGET” might be modified with the
help of fast relaxation in the “SOURCE”.
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Extended ensemble MC

Possible extensions of Extended ensemble MC

Multi-canonical MC Simulated tempering
exchange MC

(Parallel tempering)

Z (β) =
∑

exp(−βE ) Energy E Temperature β

Z (µ) =
∑

exp(µn) Particle number n Chemical Potential µ

magnetic interaction
E ′ = −HM Magnetization M Magnetic field H

E = E (1) + kE (2) E (2) k
free particle+interaction

An easy system with high entropy or at high temperature must be
included in the parameter space.

An extension to multiple parameters is OK.
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Test in BM model on a random graph

Comparison between SA and EMC
.
parameter schedule of SA
..

.

. ..

.

.
Monte Carlo time

1/µ MCS

.
EMC(parallel tempering)
..

.

. ..

.

.

Monte Carlo time

1/µ

MCS

The same set of µs is used in SA and EMC.
A constant number of Monte Carlo steps(MCS) is performed at each
µ. The annealing rate in SA is proportional to 1/MCS.
Total MCS of SA and EMC is in common.
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Test in BM model on a random graph

MCS dependence of ρ(µ)

.
ρ-µ curve of BM model on random graph with N = 512
..

.

. ..

.

.

regular random graph: C = 3

model parameter : l = 1 (allowed occupation number in neighbor
sites)
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MCS dependence of
ρ(µ) is still remained in
SA.

Those obtained by EM
converge well above
the SA estimate.

The practical efficiency
of our method!!

K. Hukushima (U. of Tokyo) MCMC for glassy physics Santa Fe, September 2009 20 / 29



Test in BM model on a random graph

Annealing limit and equilibrium limit
.
ρeq(N) − ρ vs MC step at µ = 10
..

.

. ..

.

.

N = 128, 256, 512 and 1024.
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...1 For large N limit, SA data may saturate to a finite gap predicted by
the cavity method, but no tendency is found in EMC data up to MCS
and sizes observed at least.

...2 Extrapolated value of the densest packing obtained by EMC with
finite N is consistent with that of the cavity method.
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Test in BM model on a random graph

Glassy property of BM model with C = 3 and l = 1

Density ρ̂ = 1
N

∑
i σi .

Overlap of density fluctuation

q̂ =
1

N

N∑
i=1

(σi − ρ̂)
(
σ′

i − ρ̂′
)

where σ and σ′ are
configurations of two
independent systems.

Overlap distribution P(q)

P(q) = 〈δ(q − q̂)〉

.
Overlap dist. P(q) with N = 512
..

.

. ..

.

.
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This supports a trasition from
liquid to some glassy states.

Two-peak structure of P(q) is
consistent with 1RSB picture.
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Test in BM model on a random graph

Glassy transition of BM model with C = 3 and l = 1

.
Binder parameter
..

.

. ..

.

.

gµ =
1

2

(
3 − 〈q̂4〉

〈q̂2〉2

)

A negative dip appears at
1RSB transition.
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1RSB cavity

µK ' 6.7 (thanks to Florent).

This is consistent with the
1RSB cavity analysis.
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BM model on a regular graph in two dimensions

BM model with on a honeycomb lattice

C = 3: Honeycomb (HC) lattice

l = 0: exactly solved model

Baxter’s hard hexagon model
continuous phase transition
from liquid to trigonal crystal.

l = 1 : not yet.

.
densest packing for l = 1
..

.

. ..

.

.

Complex mixtures are expected to be
realized for dense region.

.
a typical patternfor l = 1
..

.

. ..

.

.
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BM model on a regular graph in two dimensions

ρ(µ) curve and density fluctuation of BM in HC

density fluctuation

χ(µ) =
∂ρ(µ)

∂µ

= N〈(ρ̂ − ρ(µ))2〉

Anomalous behavior in χ is
found around µ ∼ 7.0

χ has a finite jump at
transition?!

.
density fluctuation χ
..

.

. ..

.

.
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linear size L: 24 to 50.
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BM model on a regular graph in two dimensions

Evidence of thermodynamic transition at finite µ

.
Overlap distribution
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At high dense region, P(q) has a double-peak structure, often
found in 1RSB phase.

The transition point is estimated as µs ' 6.8 from dips of g .
Surprisingly, the value is very close to the cavity estimate for
random graph model µK ' 6.7.
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Summary

Summary

A simple lattice glass model, Biroli-Mézard (BM) model has been
studied by using an exchange Monte Carlo (EMC) method.

Efficiency of EMC method has been found in applications to the BM
model defined on a regular random graph.

Time needed for equilibrium for EMC is shorter than that for the
simulated annealing (SA).
Presumably, dynamical arrest also appears in EMC for large size, but
no tendency is found up to 103.
Results obtained by EMC with relatively small sizes are consistent with
those predicted by the cavity analysis.

A thermodynamic phase transition is found in the BM model in a
two-dimensional honeycomb lattice.

1RSB feature
µhoneycomb

K ∼ 6.8 is very close to µC=3
K = 6.7...

Z (µ) = Z (BP)(1 + ...non-singular part)???

Thank you for your attention.
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