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Pulse-like, crack-like, and supershear earthquake ruptures with
shear strain localization
Eric G. Daub,1 M. Lisa Manning,2 and Jean M. Carlson1

Abstract. We incorporate shear strain localization into spontaneous elastodynamic rup-
ture simulations using a Shear Transformation Zone (STZ) friction law. In the STZ model,
plastic strain in the granular fault gouge occurs in local regions called STZs. The num-
ber density of STZs is governed by an effective disorder temperature, and regions with
elevated effective temperature have an increased strain rate. STZ Theory resolves the
dynamic evolution of the effective temperature across the width of the fault zone. Shear
bands spontaneously form in the model due to feedbacks amplifying heterogeneities in
the initial effective temperature. In dynamic earthquake simulations, strain localization
is a mechanism for dynamic fault weakening. A shear band dynamically forms, reduces
the sliding stress, and decreases the frictional energy dissipation on the fault. We inves-
tigate the effect of the dynamic weakening due to localization in generating pulse-like,
crack-like, and supershear rupture. Our results illustrate that the additional weakening
and reduction of on-fault energy dissipation due to localization have a significant impact
on the initial shear stress required for supershear or pulse-like rupture to propagate on
a fault.

1. Introduction

The earthquake rupture problem spans a wide range of
length and time scales, from microscopic contacts between
individual grains through complex networks of faults. The
basic interactions at the smallest scales form the basis for
larger scale behavior. Modeling earthquake rupture is there-
fore extremely challenging, as models must capture the es-
sential physics at a given scale and determine how larger
scales will be affected by the smaller scale physics.

Constitutive laws play a central role in investigating
the complexity of seismicity. This includes spatiotemporal
complexity [e.g., Carlson and Langer, 1989; Cochard and
Madariaga, 1996; Shaw and Rice, 2000], and the complexity
of individual ruptures [e.g., Perrin et al., 1995; Zheng and
Rice, 1998; Nielsen et al., 2000; Bizzarri and Cocco, 2005].
Because the friction law is usually the only ingredient in an
earthquake model that accounts for small scale physics, de-
veloping constitutive laws that efficiently incorporate physi-
cal processes is essential for improving our understanding of
the physics of the earthquake source.

This work focuses on the implications of a constitutive
law that accounts for the small scale process of strain local-
ization in the granular fault cores of earthquake faults. In
our model, a shear band that is narrow even on the scale
of the fault gouge spontaneously forms due to fault slip.
Localization of strain is observed in many studies of fault-
ing, including numerical simulations [Morgan and Boettcher,
1999], laboratory experiments [Marone, 1998], and field ob-
servations of exhumed faults [Chester and Chester, 1998].
The prevalance of shear bands in many studies indicates
that localization widely affects faults.

Constitutive laws used in dynamic rupture models usu-
ally do not explicitly account for localization. Tradition-
ally, dynamic rupture is modeled on a planar fault with a
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slip-weakening [Ida, 1972; Andrews, 1976] or rate and state
friction law [Dieterich, 1979; Ruina, 1980], where the fault
strength depends only on a single state variable. We in-
clude localization in our modeling by resolving the dynamic
evolution of the strain rate on a spatial grid that spans the
width of the fault core. In our model, the fault dynamically
selects how to distribute strain within the fault core, and
can accomodate both broad and localized shear within the
slip history of a single earthquake. This approach allows us
to investigate the fault scale consequences of the dynamics
of shear localization.

This work is part of our efforts to develop the first steps
in a physical description of the frictional properties of fault
gouge and connects small scale physics to fault scale dynam-
ics. Because the small scale physics of earthquake rupture
are poorly constrained, seismologists do not know exactly
how fault gouge deforms during earthquake slip. However,
fault gouge is composed of particles of a large range of diam-
eters that do not form a regular crystal structure [Chester et
al., 2005], making it an amorphous material. Therefore, we
turn to the physics of amorphous materials for our constitu-
tive law for earthquake rupture. Physicists have shown that
there are similarities in the deformation of a wide range of
amorphous materials [e.g. Falk and Langer, 1998, 2000; Ono
et al, 2002; Lois et al., 2005], and these common features
are independent of the details of the small scale interactions
between particles. Because of this, we use a friction law
based on Shear Transformation Zone (STZ) Theory [Falk
and Langer, 1998, 2000], which captures these common fea-
tures of plastic deformation.

This study builds upon our initial work using STZ The-
ory to resolve strain localization in dynamic rupture simula-
tions [Daub et al., 2008]. STZ Theory ties fault weakening to
the evolution of an effective temperature that quantifies the
configurational disorder in the granular fault gouge [Langer,
2008]. In our previous work, fault slip sponatenously formed
a shear band of a fixed width in the fault gouge during dy-
namic rupture simulations, and we compared the propaga-
tion of dynamic ruptures with and without shear band for-
mation. This simplified approach captured the basic physics
of strain localization, but the rupture calculations did not in-
clude diffusion of the effective temperature. In this study, we
expand upon our initial studies and include the full diffusion
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equation for the effective temperature in an elastodynamic
rupture simulation. This approach allows for a balance be-
tween the dynamic processes of energy dissipation and dif-
fusion to select the width of shear bands in our rupture
simulations, and we explore the fault scale consequences of
strain localization. Additionally, we add a relaxation term
to the STZ law, which incorporates time-dependent healing
and allows for self-healing pulse-like ruptures to propagate
in dynamic rupture simulations.

We begin with a brief overview of the STZ friction law,
and follow that with a discussion of its implications for fault
friction. We then look to the larger scale of dynamic fault
rupture, and investigate the implications of shear bands in
numerical simulations of earthquakes.

2. STZ Friction Law

At the scale of fault gouge, we model friction with STZ
Theory, a continuum approximation for plastic deformation
in dense amorphous solids. STZ Theory has been applied
to a wide variety of systems, including fracture of glassy
materials [Falk and Langer, 1998, 2000], boundary lubrica-
tion [Lemaitre and Carlson, 2004], granular flow [Lois et al.,
2005], and dynamic earthquake rupture [Daub and Carlson,
2008]. Recent studies with STZ Theory described the dy-
namics of shear banding in glassy materials [Manning et al.,
2007; Manning et al., 2009] and in earthquake faults [Daub
et al., 2008]. A full derivation of the equations of STZ The-
ory can be found in Appendix A. Here, we provide a brief
summary to physically motivate the theory.

An illustration of the range of scales in the earthquake
problem is shown in Figure 1. The fault consists of a layer of
gouge sheared between elastic rock (left in Figure 1). Within
the layer of fault gouge, deformation tends to spontaneously
localize into narrow shear bands, as shown in the center pic-
ture in Figure 1. At the grain scale, the gouge deforms
plastically when groups of particles rearrange (right, Fig-
ure 1). The STZ model captures the plastic deformation at
the grain and gouge scales, and also acts as a friction law
that describes fault scale behavior in elastodynamic rupture
simulations.

The deformation of an amorphous solid can be approxi-
mated by two components – affine displacements, where all
of the individual particle displacements are consistent with
uniform elastic strain in the material, and non-affine dis-
placements, where the individual particle motions are het-
erogeneous and vary from particle to particle. Non-affine
deformation is calculated by subtracting the particle dis-
placements consistent with uniform elastic strain from the
total particle displacements. Affine deformation results in a
purely elastic material response. Simulations show that non-
affine deformation can be either elastic or plastic, but STZ
Theory make the simplifying assumption that non-affine dis-
placements result in purely plastic deformation. Simula-
tions of sheared amorphous materials indicate that the non-
affine displacements tend to occur in small, localized regions,
called Shear Transformation Zones (STZs) [Falk and Langer,
1998, 2000]. The simulations find that these STZs consti-
tute a small collection of particles switching between two
metastable orientations under applied shear stress.

The STZ friction model incorporates the microscopic ob-
servations of non-affine particle displacements by assuming
that all plastic deformation occurs through STZ rearrange-
ments. Each reversal from one orientation to the other accu-
mulates a certain amount of plastic strain, and a threshold
shear stress must be applied for the reversal to occur. STZ
Theory treats the populations of the two STZ orientations
as dynamic state variables. STZs can flip from one orien-
tation to the other, and are created and destroyed as the

system is sheared. Creation and annihilation drive the num-
ber density of STZs towards a Boltzmann distribution, with
an effective temperature χ. The effective temperature de-
scribes the configurational disorder in the material. Regions
that have a higher effective temperature are more disor-
dered, have a higher density of STZs, and accomodate more
plastic strain. Effective temperature has been measured in
simulations [Ono et al., 2002] and experiments [Schröter et
al., 2005] for various amorphous materials.

In fault materials, the effective temperature describes the
disorder in the gouge packing, which determines the internal
state of the material. The disorder due to the many ways to
pack the material is much more significant than the disorder
due to thermal fluctuations for fault materials. Even at seis-
mogenic depths, thermal fluctuations are not large enough
to drive rearrangements in the material. The energy to form
an STZ must therefore come from external shearing of the
material, which alters the gouge packing and changes the ef-
fective temperature. Therefore, the evolution of the effective
temperature determines the dynamics of friction. The ther-
mal temperature can still have an effect on friction, as ma-
terial properties vary with the thermal temperature, though
it does not enter directly into the constitutive equations.

Quantitatively, the total rate of shear deformation Dtot
ij

can be written as the sum of elastic and plastic components.
STZ theory determines the plastic shear strain rate γ̇ in the
material based on two factors: the effective temperature,
which determines the number of STZs, and the shear stress
τ , which determines how frequently the STZs switch orien-
tation. We summarize these two contributions as follows:

γ̇ = f (τ) exp (−1/χ) . (1)

The function f(τ) describes how the STZ reversals depend
on the shear stress, and also incoporates a yield stress τy,
below which the plastic strain rate is zero and the fault
locks. If the stress is below the yield stress, f(τ) = 0 and
no plastic deformation occurs. Although the constitutive
equations allow for the fault to truly lock, we find that
in practice, the plastic strain rate never falls to zero dur-
ing dynamic rupture simulations. If the stress is above the
yield stress, f(τ) = (2ε/t0) exp(−E0) cosh(τ/σd)(1 − τy/τ),
the details of which are discussed in Appendix A. The
parameter meanings and values of are summarized in Ta-
ble 1. For the large values of shear stress in seismic faulting,
f(τ) ≈ exp(−E0 + τ/σd), which produces the logarithmic
rate dependence observed in rock mechanics experiments
[Dieterich, 1979]. However, materials other than fault gouge
may have different forms for f(τ).

Table 1. Parameter descriptions and their values in the STZ
model.

Parameter Description
t0 = 0.000001 s STZ rearrangement time scale

ε = 10 Strain increment for STZ rearrangement
E0 = 40 STZ activation energy scaled by STZ

formation energy
σd = 0.5 MPa STZ activation stress (also known as the direct

effect stress)
τy = 25 MPa STZ yield stress
c0 = 400 Effective temperature specific heat
χw = 0.2 Effective temperature activation barrier
q0 = 0.08 Nondimensional strain rate (γ̇t0) where STZ

Theory breaks down
R0 = 5 s−1 Inverse of STZ relaxation time scale
β = 0.1 STZ relaxation activation barrier

χ0 = 0.007 Lowest effective temperature that can be
reached by relaxation

D = varies Squared diffusion length scale
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Figure 1. Diagram illustraing the multi-scale nature of the earthquake rupture problem. The system
progressively decreases in scale from left to right. (left) Fault scale, with a thin layer of fault gouge
sheared between elastic rocks. (center) Deformation within the fault gouge, where a shear band that
is much narrower than the gouge thickness accomodates plastic strain in the gouge. Shear band image
taken from Falk and Shi [2002] and reoriented to match the sense of shear of the fault and grains. (right)
Individual rearrangements occur at the grain scale and produce plastic strain in the fault gouge. The left
grain scale picture shows a “positive” STZ orientation, and as the grains are sheared the gouge deforms
plastically and the particles change to a “negative” orientation in the right grain picture. STZ diagram
taken from Falk and Langer [1998].

The function f(τ) introduces two characteristic stresses –
the yield stress τy, and the STZ activation stress σd. The
yield stress is the minimum value of the macroscopic shear
stress that must be applied for the system to deform plas-
tically, as STZ Theory is a continuum approximation that
assumes that the macroscopic shear stress is sufficient to
describe the flipping of STZs. The values of both stress pa-
rameters are likely to be proportional to the normal stress,
as an increase in the confining pressure makes STZ rear-
rangements less likely to occur and require a proportional
increase in the applied shear stress to achieve the same plas-
tic strain rate. This is consistent with rock mechanics ex-
periments [Dieterich, 1979]. We only simulate 2D ruptures
along strike, where the normal stress is constant, so we hold
τy and σd constant. However, these parameters would vary
in a system where normal stress is not constant.

In addition to the relation between strain rate, stress, and
effective temperature (Equation (1)), the model requires a
dynamic evolution equation for the effective temperature.
We include terms for energy dissipation, diffusion, and time-
dependent relaxation in the governing partial differential
equation for the effective temperature:

∂χ

∂t
=

γ̇τ

c0τy

(
1− χ

χ̂ (γ̇)

)
+

∂

∂z

(
γ̇D

∂χ

∂z

)
(2)

+R0

(
1− χ

χ0

)
exp (β/χ) .

As work is done on the material, the dissipation term drives
the effective temperature towards a steady-state effective
temperature χ̂(γ̇) that depends on the strain rate [Langer
and Manning, 2007]. As the strain rate in the material in-
creases, the steady-state effective temperature rises. Only
part of the dissipated energy increases the effective temper-
ature in the material; the remainder increases the thermal
temperature and leads to frictional heating of the gouge.
Energy dissipation is an important topic in fault mechanics,
and we more thoroughly investigate this problem in another
study (A. M. Hermunstad, E. G. Daub, and J. M. Carlson,

Energetics of strain localization in a model of seismic slip,
submitted to Journal of Geophysical Research, 2009). Dif-
fusion occurs with a time scale determined by the inverse
strain rate and length scale

√
D. Diffusion of effective tem-

perature is observed in simulations [Shi et al., 2007], and
only occurs if the material is being deformed. The healing
term allows for time-dependent restrengthening on the fault,
and relaxes the effective temperature towards the minimum

shear stress constant in z-direction

V0

z

x

flow profile

effective 
temperature

Figure 2. Diagram illustrating a layer of fault gouge
driven at its boundary at a constant velocity V0. We re-
solve the effective temperature dynamics as a function of
position across the thickness of the gouge. This is illus-
trated by the black curve, which shows the effective tem-
perature as a function of position in the gouge. Because
the effective temperature evolves in space and time, the
STZ model captures the dynamic evolution of the strain
rate in the material, and the flow profile in the gouge,
which is shown in gray in the illustration. Shear stress
is assumed to evolve rapidly compared to the effective
temperature, and is always spatially homogeneous.
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value χ0. Strength recovers logarithmically with time, as
observed in laboratory experiments [Dieterich, 1972].

Our choice of χ̂(γ̇) is based on the observed rate depen-
dence of the steady-state effective temperature in a simu-
lated glass [Langer and Manning, 2007]:

χ̂ (γ̇) =
χw

log
(
q0
t0γ̇

) . (3)

If the parameter χw is less than unity, the friction law weak-
ens with increasing strain rate in steady state. The param-
eter q0 determines the dimensionless strain rate at which
the effective temperature diverges. At strain rates higher
than q0/t0, the deformation is no longer accomodated as
local STZs and instead as amorphous flow. The value of
q0 = 0.08 that we use is deduced from molecular dynam-
ics simulations [Haxton and Liu, 2007]. Because the time
scale for STZ rearrangement is very fast, our value of q0
corresponds to a strain rate larger than the strain rate ex-
pected during seismic slip. This means that the constitutive
equations are valid at the strain rates in our simulations.

STZ Theory introduces many parameters, which come
from our aim to represent the underlying physics of gouge
deformation simply but accurately, and not from simply fit-
ting data in experiments. Parameters are needed to connect
the small scale physics to the larger scale frictional behavior,
and most of the parameters are constrained by simulations
and experimental data. The resulting friction dynamics are
generic for the theory and are robust to variations in the
parameter values.

Because the governing equation for the effective temper-
ature is a partial differential equation, the STZ model has
many more degrees of freedom than single state variable laws
such as Dieterich-Ruina friction. This allows for more com-
plex behavior of macroscopic friction when the STZ model is
applied to the larger scale problem of interfacial dynamics.

3. STZ Friction Dynamics

In this section, we look at the dynamics of friction when
the STZ law is applied to a layer of fault gouge under shear.
A schematic of the system is shown in Figure 2. A layer of
gouge of width 2w is sheared from the boundary at a con-
stant driving rate V0. We assume that the shear stress is
constant within the layer. This is because the time scale for
stress equilibration (the width of the gouge divided by the
speed of sound) is much smaller than the time scale for effec-
tive temperature evolution (the inverse plastic strain rate).
Due to this difference in time scales, the stress is always spa-
tially uniform in the z-direction, which is the static solution
to the continuum momentum conservation equation in this
geometry.

The xz component of the total rate of deformation tensor
Dtot
xz is the sum of elastic and plastic parts:

Dtot
xz =

1

2

(
∂vx
∂z

+
∂vz
∂x

)
=
D
Dt

(
τxz
2µ

)
+ γ̇xz, (4)

where D/Dt indicates a material or corotational derivative.
In the case of simple shear with translational symmetry in
the x-direction, the material derivative reduces to a partial
derivative with respect to time, and the total rate of de-
formation is given by (1/2)∂vx/∂z. Therefore, Equation 4
simplifies to

1

2

∂vx
∂z

=
1

2µ

dτ

dt
+ γ̇. (5)

Here, we have dropped indices on the stress and strain rate,
and since the stress is spatially uniform, changed the partial
derivative with respect to time into a full derivative with
respect to time.

If we integrate both sides of Equation 5 over the entire
width of the material in the z-direction, we obtain the difer-
ential equation describing stress evolution:

dτ

dt
=
µ

w

(
V0 −

∫ w

−w
γ̇ dz

)
. (6)

Driving the system causes the stress to increase at a rate
determined by the shear modulus µ, while plastic strain de-
creases the shear stress. Note that because the stress is
constant across the width of the gouge, any localization of
strain is due to spatial variations in the effective tempera-
ture (i.e. the configurational disorder in the gouge). Shear
bands form because the disorder in the material becomes
heterogeneous, and not because of spatial variations in the
shear stress.

The equations for stress evolution (Equation (6)) and ef-
fective temperature evolution (Equation (2)) are integrated
numerically to model the dynamics of friction in the layer.
We use a typical seismic slip rate of V0 = 1 m/s, a fault gouge
width of w = 0.1 m based on a field study by Chester and
Chester [1998], and a shear modulus of µ = 32 GPa. At the
start of integration, the stress is set to τ(t = 0) = 50 MPa.
We solve for the effective temperature on a spatial grid with
nz = 101 points in the z-direction, which resolves the dy-
namic evolution of the plastic strain rate within the fault
gouge. We solve for the effective temperature in only half of
the gouge, as the effective temperature is symmetric about
z = 0. The spatial derivatives of the effective temperature
are split into two terms and are approximated by second
order central finite differences, and time integration is per-
formed using a linearly implicit trapezoidal method with an
adaptive time step. We use no conduction boundary condi-
tions for the effective temperature at the boundaries of the
gouge layer.

The effective temperature dynamically evolves in the STZ
model, which leads to a dynamic evolution of the plastic
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Figure 3. Plot of effective temperature as a function
of position at several different values of the shear dis-
placement u for spatially uniform initial conditions. The
diffusion term is zero, and by symmetry the effective tem-
perature remains spatially homogeneous as the gouge is
sheared.
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strain rate in the material. We consider two different types
of initial conditions: spatially uniform in the z-direction,
and the spatially uniform initial conditions plus a small per-
turbation. For the spatially uniform case, the initial effec-
tive temperature that we use is χ(t = 0) = 0.009. If the
initial effective temperature is spatially homogeneous, then
by symmetry the strain rate is uniform and the subsequent
plastic deformation is spatially uniform in the z-direction
(Figure 3). In this case, the PDE for the effective tem-
perature reduces to an ODE because the diffusion term is
zero. Frictional behavior for homogeneous initial conditions
is similar to that of the Dieterich-Ruina laboratory-based
friction laws that are commonly used in earthquake model-
ing, as was discussed by Daub and Carlson [2008].

However, perfectly homogeneous initial conditions are not
physically realistic. A spatially uniform initial effective tem-
perature is extremely unlikely, and we approximate real ini-
tial conditions by adding a small perturbation (of the form
δχ · sech(z/δw), with δχ = 10−10 and δw = w/25). A sin-
gle perturbation is sufficient to approximate heterogeneous
initial conditions because with rate weakening parameters,
we find that a single shear band forms at the point with the
largest initial effective temperature regardless of the choice
of heterogeneous initial conditions. When the initial effec-
tive temperature is perturbed, the diffusion term is no longer
zero. We use a diffusion constant D = 0.0001 m2 when nu-
merically integrating the STZ equations with the perturbed
initial effective temperature.

Figure 4 shows the effective temperature dynamics with
a small perturbation added to the initial effective tempera-
ture. The perturbation spontaneously grows as the gouge
is sheared and a narrow shear band dynamically forms.
The unstable growth of the perturbation is due to a feed-
back in the effective temperature evolution law. Any spa-
tial point with an elevated effective temperature also has a
larger strain rate. The energy dissipation term in the effec-
tive temperature governing equation (Equation (2)) is pro-
portional to the strain rate, so the effective temperature at
a point with an elevated effective temperature grows more
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Figure 4. Plot of effective temperature as a function of
z-position at several different values of the shear displace-
ment u for the same spatially uniform initial conditions in
Figure 3 plus a small perturbation described in the main
text. As the gouge is sheared, the perturbation amplifies
and grows into a shear band. The effective temperature
grows much more rapidly with shear displacement when
a shear band forms than when deformation is spatially
uniform.

rapidly than others. This feeds back into the dissipation
term, and leads to strain localization and the formation of
a shear band. The final shear band width is determined by
the diffusion length scale

√
D, and the steady shear band

profile that results balances dissipation and diffusion.
It is important to note that the diffusion of effective tem-

perature occurs in a different manner from thermal diffusion,
as the time scale for effective temperature diffusion is set by
the inverse plastic strain rate. This means that both the
dissipation and diffusion terms are proportional to the plas-
tic strain rate, and can balance each other as long as the
strain rate is not above the strain rate at which the effective
temperature diverges (q0/t0). Because of this difference in
time scales between effective temperature diffusion and ther-
mal temperature diffusion, our work provides an alternative
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Figure 5. Plots of stress as a function of shear displace-
ment for the plots in Figures 3 and 4. “Homogeneous”
indicates that the initial effective temperature is spatially
uniform, and the effective temperature for this curve is
illustrated in Figure 3. “Localized” indicates that a small
perturbation is added to the spatially uniform initial ef-
fective temperature; a shear band forms in this case. The
effective temperature for the “localized” curve is shown
in Figure 4. The formation of a shear band produces dif-
ferent macroscopic material behavior. The shear stress
drops more rapidly with shear displacement for “local-
ized” shear, and the steady sliding friction is significantly
lower than the “homogeneous” case.

Table 2. Elastodynamic parameters in rupture simulations.

Parameter Description
µ = 32 GPa Shear modulus

cs = 3.464 km/s Shear wave speed
ν = 0.25 Poisson’s ratio

Lfault = 8 km Length of fault that can rupture
Ltrigg = 1 km Length of triggering patch

τtrigg = 67.5 MPa Triggering stress
dl = 0.005 km Grid spacing in the x-direction
nx = 2048 Number of grid points in the x-direction
cfl = 0.3 Courant-Friedrichs-Lewy Ratio cfl = csdt/dl
w = 0.1 m Half width of fault gouge layer
nz = 101 Number of z-direction grid points spanning

half width of gouge
dz = 0.001 m Grid spacing in z-direction
nsub = 10 Substeps within elastodynamic time step

for effective temperature integration
τ0 = varies Initial shear stress
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Figure 6. Diagram illustrating the fault in the dynamic rupture model. (left) Side view of the fault
plane. Slip is assumed to be uniform with depth. The triggering patch (medium gray) initiates slip, and
the rupture spontaneously propagates along strike through the light gray region before it hits the strong
barriers (darkest gray) to stop the rupture. (right) Top view of the fault. A thin layer of fault gouge,
which is described by STZ Theory, is sheared between elastic rock. Within the fault gouge, we resolve the
dynamic evolution of the effective temperature across its width (inset). The effective temperature evolves
independently at each position along strike, and dynamic fault slip at each point drives the process of
strain localization in the model.

picture to other studies of shear banding that investigate
thermal runaway effects [Kaus and Podladchikov, 2006].

The prediction that a perturbation to the initial effective
temperature results in localization of strain can be confirmed
through a linear stability analysis. Manning, et al. [2009]
found that steady sliding was unstable if χw < 1, which
is precisely the conditions for steady-state rate weakening.
This indicates that if the friction law weakens with strain
rate, any perturbation results in localized strain. Manning,
et al. [2009] also determined that shear bands can form even
if the friction law is rate strengthening due to transient ef-
fects. While we focus on rate weakening parameters in this
study, the prediction that rate strengthening materials can
form shear bands has implications for many geophysical sys-
tems.

We show a plot of stress as a function of shear displace-
ment for the two different sets of initial conditions in Fig-
ure 5. The curve for spatially uniform initial conditions is
labeled “homogeneous,” and the curve for perturbed initial
conditions is labeled “localized.” The curves are identical for
shear displacements less than 0.1 m, at which point the shear
band forms for the perturbed initial conditions. The shear
displacement at which localization sets in is determined by
the magnitude of the perturbation δχ. The larger the value
of δχ, the more quickly the shear band forms and the less slip
required for localization to occur. The width of the pertur-
bation δw has no effect on the friction dynamics – a single
shear band of a width determined by the diffusion length
scale forms regardless of the choice of δw. Once the shear
band forms, the stress drops rapidly and the sliding friction
is reduced. This indicates that localization is a mechanism
for dynamic weakening. The strain rate is locally higher in
the shear band, and the friction law weakens with strain
rate, so the shear stress while sliding with a shear band is
lower than for the case without a shear band.

The difference in the macroscopic stress shows that strain
localization has a significant impact on the frictional prop-
erties of fault gouge. In the next section, we examine the
implications this has for the larger scale dynamics of earth-
quake rupture on faults.

4. Dynamic Ruptures With Localization

To investigate the impact of strain localization in dynamic
earthquake rupture, we implement the STZ friction law in
spontaneous elastodynamic rupture simulations. The elasto-
dynamic response of the surrounding rock is modeled using
a boundary integral method [Cochard and Madariaga, 1994;
Perrin et al., 1995; Geubelle and Rice, 1995]. In the bound-
ary integral method, the shear stress τ on the fault can be
written

τ(x, t) = τ0(x) + φ(x, t)− µ

2cs
V (x, t). (7)

The total shear stress on the fault is the combination of
three terms: the initial shear stress on the fault τ0(x), the
stress transfer functional φ(x, t), and radiation damping.
The stress transfer functional accounts for all dynamic stress
changes due to prior slip on the fault, and is calculated using
FFTs. We note that although the radiation damping term
is explicitly written out in Equation (7), the full dynamic re-
sponse is accounted for with this method. The stress and slip
rate also satisfy the friction law (Equation (1)) integrated
over the gouge width in the z-direction, and the friction law
and elastodynamic equation are solved simultaneously on
the fault.

We simulate in-plane dynamic ruptures with the STZ fric-
tion law. The fault that we model is illustrated in Figure 6.
The left picture shows a side view of the fault plane. We
assume that slip does not vary in the y-direction, and that
slip occurs only in the x-direction. This geometry allows for
both supershear and sub-Rayleigh propagation speeds. For
simplicity, we assume that the friction parameters and initial
conditions for the effective temperature do not vary along
strike (x-direction). Additionally, the initial shear stress is
uniform along strike (τ0(x) = τ0) with the exception of a
triggering patch of width Ltrig where the stress is elevated
to τtrig to nucleate rupture. Strong barriers with a large
yield stress τy stop the rupture once it reaches the edge of
the fault. The right picture shows a top view of the fault.
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A layer of gouge of half width w, which is described by STZ
Theory, is sheared between elastic rock. The inset shows
a close up of the fault gouge, where the spatial grid in the
z-direction resolves the dynamic evolution of the effective
temperature in response to fault slip. Our perturbation to
the initial effective temperature is symmetric about z = 0,
so we only solve for the effective temperature in one half
of the gouge layer. The elastodynamic parameters for our
simulations are listed in Table 2.

We approximate the spatial derivatives in the effective
temperature evolution with central, second order finite dif-
ferences. Our finite difference scheme separates the diffusion
term into two terms, and the differences are computed on
a spatial grid in the z-direction spanning the half width of
the gouge. The stress is assumed to be constant across the
gouge, which means that the spatial variation of the effec-
tive temperature determines how strain localizes within the
fault core. As with our study of friction dynamics in Sec-
tion 3, we assume that ∂χ/∂z = 0 at z = ±w, and assume
that the effective temperature is symmetric about z = 0.

Our time integration scheme treats the effective temper-
ature derivatives in the diffusion term implicitly, and treats
the energy dissipation and relaxation terms explicitly. The
energy dissipation term must be treated explicitly in the
boundary integral method due to its dependence on the
strain rate. The diffusion constant, due to its dependence on
the strain rate, must also be treated explicitly. Because of
this, the time steps must be small enough to resolve the evo-
lution of the strain rate to determine the correct diffusion
time scale. Because the effective temperature (and there-
fore the strain rate) evolve on a time scale faster than the
time for seismic waves to propagate along the fault, our time
integration scheme involves taking nsub substeps within an
elastodynamic time step to integrate the effective tempera-
ture stably, as done in Noda, Dunham, and Rice [2009].

As with the smaller scale numerical investigation of fric-
tion dynamics, the effective temperature initial conditions
determine the subsequent evolution of strain rate in the
gouge. If the initial effective temperature is spatially uni-
form across the width of the gouge (z-direction), we refer to
the rupture as “homogeneous.” Homogeneous only refers to
the strain rate across the width of the gouge at any one spa-
tial point – the effective temperature varies along strike as it
evolves in response to slip on the fault, and it is also time de-
pendent. The spatially uniform initial effective temperature
in our simulations is identical to the initial effective temper-
ature in the investigation of friction dynamics (Section 3),
χ(t = 0) = 0.009.

If the initial effective temperature includes a small per-
turbation identical to the perturbation in the investigation
of friction dynamics (Section 3), then we refer to the rup-
ture as “localized.” This means that at any given position,
the strain rate can vary across the width of the gouge due
to the evolution of the effective temperature. The strain
rate profile also varies along strike, as the effective tempera-
ture evolves due to rupture propagation. At any given time,
there are both spatial points that have not ruptured that
still match the initial conditions, as well as points that are
actively slipping, where the strain rate profile is determined
by the effective temperature evolution.

Additionally, for ”localized” ruptures, we examine a va-
riety of different diffusion constants. We choose to vary
the diffusion length scale

√
D because it is not as well con-

strained as gouge widths that can be observed in the field.
Alternatively, the effect of localization can be varied by
changing the gouge half width w instead of

√
D, as the ratio√

D/w determines the effect of localization on the dynamic
rupture.

If the diffusion length scale (
√
D) is smaller than the half

width of the gouge w, then a shear band that is narrow on
the scale of the gouge forms. This case is refered to as a

“narrow shear band.” If the diffusion length scale is of the
order of the half width of the gouge or larger, then the shear
band that forms fills the entire width of the gouge. This case
is refered to as a “broad shear band.”

The distinction between “broad” and “narrow” shear
bands is important because localization is a mechanism for
dynamic weakening. The narrower the shear band, the
larger the strain rate in the shear band, and the lower the
shear stress. We illustrate the effect of changing the diffu-
sion constant in Figure 7. The plot shows the shear stress
as a function of slip at a point 2 km from the hypocenter for
four different values of the diffusion constant, as well as the
same curve for a homogeneous rupture. The plot confirms
that narrow shear bands increase the dynamic weakening
due to localization, and decrease the sliding friction during
earthquake rupture.

A plot of shear stress as a function of slip at a point 2 km
from the hypocenter is shown in Figure 8. The shear stress
weakens in two distinct phases. For slip less than 0.1 m,
stress weakens gradually with slip. This corresponds to an
approximately spatially uniform effective temperature, be-
fore the shear band grows rapidly. For slip between 0.1 m
and 0.3 m, the stress drops rapidly due to the rapid growth
of the shear band. Once the stress fully weakens, the stress
increases due to re-strengthening. In this case, slip stops
shortly before 0.7 m, and the fault heals.

The evolution of the effective temperature during dy-
namic rupture is similar to its evolution in the simple
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Figure 7. Plot of shear stress as a function of slip for
varying diffusion constants scaled by the half-width of
the fault gouge

√
D/w at a point on the fault 2 km from

the hypocenter. In each case, the dynamically selected
shear band width in the fault gouge is proportional to the
effective temperature diffusion length scale. The upper-
most curve is a “homogeneous” rupture for comparison,
where the initial effective temperature is spatially uni-
form and no shear band forms. The other curves are
all “localized” ruptures. The uppermost curve that in-
cludes diffusion (

√
D/w = 1) is a “broad shear band,”

as the diffusion length scale is equal to the gouge width.
The lowermost curve is a “narrow shear band” with a
diffusion length scale that is significantly smaller than
the gouge half-width (

√
D/w = 0.1). As the diffusion

length scale decreases, the shear band becomes narrower,
and the stress decreases more rapidly and reaches a lower
value. The variation of stress as a function of slip with
the diffusion length scale shows that strain localization is
a mechanism for dynamic weakening.



X - 8 DAUB ET AL.: RUPTURES WITH SHEAR STRAIN LOCALIZATION

sheared layer of gouge. Snapshots of the effective tempera-
ture as a function of position within the gouge thickness at
several points along the stress versus slip curve are shown
in Figure 9. The earliest effective temperature plot shows
that during the initial weakening phase of the stress versus
slip curve, the gouge deforms approximately homogeneously.
This is because the feedbacks in the effective temperature
equation require time to amplify heterogeneity in the initial
conditions. The duration of this phase of weakening is con-
trolled by the magnitude of the initial perturbation to the
effective temperature. Larger initial perturbations require
less time to dynamically grow and shorten the amount of
slip before the shear band forms.

As the effective temperature in the shear band increases,
the shear stress in the gouge drops rapidly with increasing
slip. The shear stress is lower because the strain rate is ele-
vated in the shear band, and the STZ friction law weakens
with strain rate. Additionally, the stress drops more rapidly
because the relevant length scale for friction evolution is
now the shear band width (∼

√
D) instead of the half gouge

width w. These two factors combine to significantly reduce
the frictional dissipation on the fault during fault slip.

As the successive plots of the effective temperature show,
the effective temperature in the shear band grows in magni-
tude, and the width of the shear band increases as the stress
on the fault drops. The expanding width is due to the dif-
fusion of effective temperature. The shear band reaches its
maximum width when the stress reaches its minimum value,
and the same shear band width is maintained for the dura-
tion of slip.

The rapid weakening of the shear stress coincides with the
largest strain rates during rupture. Figure 11 shows strain
rate profiles across the gouge width at several times during
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Figure 8. Plot of shear stress as a function of slip at
a point on the fault 2 km from the hypocenter. The
shear stress drops in two different stages. First is an early
stage where the effective temperature is uniform in the
fault gouge, which lasts for the first 0.1 m of slip. After
about 0.1 m of slip, more rapid dynamic weakening oc-
curs, which is coincident with the shear band formation.
Once the stress decreases to its minimum value at 0.3 m
of slip, the fault continues to slip and the stress gradually
rises. Slightly before 0.7 m of slip is reached, slip ceases
and the fault heals, which indicates that slip propagates
as a self-healing pusle for these conditions. The diffusion
constant in this simulation is

√
D/w = 0.2236, and the

initial stress is τ0 = 47 MPa.

the weakening phase of dynamic rupture. The largest strain
rates occur just as the shear band forms. This is because
shear stress decreases most rapidly with slip at this time,
releasing the most strain energy from the bulk. The strain
rate at the center of the gouge decreases as the stress contin-
ues to drop with further slip, and the shear band broadens
due to diffusion of the effective temperature. Because the
slip rate is the strain rate integrated across the width of
the gouge, the largest slip rates also occur when the stress
decreases most rapidly with slip.

At the scale of faults, ruptures can grow in space and
time in a number of ways. Slip can propagate as an expand-
ing crack, where points on the fault continue to slip after
the rupture front arrives, or as a self-healing pulse, where at
any given point the duration of slip is much shorter than the
total time the fault is rupturing. Additionally, because we
consider in-plane dynamic ruptures, the crack-like propaga-
tion mode can occur at sub-Rayleigh speeds or at supershear
speeds. The initial stress is one factor determining the type
of rupture growth – supershear rupture tends to occur at
high initial stress, sub-Rayleigh rupture at intermediate ini-
tial stress, and pulse-like rupture at low initial stress.

The other important factor determining how slip prop-
agates on a fault is the friction law – how much the fault
weakens when it slips, and how much energy is dissipated
on the fault. Because our simulations show localization de-
creases the frictional disspation and reduces the shear stress,
the width of the shear band in the gouge plays an important
role in determining how slip propagates along the fault. We
vary the diffusion length scale

√
D, which controls the de-

gree of localization. Small values of the diffusion constant
produce narrow shear bands, while larger values of the diffu-
sion constant produce broad shear bands. We vary the dif-
fusion length scale

√
D over an order of magnitude, ranging
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Figure 9. Plot of effective temperature as a function
of z-position within the gouge at a point 2 km from the
hypocenter at representative points shown in the stress
versus slip plot (Figure 8). The horizontal range in this
plot shows the entire gouge width in the simulation. The
effective temperature is spatially uniform after 0.1 m of
slip, at which point the feedbacks amplify the initial per-
turbation and a shear band forms. As slip propagates,
the effective temperature increases and diffuses outwards.
For slip beyond 0.3 m, the effective temperature decreases
due to the relaxation term and maintains the width in
curve (5). The diffusion constant in this simulation is√
D/w = 0.2236, and the initial stress is τ0 = 47 MPa.
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Figure 10. Snapshots of slip rate as a function of position along strike for the various types of rup-
ture. The effective temperature diffusion constant in these simulation is

√
D/w = 0.2236. At the largest

stress (τ0 = 55.5 MPa), slip nucleates ahead of the rupture rupture front and propagates faster than
the shear wave speed. Crack-like rupture traveling sub-Rayleigh speeds occurs at an intermediate stress
(τ0 = 48.5 MPa). The rupture propagates as a self-healing pulse for lower shear stress, and can rupture
the entire fault as a pulse (τ0 = 47 MPa), or slip can arrest before the pulse reaches the edge of the fault
(τ0 = 45.75 MPa). For the lowest values of shear stress (τ0 = 44.5 MPa), slip arrests while the rupture
is still a crack. While the arresting ruptures look very similar, they are classified differently because the
arresting pulse meets our criterion for pulse-like rupture described in the main text, while the arresting
crack does not.

from shear bands that diffuse to the full width of the gouge
(
√
D = w) to much narrower shear bands (

√
D = 0.1w).

In the STZ constitutive model the fault never truly locks.
The strain rate is zero only if the shear stress decreases to
below the yield stress τy. However, because fault healing

results in the shear stress increasing with time, the stress
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cannot drop below the yield stress to cause fault slip to
completely cease. We therefore define a pulse-like rupture
when the slip rate at the center of the fault is three orders
of magnitude smaller than the peak slip rate at the rupture
front.

We illustrate the different ways that slip propagates on
the fault for a value of the diffusion constant that allows for
pulse-like rupture (D = 0.0005 m2,

√
D/w = 0.2236) in Fig-

ure 10. Pulse-like rupture does not occur for all values of the
diffusion constant, only for smaller values that provide more
dynamic weakening. If the initial stress is τ0 = 55.5 MPa,
then the rupture propagates as a supershear crack. Slip
initiates ahead of the sub-Rayleigh crack tip and grows un-
stably, as the series of plots of slip rate as a function of
position along strike illustrate.

If the initial stress is τ0 = 48.5 MPa, fault slip occurs
as an expanding sub-Rayleigh crack. In this series of snap-
shots of slip rate as a function of position, once slip initiates
at a given point, the point continues to slip until the rup-
ture reaches the boundary of the fault. This type of rupture
occurs for intermediate values of the shear stress.

For lower values of the shear stress, rupture propagates
as an expanding, self-healing pulse. This type of rupture
is illustrated for τ0 = 47 MPa. The rupture begins as an
expanding crack as shown in the top plot of slip rate as a
function of position along strike, but then slip stops in the
center of the fault and the subsequent propagation is pulse-
like. In this type of rupture, a given point slips for less time
than the duration of the entire earthquake.

If the initial stress is too low, the dynamic rupture cannot
propagate over the entire spatial extent of the fault. Arrest-
ing ruptures can be pulse-like, where the rupture transitions
to pulse-like rupture but arrests before it reaches the fault
boundary, or crack-like, where the rupture arrests while it is
an expanding crack. An example of an arresting pulse and
an example of an arresting crack are shown in Figure 10.
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Figure 11. Plot of plastic strain rate as a function of po-
sition within the gouge at a point 2 km from the hypocen-
ter at representative points shown in the stress versus
slip plot (Figure 8). Note that the horizontal range in
this plot is smaller than in Figure 9, as the strain rate is
more sharply peaked than the effective temperature. The
largest strain rate occurs early in the weakening process,
as this is when the stress drops most rapidly with slip
and releases elastic strain energy from the bulk at the
largest rate. The diffusion constant in this simulation is√
D/w = 0.2236, and the initial stress is τ0 = 47 MPa.

While the slip rate as a function of position look similar
for the two ruptures, the arresting pulse meets our crite-
ria for pulse-like rupture while the arresting crack does not.
The arresting pulse occurs for τ0 = 45.75 MPa, and for even
lower stresses the rupture arrests before the rupture becomes
pulse-like (τ0 = 44.5 MPa).

We determine the range of stresses that produce each dif-
ferent type of rupture for multiple values of the diffusion
length scale. This produces a diagram that indicates rup-
ture type as a function of the diffusion length scale and
the initial stress (Figure 12). For each value of the initial
stress and each value of the diffusion constant, a correspond-
ing point can be located on the plot. Points corresponding
to example plots showing the different rupture types (Fig-
ure 10) are indicated on the plot as circles. For a specific
choice of parameters (D and τ0), the region where this point
falls determines the type of rupture that our simulation pro-
duces.

As expected, the additional weakening and reduced fric-
tional dissipation for the more localized ruptures reduces the
minimum shear stress for all types of rupture. The upper
curve (gray) in Figure 12 is the minimum stress needed to
nucleate supershear rupture. An order of magnitude reduc-
tion in the diffusion constant reduces the minimum stress
needed to nucleate supershear rupture by about 7 MPa.
This is a significant fraction of the initial shear stress on
the fault, and shows that the reduction in frictional energy
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Figure 12. Rupture classification diagram as a func-
tion of diffusion length scale and initial shear stress for
ruptures with STZ Theory. For a given value of the ini-
tial shear stress and the diffusion length scale, the region
that the point falls into determines the type of rupture
that is observed. For larger values of the diffusion length
scale (i.e. “broad shear bands”), slip can propagate as a
supershear crack, sub-Rayleigh crack, or arresting crack
only. For smaller values of the diffusion length scale (i.e.
“narrow shear bands”), slip can also propagate as an ex-
panding or arresting pulse. The pulse-like rupture can
occur for narrow shear bands because of the dynamic
weakening provided by strain localization. The rupture
with the narrowest shear band that we simulated reduces
the minimum stress required for slip to propagate on the
fault (solid black line) relative to the broadest shear band
by 9 MPa, which is a significant fraction of the initial
stress on the fault. The circles on the diagram indicate
the specific examples of ruptures that are shown in Fig-
ure 10.
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dissipation and the increase in dynamic weakening due to lo-
calization can signficantly alter how slip propagates on the
fault.

The lower curves (black) in Figure 12 indicate how lo-
calization affects rupture propagation at lower initial shear
stress. For broad shear bands, slip can only grow in a
crack-like manner, but as the diffusion constant is decreased,
pulse-like rupture can occur. This is because localization
leads to additional dynamic weakening, which was shown to
be the crucial frictional characteristic determining when slip
propagates as a self-healing pulse by Zheng and Rice [1998].
The solid line marks the lowest stress required to propagate
slip over the entire fault. This involves crack-like rupture
if
√
D > 0.5w and pulse-like rupture if

√
D < 0.5w. The

initial stress needed to fully rupture the fault (solid black)
decreases by nearly 10 MPa over the range of diffusion con-
stants that we simulated. This is also a significant fraction
of the initial shear stress. As with the supershear rupture
transition, the small scale process of localization can alter
the manner in which slip propagates at the fault scale.

5. Discussion

Our simulations with the STZ friction law reveal that
the dynamic weakening provided by localization can have
a significant impact on fault dynamics. In the STZ model,
shear bands spontaneously form and grow in response to
dynamic fault slip. This provides a unique description of
fault friction. Rather than assuming planar slip with a slip-
weakening or Dieterich-Ruina friction law, the dynamic evo-
lution of the effective temperature determines the strain rate
in the fault zone.

Strain localization alters the stress drop and slip rate
of dynamic rupture. The stress drop in a simulation that
dynamically forms a shear band is larger than if no shear
band forms. The peak slip rate is also larger in simulations
that form shear bands because the stress weakens over a
smaller slip length scale and releases stored elastic energy
more rapidly. Ground motion away from the fault tends to
be larger if the peak slip rate is increased [Aagard et al.,
2001], which suggests that strain localization may impact
the ground motion in real earthquakes.

Additionally, we find that localization plays an impor-
tant role in determining rupture propagation speeds. The
stress which marks the transition to supershear changes by
a significant amount for the narrowest shear bands. There is
evidence of supershear rupture speeds in many earthquakes
[Archuleta, 1984; Bouchon et al., 2001; Bouchon and Vallée,
2003; Ellsworth et al., 2004], as well as observations of su-
pershear rupture in laboratory slip experiments [Rosakis et
al., 1999]. Supershear ruptures radiate seismic waves with
a distinct attenuation pattern compared to sub-Rayleigh
ruptures [Dunham and Archuleta, 2005]. Therefore, under-
standing the conditions which lead to supershear rupture is
important for determining seismic ground motions.

In our simulations, localization provides the dynamic
weakening necessary for pulse-like rupture. Our simulations
do not produce pulse-like ruptures for homogeneous defor-
mation because there is not enough frictional weakening to
allow for pulses in the absence of strain localization. Strain
localization reduces the minimum initial stress for the earth-
quake to rupture the entire fault by about 10 MPa, a sig-
nificant amount relative to the initial stress on the fault.
Seismic observations suggest pulse-like rupture propagation
in many earthquakes [Heaton, 1990]. Zheng and Rice [1998]
determined that pulse-like rupture tends to occur for low
initial shear stress and with friction laws that exhibit in-
creased velocity weakening in steady state. Our simulations
are consistent with their results, as pulses occur at lower ini-
tial shear stresses for the narrower shear bands, where there
is more dynamic weakening.

In our study, we vary the effective temperature diffusion
length scale over an order of magnitude to determine how

the amount of dynamic weakening impacts the propagation
of ruptures. This parameter is selected because the diffu-
sion length scale is poorly constrained, and because it is
difficult to predict precisely what the shear band width will
be for a given set of parameters. The final shear band width
that the material chooses is dynamically selected by a bal-
ance between the nonlinear processes of energy dissipation,
effective temperature diffusion, and healing. The width is
proportional to the diffusion length scale

√
D, but it also

depends on the stress, the effective temperature, and the
effective temperature specific heat.

We consider a range of effective temperature diffusion
length scales because simulations, experiments, and field ob-
servations yield a wide range of shear band thicknesses in
amorphous materials. Simulations of glassy materials indi-
cate that shear band thicknesses tend to be approximately
10 particle diameters [Falk and Langer, 1998], though for
granular materials this could be very different because par-
ticles have a greater variety of sizes. Morgan and Boettcher
[1999] determined that deformation in numerical simulations
of fault gouge tends to localize to a narrower shear band
when a particle size distribution more heavily weighted to-
wards small particles is used. In each of their simulations,
the shear band is only a few particle diameters wide. How-
ever, simulations do not include the full range of particle
sizes that are found in natural faults [Chester et al., 2005].
Experimental investigations of shear band thicknesses in
granular materials indicate that shear band thickness should
scale with the “mean particle diameter,” defined such that
50% of the particles by weight have larger size [Tordesillas et
al., 2004]. Rock mechanics studies on laboratory faults with
gouge observe shear band thicknesses that depend on the
grain sizes, with the shear band thicknesses ranging from
around 100 µm [Beeler et al., 1996] to several millimeters
[Chambon et al., 2006]. The thickness of shear bands in
natural faults range from hundreds of microns to a few mil-
limeters [Chester et al., 1993; Chester and Chester, 1998;
Wibberley and Shimamoto, 2003].

The thicknesses of slip zones observed in exhumed faults
are even narrower than the shear bands in our simulations
[Chester et al., 1993; Chester and Chester, 1998; Wibberley
and Shimamoto, 2003], indicating that the dynamic weak-
ening from strain localization could be even more dramatic
than our results indicate. We did not explore smaller diffu-
sion length scales due to computational limits – the effective
temperature grid must be fine enough to resolve the shear
band, and the narrower shear bands reduce the slip scale
over which the stress weakens. This rapid stress drop re-
quires a smaller grid spacing along strike to produce well
resolved simulations.

Laboratory experiments on simulated fault gouge indi-
cate that strain localization, dilation, and frictional rate
dependence are interrelated [Beeler et al., 1996; Mair and
Marone, 1999]. Fault gouge tends to produce rate strength-
ening behavior when significant layer dilation occurs for
small strains, and rate weakening behavior at larger strains
once strain localizes. Effective temperature is a generaliza-
tion of free volume [Langer, 2008], and so we expect regions
of high effective temperature to have a higher free volume
and porosity. Because of this, STZ Theory predicts that
a homogeneously deforming layer dilates more than a layer
with a localized shear band, which is what is observed ex-
perimentally. The effective temperature for homogeneous
deformation is spatially uniform, while the effective temper-
ature for deformation with a shear band is locally higher
in the narrow shear band, and lower everywhere else. The
average effective temperature is larger for the spatially uni-
form effective temperature, and therefore the free volume
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and porosity are larger, but the average strain rate is the
same due to the nonlinear relationship between effective
temperature and the plastic strain rate (Equation (1)). The
experiments also indicate a transition from rate strength-
ening to rate weakening as localization occurs. In the STZ
model as presented in this study, the rate dependence of fric-
tion is independent of the degree of localization. However,
the transition from rate strengthening for homogeneous de-
formation to rate weakening for localized deformation can
be incorporated by modifying the strain rate dependence of
the maximum effective temperature (Equation (3)) to the
form used in Manning et al. [2009].

Another important question that arises in the context
of laboratory experiments is if the dynamic weakening pre-
dicted by STZ Theory could be observed in an experiment.
This is a difficult problem, as the experiment must be able
to distinguish between homogeneous and localized deforma-
tion over the course of a single friction experiment. Stud-
ies such as the Beeler et al. experiments do not observe
friction versus displacement curves like those in our study,
even though deformation localizes to a narrow shear band.
However, the absence of such weakening could be due to
deformation localizing to a shear band from the beginning
of the experiment, as the two stage weakening we observe
requires a brief period of homogeneous deformation. Experi-
ments that can actively image particle displacements during
shear, such as those that use photoelastic beads [Daniels
and Hayman, 2008], might be better suited to determining
if localization produces the dynamic weakening predicted by
STZ Theory.

Core samples from the creeping section of the San An-
dreas Fault Observatory at Depth (SAFOD) indicate that
slip occurs throughout the entire gouge width of about 2-
3 m (i.e. not localized within the layer) [Hickman et al.,
2007]. Laboratory experiments with gouge from the creep-
ing section indicate rate strengthening friction parameters
[Carpenter et al., 2007]. These results are consistent with
STZ Theory, which predicts that rate strengthening materi-
als form shear bands only as transient phenomena [Manning
et al., 2009]. When a rate strengthening material is loaded at
a relatively constant rate, STZ Theory predicts that steady
sliding is stable and deformation is accomodated over the en-
tire width of the fault gouge, in agreement with the SAFOD
experiment.

Slip surfaces are often observed at the boundary between
gouge and the host rock in both exhumed faults [Chester
and Chester, 1998] and laboratory experiments [Beeler et
al., 1996]. In STZ Theory, the position where the shear
band forms depends on where the initial effective tempera-
ture is largest. If there are two or more positions with an
equally large initial effective temperature, strain localizes to
one. If one of the possible locations is at the boundary, the
shear band prefers to form at the boundary rather than in
the interior of the gouge layer. Boundary conditions on the
effective temperature may also play a role. Our simulations
use no conduction boundary conditions, but other boundary
conditions, such as fixed effective temperature at the bound-
ary could also be chosen. These may yield different results
for the preferred shear band location. Changing the bound-
ary conditions is not likely to be important for shear bands
that form in the center of the gouge, but could have an effect
on shear bands that form near the gouge/rock boundaries.

Localization of deformation can occur in other models of
plasticity [Rudnicki and Rice, 1975]. The STZ model has
some important differences from the plasticity models in
Rudnicki and Rice, the most important of which is the in-
clusion of a length scale that sets the width of shear bands.
Dynamic rupture calculations with a Rudnicki and Rice-type
plasticity model resulted in localization of deformation down
to the numerical grid scale even as the grid scale was refined
[Templeton and Rice, 2008]. In these models, a localization-
limiting procedure is necessary for a continuum solution to

exist [Bazant and Jirasek, 2002]. In STZ Theory, the in-
clusion of the diffusion length scale limits localization to a
minimum shear band thickness, and allows a dynamic bal-
ance between dissipation and diffusion to set the shear band
thickness. The Rudnicki and Rice study found that condi-
tions for localization are normal-stress dependent. This dif-
fers from STZ Theory, where the conditions for localization
are dependent only on the internal structure of the mate-
rial through the dynamics of the effective temperature. The
normal stress sets the overall stress scael in the problem
and plays a role in determining if plastic yielding occurs, as
the yield stress could be normal stress dependent, but lo-
calization is entirely due to the dynamic instability in the
evolution of the effective temperature.

STZ Theory provides a microscopic physical basis for
plastic deformation in fault gouge. There are also many
other processes that are important during seismic slip which
are likely to couple to the STZ dynamics, and are not yet
incorporated into STZ Theory. Brittle fracture, wear, and
comminution create the finely grained gouge in the fault
zone. Fracturing rock dissipates energy and creates smaller
grains, which might change parameters such as the effective
temperature diffusion length scale or the STZ reversal time
scale. Thermal heating and weakening, melting, and pres-
surization of fluids are also believed to be important during
fault slip [Lachenbruch, 1980; Tullis and Goldsby, 2003; Di
Toro et al., 2004; Di Toro et al., 2006; Rice, 2006]. These
processes likely influence the rate at which STZs reverse
and how the effective temperature evolves. Determining
how these additional processes couple to the STZ friction
law may provide further constraints on the physics of the
earthquake source.

Appendix A: Full Derivation of the STZ
Equatioins

STZ Theory calculates the plastic strain rate γ̇ based on
four quantities: the shear stress τ , the number of STZs in
each of the two possible orientations n+ and n−, and the ef-
fective temperature χ [Langer, 2008]. The number of STZs
in each orientation and the effective temperature quantify
the internal state of the material. In this paper we incorpo-
rate a typical approximation which assumes the number of
STZs in each orientation is equal to its steady state value.
This approximation is valid when the STZ time scale is much
faster than other dynamical processes in the problem. Here,
we present the details of the derivation of the STZ equa-
tions and the simplifying assumptions necessary for setting
the STZ populations to steady state.

In STZ Theory, plastic strain occurs in localized regions
that are susceptible to rearrangement under applied shear
stress. These regions, called Shear Transformation Zones
(STZs), switch between two metastable orientations, de-
noted “positive” and “negative.” When a “positive” orien-
tation changes to a “negative” orientation, the plastic strain
increases by a fixed increment, and when a “negative” orien-
tation switches to a “positive” orientation, the plastic strain
decreases by a fixed increment. An STZ undergoing a switch
from “positive” to “negative” is shown at the right in Fig-
ure 1. Once an STZ has switched to the “negative” orien-
tation, the material cannot shear further at that location.
Therefore, to accumulate shear the material is constantly
creating and destroying STZs as energy is dissipated in the
system.

Quantitiatively, the basic premise of STZ Theory can be
written as follows:

γ̇ =
2ε

n∞t0
[R (+τ)n+ −R (−τ)n−] . (A1)
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The plastic strain rate γ̇ is the net sum of all the STZ rever-
sals in the material. The function R(τ) describes the rate
at which STZ reversals take place in response to the applied
shear stress. The other parameters are the strain increment
per STZ reversal ε, a reference STZ population n∞, and the
time scale for STZ reversals t0.

Equation (A1) can be rewritten with the following change
of variables:

Λ =
n+ + n−
n∞

, m =
n− − n+

n+ + n−
. (A2)

The variable Λ is proportional to the total number of STZs,
and m quantifies the bias. With these variables, the consti-
tutive law becomes

γ̇ =
2ε

t0
C (τ) Λ [T (τ)−m] . (A3)

The rate switching funtion is rewritten in the combina-
tions C(τ) = (R(τ) + R(−τ))/2 and T (τ) = (R(τ) −
R(−τ))/(R(τ) + R(−τ)) in this version of the constitutive
law.

In this study, we assume an exponential form for the rate
switching function [Eyring, 1936]:

R (τ) = exp (−E0 + τ/σd) . (A4)

The rate switching function depends on an activation stress
σd, and an activation energy scaled by the energy required to
form an STZ E0. The activation stress is known as the direct
effect stress in rock mechanics experiments – its magnitude
is typically much less than the shear stress (τ/σd >> 1).
This form for R(τ) reproduces the logarithmic rate depen-
dence seen in rock mechanics experiments [Daub and Carl-
son, 2008]. The rate switching function combinations are
then C(τ) = exp(−E0) cosh(τ/σd) and T (τ) = tanh(τ/σd).
Under the approximation that τ/σd >> 1, we set T (τ) ≈ 1.

The STZ populations dynamically evolve as the material
is sheared. The STZs can switch between the two orienta-
tions, and STZs are created and destroyed. Therefore, the
evolution equations for the STZ populations are

dn±
dt

=
1

t0
[R (∓τ)n∓ −R (±τ)n±] (A5)

+
γ̇τ

ε (n+ + n−) τy

[
n∞
2

exp (−1/χ)− n±
]
.

The first term accounts for STZs switching from “positive”
to “negative” and vice versa, and the second term incor-
porates STZ creation and annihilation. The overall cre-
ation/annihilation rate is proportional to the rate at which
work is done on the material. The creation term includes ef-
fective temperature dependence, as we assume that energy
dissipation in the material drives the STZ population to-
wards a Boltzmann distribution. The stress τy determines
the fraction of dissipated energy that creates STZs, and it
also turns out to be the threshold stress that must be applied
to switch an STZ.

In the Λ and m variables, the evolution equations become

dΛ

dt
=

γ̇τ

n∞Λτy
[exp (−1/χ)− Λ] ; (A6)

dm

dt
=

γ̇

εn∞Λ

{
1− τm

τy
[1 + exp (−1/χ)− Λ]

}
. (A7)

We note that the dynamic equations for Λ and m both have
a factor of 1/(n∞Λ). For the equations of STZ Theory to
be valid, STZs must be rare, otherwise the assumption that
plastic strain occurs in local, isolated regions is no longer

valid. Therefore, the number of STZs is small, and the STZ
populations evolve quickly relative to the stress and effec-
tive temperature. The total number of STZs is always at
its steady state value Λ = exp(−1/χ), which is set by the
effective temperature.

If we set the total number of STZs to steady state, then
the steady state value for the STZ bias is m = τy/τ . How-
ever, the STZ bias cannot be larger than m = 1, which
corresponds to all the STZs in the “negative” orientation.
When all the STZs are in the “negative” orientation, the
material cannot be sheared further because there are no re-
gions susceptible to deformation. This means that if τ < τy,
then the material is jammed and γ̇ = 0. Otherwise, the ma-
terial flows. Therefore, the steady state value for the STZ
bias is dependent on the stress as follows:

m =

{
1, τ < τy;
τy/τ, τ ≥ τy.

(A8)

The STZ dynamics are important for determining if the ma-
terial is jammed or flowing, but otherwise the stress and
effective temperature have a greater effect on the friction
dynamics.

The friction law that we use in our simulations is therefore

γ̇ =
2ε

t0
exp (−E0) cosh [τ/σd] exp (−1/χ)

[
1− τy

τ

]
,(A9)

except if τ < τy, when γ̇ = 0. This is the exact version
of Equation (1) in the main text. The strain rate depends
on the shear stress, and the internal state of the material
is described entirely by the effective temperature. We dis-
cuss the dynamic equation for the effective temperature in
Section 2 in the main text.
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