Jamming and tiling of rectangles

Eli Ben-Naim Los Alamos National Laboratory

with: Daniel Ben-Naim (UC Santa Barbara) & Paul Krapivsky (Boston Univ.)

arXiv://1808.03714 & arXiv://1905.06984 Journal of Physics A **51**, 455002 (2018) Physical Review E, submitted (2019)

Talk, publications available from: http://cnls.lanl.gov/~ebn

50 years of stochastic processes at UCSD: a symposium in honor of Katja Lindenberg San Diego, CA, August 16, 2019

Plan

I Linear dynamical tiling:
Stochastic fragmentation of rectangles
II Nonlinear dynamical tiling:
Stochastic aggregation of rectangles

Straightforward generalizations of classical ID fragmentation and aggregation to 2D Results anything but

Fragmentation of rectangles

Start with a perfect grid Pick (i) random grid point (ii) random direction Fragment rectangle into two smaller rectangles

System reaches a jammed state All rectangles are sticks (1 x k or k x 1)

The jammed state Tiling by sticks

- Tiling is:Polydisperse
- Dynamical

How many sticks? How long? How many jammed states?

Theoretical approach: recursion equations

ID Filippov 61 Spouge 84 Ziff, McGrady 85

- Random fragmentation process $(m,n) \rightarrow \begin{cases} (i,n) + (m-i,n) & \text{with prob. } 1/2 \\ (m,j) + (m,n-j) & \text{with prob. } 1/2 \end{cases}$
- Average number of sticks S(m,n) in an $m \times n$ rectangle
- Recursion: sum over all possible (i) grid points (ii) directions

$$S(m,n) = \frac{1}{2} \times \frac{1}{m-1} \sum_{i=1}^{m-1} \left[S(i,n) + S(m-i,n) \right] + \frac{1}{2} \times \frac{1}{n-1} \sum_{j=1}^{n-1} \left[S(m,j) + S(m,n-j) \right]$$

• Linear recursion equations for number of jammed sticks

$$S(m,n) = \frac{1}{m-1} \sum_{i=1}^{m-1} S(i,n) + \frac{1}{n-1} \sum_{j=1}^{n-1} S(m,j) \qquad \begin{array}{c} \text{2D} \\ \text{Torrents, Illa,} \\ \text{Vives, Planes} \\ \text{PRE 2017} \end{array}$$

Theory: (i) linear (ii) bypasses dynamics (iii) 2d

Asymptotic analysis

I. Continuum limit (very large rectangles)

$$S(m,n) = \frac{1}{m} \int_{1}^{m} di \, S(i,n) + \frac{1}{n} \int_{1}^{n} dj \, S(m,j)$$

2. Convert integral equation into partial differential equation

$$\partial_{\mu}\partial_{\nu}S(\mu,\nu) = S(\mu,\nu) \qquad \begin{array}{l} \mu = \ln m \\ \nu = \ln n \end{array}$$

3. Introduce double Laplace transform

$$\widehat{S}(p,q) = \int_0^\infty d\mu \, e^{-p\mu} \int_0^\infty d\nu \, e^{-q\nu} \, S(\mu,\nu)$$

4. Obtain Laplace transform in compact form

$$\widehat{S}(p,q) = \frac{1}{pq-1}$$

5. Invert double Laplace transform (saddle point analysis)

$$S(\mu,\nu) = \int_{-i\infty}^{i\infty} \frac{dp}{2\pi i} \int_{-i\infty}^{i\infty} \frac{dq}{2\pi i} \frac{e^{p\mu+q\nu}}{pq-1} \quad \rightarrow \quad S(\mu,\nu) \simeq \frac{e^{2\sqrt{\mu\nu}}}{\sqrt{4\pi\sqrt{\mu\nu}}}$$

Average number of jammed sticks

• Asymptotic behavior

$$S(m,n) \simeq \frac{e^{2\sqrt{(\ln m)(\ln n)}}}{\sqrt{4\pi\sqrt{(\ln m)(\ln n)}}}$$

• Focus on very large rectangles with finite aspect ratio

 $m \to \infty$ and $n \to \infty$ with m/n = constant

• Universal behavior for all rectangles with same area

$$S(A) \simeq \frac{A}{\sqrt{2\pi \ln A}} \qquad A = mn$$

- Average stick length $\langle k \rangle = A/S\,$ grows slowly with area

$$\langle k \rangle \simeq \sqrt{2\pi \ln A}$$

Behavior is independent of aspect ratio

Distribution of stick length

• Number of sticks of given length obeys same recursion

$$S_k(m,n) = \frac{1}{m-1} \sum_{i=1}^{m-1} S_k(i,n) + \frac{1}{n-1} \sum_{j=1}^{n-1} S_k(m,j)$$

• Leading asymptotic behavior

$$P_k \simeq 2k^{-2} \exp\left[-\frac{(\ln k)^2}{2\ln A}\right]$$

• Infinite-area limit: exact result

$$P_k = \frac{2}{k(k+1)}$$

Below average length: power law tail Above average length: log-normal decay

Numerical validation

perfect agreement for small length (within 0.1%) convergence is very slow

Moments of length distribution

Normalized moments

$$M_h = \frac{\langle k^h \rangle}{\langle k \rangle} \qquad \qquad \langle k^h \rangle = \sum_{k \ge 2} k^h P_k$$

Multiscaling asymptotic behavior

$$M_h \sim A^{\mu(h)}$$
 with $\mu(h) = \frac{(h-1)^2}{h}$

Different spectrum than continuum version
 EB, Krapivsky 96

 $M_h \sim A^{\mu_{\text{nojam}}(h)}$ with $\mu_{\text{nojam}}(h) = \sqrt{h^2 + 1} - \sqrt{2}$

Nonlinear spectrum of scaling exponents Discrete and continuous versions differ!!!

Discrete versus continuous fragmentation

discrete version process stops

continuous version process never stops

Asymmetric fragmentation

Two fragmentation events realized with different probabilities

$$(m,n) \rightarrow \begin{cases} (i,n) + (m-i,n) & \text{with prob.} \quad (1-\alpha)/2\\ (m,j) + (m,n-j) & \text{with prob.} \quad (1+\alpha)/2 \end{cases}$$

Discrepancy between two extreme cases

- $S = \sqrt{A}$ $\alpha = 1$ (perfectly asymmetric) $S \simeq A/\sqrt{2\pi \ln A}$ $\alpha = 0$ (perfectly symmetric)
- Strongly asymmetric phase: purely power law

$$S \sim A^{\sqrt{1-\alpha^2}} \qquad \qquad \alpha > \frac{1}{\sqrt{2}}$$

• Weakly asymmetric phase: power law + logarithmic correction

$$S \sim (\ln A)^{-1/2} A^{1/(2\alpha)} \qquad \alpha < \frac{1}{\sqrt{2}}$$

Phase transition at finite asymmetry strength

Number of jammed configurations

first fragmentation point can be uniquely identified

recursion equation for the total number of jammed states

exponential growth with area

$$T \sim e^{\lambda A}$$
$$\lambda = 0.2805$$

Aspect ratio dependence?

Conclusions I

- Random fragmentation of rectangles
- Process reaches a jammed state where all rectangles are sticks
- Recursion equations give statistical property of jammed state
- Number of jammed sticks is independent of aspect ratio
- Distribution of stick length decays as a power law
- Multiscaling: nonlinear spectrum of exponents for moments
- Asymmetric fragmentation: phase transition for growth exponent
- Generally, number of sticks grows sub-linearly with area
- Number of jammed states grows exponentially with area
- Abundance of exact analytic results

Aggregation of rectangles

Start with a perfect grid Pick two neighboring rectangles at random Merge the two if compatible

System reaches a jammed state No two <u>neighboring</u> rectangles are compatible

The jammed state **no two neighbors share a common side**

- Tiling is: • Polydisperse
- Dynamical

Features of the jammed state

Local alignment

Motifs

- Finite rectangle density
- $\rho = 0.1803$ • <u>Finite</u> tile density
 - T = 0.009949
- Finite stick density

S = 0.1322

• Finite square density

H = 0.02306• Area distribution of

rectangles with width w $m_{\omega} \sim \exp\left(-\text{const.} \times \omega^2\right)$

No theoretical framework!¹

Mean-field fragmentation process

- Start with $N |\mathbf{x}|$ tiles (elementary building blocks)
- Pick two rectangles completely at random
- Pick an orientation at random (vertical or horizontal)
- Merge rectangles if they are perfectly compatible $(i_1, j) + (i_2, j) \rightarrow (i_1 + i_2, j)$ $(i, j_1) + (i, j_2) \rightarrow (i, j_1 + j_2)$
- System is jammed when f rectangles have:
 f distinct horizontal sizes and f distinct vertical sizes
 System reaches a jammed state

An example of a jammed state

- Characterize rectangle by horizontal and vertical size (i, j)
- Characterize rectangle by maximal and minimal size
 - (ω, ℓ) $\omega = \min(i, j)$ $\ell = \max(i, j)$
- Example of a jammed state for N=10,000
 1 × 3144, 2 × 498, 3 × 113, 4 × 45, 5 × 6, 6 × 14, 9 × 12
 3237 × 1,475 × 2,61 × 3,14 × 4,48 × 5,29 × 7,25 × 10
- Ordered widths of f=14 rectangles

 $\{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 9, 10\}$

Width sequence has gaps

Number of jammed rectangles

 $\bullet \mbox{Average number of rectangles grows algebraically with <math display="inline">N$

 $F \sim N^{\alpha}$

Nontrivial exponent

 $\alpha = 0.229 \pm 0.002$

-Typical width of rectangles grows algebraically with N $\omega \sim N^{\alpha}$

 Area density of rectangles of width w decays as a power law

 $m_{\omega} \sim \omega^{-\gamma}$ with $\gamma = \alpha^{-1} - 2$

A single exponent characterizes the jammed state

Numerical simulations

Rectangles with finite width are macroscopic! Rectangles of width 1,2,3,4,5 contain 95% of total area **Still, the area distribution has a broad power-law tail!**

Two aggregation modes: fast and slow two length scales

 $\ell \sim t \qquad w \sim t^{\alpha}$

 $\alpha = 0.229 \pm 0.001$

elongating: aspect ratio increases

Simple decay for the stick density and jamming time

$$S \simeq t^{-1} \implies \tau \sim N$$

• Jammed state properties give density decay and width growth $\rho \sim t^{\alpha-1}$ and $w \sim t^{\alpha}$ Jamming exponent characterizes the kinetics, too

Numerical validation

Numerics validate approximation Suggest two aggregation modes: elongating and widening

Primary aggregation: elongation

Aggregation between two rectangles of same width

Ordinary aggregation equation (example: sticks)

$$\frac{dR_{1,\ell}}{dt} = \sum_{i+j=\ell} R_{1,i}R_{1,j} - 2SR_{1,\ell} - 2\left(\sum_{i} R_{i,\ell}\right)R_{1,\ell}$$

•Length distribution as in d=1, length grows linearly $l \sim t$

$$R_{1,\ell} \simeq (2/m_1 t^2) \exp(-2\ell/m_1 t)$$

Behavior extends to all rectangles with finite width

 $\mathcal{R}_{\omega,\ell}(t) \simeq t^{-2} \Phi_{\omega}(\ell t^{-1}) \quad \text{with} \quad \Phi_{\omega}(x) = (2\omega/m_{\omega}) \exp(-2\omega x/m_{\omega})$

Finite width: problem reduces to one-dimensional aggregation However, total mass for each width is not known

Numerical validation

Secondary aggregation: widening

Aggregation between two rectangles of same length

• The area fraction is coupled to the size distribution

$$\frac{dm_{\omega}}{dt} = \frac{1}{2} \sum_{i+j=\omega} \sum_{\ell} \omega \ell \mathcal{R}_{i,\ell} \mathcal{R}_{j,\ell} - \sum_{j} \sum_{\ell} \omega \ell \mathcal{R}_{j,\ell} \mathcal{R}_{\omega,\ell}$$
Insights about relaxation toward jammed state $\mu_{\omega} = \frac{2\omega}{m_{\omega}}$

$$m_{\omega}(t) - m_{\omega}(\infty) \simeq C_{\omega} t^{-1}$$
 with $C_{\omega} = -2\omega \sum_{i+j=\omega} \frac{\mu_i \mu_j}{(\mu_i + \mu_j)^2} + 4\omega \sum_j \frac{\mu_\omega \mu_j}{(\mu_\omega + \mu_j)^2}$

Closure & theoretical determination of α remains elusive

Conclusions II

- Random aggregation of compatible rectangles
- Process reaches a jammed state where all rectangles are incompatible
- Number of jammed rectangles grows as a power-law
- Area distribution decays as a power law
- A single, nontrivial, exponent characterize both the jammed state and the time-dependent behavior
- Primary aggregation: rectangles of same width
- Secondary aggregation: rectangles of same length
- Slow transfer of "mass" from thin to wide rectangles
- Kinetic theory successfully describes primary aggregation process only