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‘ Plan I

Introduction

Kinetic theory of granular gases

Freely cooling states

Driven steady states | (forcing at large scales)

Driven steady states Il (forcing at all scales)



‘ Energy dissipation in granular matter I
g A

¢ Responsible for collective phenomena
» Clustering | Goldhirsch, G Zanetti 93
» Hydrodynamic instabilities & mveerson 04 -

» Pattern formation H swinney 96

¢ Anomalous statistical mechanics

»No energy equipartition rwidman, b parker 02

»Nonequilibrium energy distributions

P(E) #exp (—E/KT)
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‘ Driven Granular Gas I

Vigorous drivin ity not relevant <
g | | J (gravity not relevant) A ‘%

Spatially uniform system PP

Particles undergo binary collisions || 3 I l/.

Velocities change due to: | \.zj‘K‘ v

® Collisions: lose energy

© Forcing: gain energy

What is the typical velocity (granular “temperature”)?
T = (v?)
How are the velocities distributed?

f(w)



‘ Experiments I

¢ Friction
D Blair, A Kudrolli 01

¢ Rotation
K Feitosa, N Menon 04
¢ Driving strength
W Losert, J Gollub 98
¢ Dimensionality

J Urbach & Olafsen 98

Boundary
J van Zon, H Swinney 04

Fluid drag

K Kohlstedt, | Aronson, EB 05

Long range interactions

D Blair, A Kudrolli 01: W Losert 02
K Kohlstedt, J Olafsen, EB 05

Substrate
G Baxter, J Olafsen 04

Deviations from equilibrium distribution



‘ Nonequilibrium velocity distributions I

A Mechanically vibrated beads
F Rouyer & N Menon PRL 00

B Electrostatically driven powders
| Aronson, J Olafsen, EB, PRL 05 (
f(v)

¢ Gaussian core

¢ Overpopulated tall

f () ~ exp (~[v]’)
1<65<3)/2

€ Fourth Moment (or curtosis)

1()0 T | T T T T |

¥ experiment A
O  experiment B
n theory

™, — Maxwellian

5 theory

Excellent agreement between
theory and experiment

r,\ P

3.5

3.6 experiment
\

balance between
collisional dissipation,
energy injection from walls




‘ Inelastic Collisions (1D) I

¢ Relative velocity reduced by O <r <1

vy — v = —r(ur —up) vl\ /qu “

¢ Momentum iIs conserved

U1 v = U1

¢ Energy is dissipated
gy is dissip 1 _ r2

AN D— (uq

4
¢ Limiting cases

Uo ul/

u
_ ,,2)20 Q

T = 1

P

O completely inelastic (AFE = max

1 elastic (AE = 0)

Nonequilibrium: time irreversible process




‘ Inelastic collisions as an averaging process I

& Averaging process

(vi) _ (P @) (u1)
\v2)  \a p)\v2)

r=1-2p p+qg=1
¢ Infinite particle system
» Pick two particles with probability proportional to K(u,,u,)
» Update velocities according to averaging rule
¢ Used in many contexts
» Traffic: headway distance (majumdar, krug)
» Econophysics: assett exchange (krapivsky, redner, slanina)
» Opinion Dynamics (weisbuch, EB)



‘ Inelastic Collisions (any D) I

¢ Normal relative velocity reduced by O <r <1

(vi—vo) -n=—r(u;y —uz)-n

¢ Momentum conservation

vVi+vy=uj;+up ul/ \112
¢ Energy loss
_— Srud

AE="—] = n
4

i I
I\ — us) - 1j

¢ Limiting cases

O completely inelastic (AE = max)
T =
1 elastic (AE = 0)




‘ Non-Maxwellian velocity distributions I

JC Maxwell, Phil Trans Roy. Soc. 157 49 (1867)
1. Velocity distribution is isotropic

2. No correlations between velocity components

f(vata Uy, ’Uz) A f(”w)f(vy)f(’UZ)

Only possibility is Maxwellian

f(U:caUyavz)¢CeXD< v _I_v _I_v ) Ga

Granular gases: collisions create correlations ‘




‘ Deviation from Maxwell-Boltzmann I

o Velocit lati tosi (v%v?
elocity correlations, curtosis: —
T2y "

L Yy

& Exact expressions 6(157“)2

Q —_—
N2
\ 2

¢ Inversely proportional to dimension
Q~d 1 d — oo

¢ Vanishes in the elastic limit

Q~(1-7r)° r—1

Exact solution of Maxwell’s kinetic theory: thermal forcing balances dissipation
Experiment: vibrated beads



‘ The collision rate I

¢ Collision rate
K (u1,up) = [(u; —up) - n|?

¢ Collision rate related to interaction potential (elastic)

() o g™ \ = 1 ,)CL — 1 ) U IViaXxXwell molecules

- o - Y 1 Hard spheres

¢ Balance kinetic and potential energy

) — . — 2/~
vV o ~T — T ~7v I

& Collisional cross-section
L 4 2
a—1 1—=
o ~ VT —> O ~ U Y




‘ The Inelastic Boltzmann equation (1D) I

¢ Collision rule (linear) r=1—2p,

/nlg nn,\\ N {mnl,A
\Wl,%2) 7 \VMFY1L

& General collision rate

R

(
R A )
(VU1,VU2) — |U]1 — U2 N — ﬂl
i\

~

o R o A

N Y 00 Nlaro oo |
)yl )jJj (w2 )|w]—uw)]|

ror
S —
/

P N
ot JIJ VNV pPU] —qU)

collision rate gain loss

Theory: non-linear, non-local, dissipative




‘ The Inelastic Boltzmann equation I

Spatially homogeneous systems
(Stosszahlnsatz)

) ror .
J/

e dnr lns NLlar Nlaro ae |A R
duidun f(uy) f(u2)|ui—uo|

DY W o SN
(V\U—pPpU] —qU)— 0 \v—uw

What are the stationary solutions of this equation?
What is the nature of the velocity distribution?

2

\
]

]
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‘ Homogeneous cooling state: temperature decay I

5 Haff, JFM 1982
¢ Energy loss AT ~ (Av)

¢ Collision rate At ~ 1/(Av)>‘
¢ Energy balance equation

o ~—(AV)2TA o ar ~ _T1+A/2

7T

At dt
¢ Temperature decays, system comes to rest

T~t2/r = f(v) — 6(v)

Trivial stationary solution ‘




‘ Homogeneous cooling states: similarity solutions I

Esipov, Poeschel 97
¢ Similarity solution

0 1\ 11/)\,|\/ 21/

J(v,t) =177 P(vt™7)

¢ Stretched exponentials (overpopulatlon)
D(2) ~ exp [— \




‘ Are there nontrivial stationary solutions? I

¢ Stationary Boltzmann equation

collision rate gain loss

Nalve answer: NO!

¢ According to the energy balance equation
dl’
dt
¢ Dissipation rate is positive

o (Jvg — vl (v —v2)?%) > 0

—



‘ An exact solution (1D, A=0) I

¢ One-dimensional Maxwell molecules

¢ Fourier transform obeys a closed equation F<k>=J/dveikvf(v>

F(k) = F(pk)F(qk)

¢ Exponential solution
F (k) = exp(—uvglk|)

¢ Lorentzian velocity distribution

1 1
f)= "1

A nontrivial stationary solution does exist!




‘ Properties of stationary solution I

¢ Perfect balance between collisional loss and gain
¢ Purely collisional dynamics (no source term)
¢ Family of solutions: scale invariance v-> v/v,
)= —
U — 7/ / \
7 g 14+ (v/vg)?
¢ Power-law high-energy tail

f(v) ~ v 2

¢ Infinite energy, infinite dissipation rate!

Are these stationary solutions physical?




‘ Extreme Statistics (1D) I

¢ Collision rule: arbitrary velocities

/ 00000 \ N\ {/Y\f) AN~ M 1~ ﬂnlg\
\Ui,u2) — \pul  qu2, pup - qui)
@ > —@ o @ >
¢ Large velocities: linear but nonlocal process
%
L V4 \
v — (pv,qV)
¢ High- energles linear equation
4 4 /\ 4 /\ 7]
of(v) 1 v 1 v
— M (2 =7 (Y) = o)
Ay IO =S WA IR B = = WA W NS
vt N \/ 9 \4q/ ]
gain gain loss

Linear, nonlocal evolution equation‘




‘ Stationary solution (1D) I

¢ High-energies: linear equation

May still hold when velocities are correlated

f(v) L s (2) L (%)
J \v/ — T\ — T A=\ —
pJ_ A \p/ qJ_ A \q/
loss gain gain

& Power-law tall

fo) ~ o2



‘ Energy Cascades (1D) I

Energetic particles “see” a static medium

v — (p’U, Q’U)
7
. 7

~a



‘ Extreme Statistics (any D) I

¢ Collision process: large velocities

Ivcosel)‘ G’
— << — " (awv, Bv)

¢ Stretching parameters related to impact angle

o =
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¢ Energy decreases, velocity magnitude increases

o+ 52 <1 a+B8>1

¢ Linear equation

of(v) _ /, ' 1
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‘ Power-laws are generic I

¢ Velocity distribution always has power-law tall

fv) ~v™?

¢ Characteristic exponent varies with parameters

/A \

1 A
L W A

o

—0

Loy (T2 550 S5 1p7) _ r(e=g (45
(1~ p)o—d=A O TOreEh

¢ Tightbounds 1 <o—d—X <2

¢ Elastic limit is singular ¢ — d+2+A

Dissipation rate always divergent
Energy finite or infinite




‘ The characteristic exponent ¢ (d=2,3) I

002 04 086 08 1
T

‘cvaries with spatial dimension, collision rules ‘




‘ Monte Carlo Simulations: Driven Steady States I

¢ Compact initial distribution I Ty i
- 0.3 i, [— theory |
¢ Inject energy at very large © simulation
velocity scales only
0.2 .

¢ Maintain constant total f
energy

¢ "Lottery” implementation: 0.1

56 420 2 8




Further confirmation: extremal statistics

Maxwell molecules (1D, 2D) Hard spheres (1D, 2D)
‘IO-1 — theory 10_; — theory
1 0-2 —— simulation 10_3- —— simulation -
3 10°T -
10 4
f, 4 f10 T 1
10 -51 .
o 10
10T 10'6-
10'6- — 7 -7L - 5 _
i N =10 10 N =10
1 - M M g 2 3 saal M M p 2 m a2y 1 - M » 3 3 g agal
%10° 10 102 1910° 10’ 10
\' V
d | theory simulation d | theory simulation
213.19520 3.19 >|4.14922 415




‘ Injection, cascade, dissipation I

Experimental
realization?
Energetic particle
“shot” into static
medium

Energy balance

I_rv'yV2

YO jogy V

‘*Energy is injected ONLY AT LARGE VELOCITY SCALES!
‘*Energy cascades from large velocities to small velocities
‘*Energy dissipated at small velocity scales




‘ Energy balance I

¢ Energy injection rate 7Y

& Energy injection scale |/

¢ Typical velocity scale v

¢ Balance between energy injection and dissipation

/1 I,)—I—X\ X/-r-rl \f']_f'f
! ~U {\valg | /\/\ — ,\/N ‘V//\{\‘V//,Uo)w v
¢ For “lottery” injection: injection scale diverges with

Injection rate
V ~

)
Y 1/(2=2) oc<d+2

T He=d=0) g s g+ 2

\

Energy injection selects stationary solution = v,




with Ben Machta (Brown)

‘ Time dependent solutions (1D, A>0) I

4__

. L 10

¢ Self-similar distribution o’
(¥

v,t) ~v P 10°

| 10”

¢ Cutoff velocity decays 10

-6

V(t) ~ /A "

Scaling function

| 4
dD(r)
L)

A oxn | — (D14

[
Ii 18

Hybrid between steady-state and time dependent state




Solution via Laplace transform

Linear Boltzmann equation

NN prf

of(v) N1 (/v\\ 1 (/,U\\ ]
= |v] —f - +==f|-]— f(w)

[aY] 14=)Y | l | J |\ | J N\
ot p=" " \P/ q- " \4)/
Scaling solution, cutoff/decays\with Haff’'s law
f(u,t) ~v 7P ( ”?/)i\ \, dV/dt = —cV 1A
\V\tJ)/
Linear, nonlocal equation for scaling function
’ — o A—1 X X
L \P/ \q/ ]

Laplace transform equation

(24 8)p(s) =1+ ¢(s/2)

Infinite product solution

~ P 1
g(S) — ll “1 1 /r\n
a1 11+ 8/2



‘ Extreme statistics I

¢ Scaling function

> - - o 1
__ n,\A y—
(b(m) — Z 4A7 exX ,OI (2 $) I An L 1 — 2A(n—k)
n=1 ) ) k7n
¢ Large velocities: as in free cooling
d(x) ~exp(=z) == o0
~ —

¢ Small velocities: non-analytic, log-normal, behavior

1 —P(x) ~ exp [—(Inx)z} x— 0

‘ Hybrid between steady-state and time dependent state

Maxwell Model (A=0) only unsolved case!



‘ Numerical confirmation I

Velocity distribution Scaling function

A third family of solutions exists




‘ Summary: solutions of kinetic theory I

¢ Time dependent solution

S 11/)\\“-/,._11/)\\
f(v,t) = RN

¢ Time independent solution

fs(v) ~v™°

¢ Hybrid solution

f(v,t) = f L1/

(XA A
s(v)P(vi™"")

Are there other types of solutions?



‘ Conclusions | I

¢ New class of nonequilibrium steady states

¢ Energy cascades from large to small velocities

¢ Power-law high-energy talil

¢ Energy input at large scales balances dissipation
¢ Associated similarity solutions exist as well

¢ Temperature insufficient to characterize velocities

¢ Experimental realization: requires a different driving
mechanism



‘ The Thermally Forced Inelastic Boltzmann equation I

¢ Energy injection: thermal forcing (at all scales)

dv/dt = n

¢ Energy dissipation: inelastic collision

Ojkv)_r\HZP/\l [[1 1 rf \ r/
ot

¢ Steady state equation

\ |

IAFC/ N4 \1

[

N

0(v—pug —qup) —0(v—u)]

0 = DV2(0)+ || durdus f(ur)f (up)
JJ



‘ Driven Steady States: extremal statistics I

T van Noije, M Ernst 97
¢ Energy injection: thermal forcing (at all scales)

dv/dt = n
¢ Energy dissipation: inelastic collision
v — (pv, qu)
¢ Steady state equation
0= pT I 2 [y 7] - s
=V |p=—===—XP/ 47T TR ]

¢ Stretched exponentlals

v) ~ exp (—viTA2)
TR )



‘ Nonequilibrium velocity distributions I

A Mechanically vibrated beads
F Rouyer & N Menon 00

B Electrostatically driven powders

| Aronson, J Olafsen, EB
f(v)

¢ Gaussian core

¢ Overpopulated tall

f () ~ exp (~[v]’)
1<§6<3/2

€ Fourth moment / curtosis

1()0 T | T T T T |

¥ experiment A
O  experiment B
N theory

™\, — Maxwellian

1

10

(v '3.55  theory

@@Qﬁﬁ_expgdmem

\

Excellent agreement between
theory and experiment

balance between
collisional dissipation,
energy injection from walls




‘ Freely cooling states: similarity solutions I

¢ Linearized equation

d(z) ~ exp (—z/\)

N pf / N\ - / N\
of(v) N 1 v 1 v
— v 1_i_,xf\{,_\: 1_i_)f\(_: — f(v)
ot P \P/ 4 \4q/
¢ Similarity solution
el a1/ A 1/
J\U) — U 7 vl ")
¢ Steady state equation
1i'f|\/",‘\ > d AN N\NT — -,/\\ - 1 I/Z\I 1 A I/Z\I A7 N
MPEFz eI =2 T @ ) T g ® ) — 3
¢ Stretched exponentials (overpopulation)




‘ Conclusions Il I

¢ Conventional nonequilibrium steady states

¢ Energy cascades from large to small velocities

¢ Energy input at ALL scales balances dissipation
¢ Stretched exponential tails

¢ Low order moments (temperature, kurtosis) useful

¢ Excellent agreement between experiments and
Kinetic theory
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‘ Clustering and Shocks I

0 5000 10000 15000 20000
X
80 - . . .
60 | | ‘
T 40 || | | '
20 _ ; | | | |" 1
0 Ll_u_.h_.'_41.__\_.JL__.u ,,_._.Ll. N i M o U
0 5000 10000 15000 20000

x



	Plan
	Energy dissipation in granular matter
	Driven Granular Gas
	Experiments
	Nonequilibrium velocity distributions
	Inelastic Collisions (1D)
	Inelastic collisions as an averaging process
	Inelastic Collisions (any D)
	Non-Maxwellian velocity distributions
	Deviation from Maxwell-Boltzmann
	The collision rate
	The Inelastic Boltzmann equation (1D)
	The Inelastic Boltzmann equation
	Homogeneous cooling state: temperature decay
	Homogeneous cooling states: similarity solutions
	Are there nontrivial stationary solutions?
	An exact solution (1D, =0)
	Properties of stationary solution
	Extreme Statistics (1D)
	Stationary solution (1D)
	Energy Cascades (1D)
	Extreme Statistics (any D)
	Power-laws are generic
	The characteristic exponent  (d=2,3)
	Monte Carlo Simulations: Driven Steady States
	Further confirmation: extremal statistics
	Injection, cascade, dissipation
	Energy balance
	Time dependent solutions (1D, >0)
	Solution via Laplace transform
	Extreme statistics
	Numerical confirmation
	Summary: solutions of kinetic theory
	Conclusions I
	The Thermally Forced Inelastic Boltzmann equation
	Driven Steady States: extremal statistics
	Nonequilibrium velocity distributions
	Freely cooling states: similarity solutions
	Conclusions II
	Clustering and Shocks

