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PlanPlan

1. Introduction
2. Kinetic theory of granular gases 
3. Freely cooling states
4. Driven steady states I (forcing at large scales)
5. Driven steady states II (forcing at all scales)



Energy dissipation in granular matterEnergy dissipation in granular matter

� Responsible for collective phenomena
» Clustering I Goldhirsch, G Zanetti 93

» Hydrodynamic instabilities B Meerson 04

» Pattern formation H Swinney 96

� Anomalous statistical mechanics
¾No energy equipartition R Wildman, D Parker 02

¾Nonequilibrium energy distributions



Driven Granular GasDriven Granular Gas

� Vigorous driving (gravity not relevant)

� Spatially uniform system
� Particles undergo binary collisions
� Velocities change due to:

/ Collisions: lose energy
☺ Forcing: gain energy

� What is the typical velocity (granular “temperature”)?

� How are the velocities distributed?



ExperimentsExperiments

� Friction 
D Blair, A Kudrolli 01

� Rotation
K Feitosa, N Menon 04

� Driving strength
W Losert, J Gollub 98

� Dimensionality
J Urbach & Olafsen 98

� Boundary
J van Zon, H Swinney 04

� Fluid drag
K Kohlstedt, I Aronson, EB 05

� Long range interactions
D Blair, A Kudrolli 01; W Losert 02 
K Kohlstedt, J Olafsen, EB 05

� Substrate
G Baxter, J Olafsen 04

Deviations from equilibrium distribution



Nonequilibrium velocity distributionsNonequilibrium velocity distributions

A Mechanically vibrated beads
F Rouyer & N Menon PRL 00

B Electrostatically driven powders
I Aronson, J Olafsen, EB, PRL 05

� Gaussian core
� Overpopulated tail

� Fourth Moment (or curtosis) Excellent agreement between 
theory and experiment

balance between 
collisional dissipation, 

energy injection from walls



Inelastic Collisions (1D)Inelastic Collisions (1D)

� Relative velocity reduced by

� Momentum is conserved 

� Energy is dissipated

� Limiting cases  

Nonequilibrium: time irreversible process



� Averaging process

� Infinite particle system
¾ Pick two particles with probability proportional to K(u1,u2)
¾ Update velocities according to averaging rule

� Used in many contexts
¾ Traffic: headway distance (majumdar, krug)
¾ Econophysics: assett exchange (krapivsky, redner, slanina)
¾ Opinion Dynamics (weisbuch, EB)

Inelastic collisions as an averaging processInelastic collisions as an averaging process



Inelastic Collisions (any D)Inelastic Collisions (any D)

� Normal relative velocity reduced by

� Momentum conservation

� Energy loss

� Limiting cases  



Non-Maxwellian velocity distributionsNon-Maxwellian velocity distributions

1. Velocity distribution is isotropic

2. No correlations between velocity components

Only possibility is Maxwellian

Granular gases: collisions create correlations

JC Maxwell, Phil Trans Roy. Soc. 157 49 (1867)



Deviation from Maxwell-BoltzmannDeviation from Maxwell-Boltzmann

� Velocity correlations, curtosis:

� Exact expressions

� Inversely proportional to dimension

� Vanishes in the elastic limit

Exact solution of Maxwell’s kinetic theory: thermal forcing balances dissipation EB, Krapivsky 02
Experiment: vibrated beads Olafsen 03



The collision rateThe collision rate

� Collision rate

� Collision rate related to interaction potential (elastic)

� Balance kinetic and potential energy

� Collisional cross-section



The Inelastic Boltzmann equation (1D)The Inelastic Boltzmann equation (1D)

� Collision rule (linear)

� General collision rate 

� Boltzmann equation (nonlinear and nonlocal)

collision rate gain loss

Theory: non-linear, non-local, dissipative



The Inelastic Boltzmann equationThe Inelastic Boltzmann equation

What are the stationary solutions of this equation?
What is the nature of the velocity distribution?

Spatially homogeneous systems 
(Stosszahlnsatz)



Homogeneous cooling state: temperature decayHomogeneous cooling state: temperature decay

� Energy loss
� Collision rate
� Energy balance equation

� Temperature decays, system comes to rest 

Trivial stationary solution

Haff, JFM 1982



Homogeneous cooling states: similarity solutionsHomogeneous cooling states: similarity solutions

� Similarity solution

� Stretched exponentials (overpopulation)

Esipov, Poeschel 97



Are there nontrivial stationary solutions?Are there nontrivial stationary solutions?

� Stationary Boltzmann equation

Naive answer: NO!
� According to the energy balance equation

� Dissipation rate is positive

collision rate gain loss



An exact solution (1D, λ=0)An exact solution (1D, λ=0)

� One-dimensional Maxwell molecules
� Fourier transform obeys a closed equation

� Exponential solution

� Lorentzian velocity distribution

A nontrivial stationary solution does exist!



Properties of stationary solutionProperties of stationary solution

� Perfect balance between collisional loss and gain
� Purely collisional dynamics (no source term)
� Family of solutions: scale invariance vÆ v/v0

� Power-law high-energy tail

� Infinite energy, infinite dissipation rate!

Are these stationary solutions physical?



Extreme Statistics (1D)Extreme Statistics (1D)

� Collision rule: arbitrary velocities

� Large velocities: linear but nonlocal process

� High-energies: linear equation

gain lossgain

Linear, nonlocal evolution equation



Stationary solution (1D)Stationary solution (1D)

� High-energies: linear equation
May still hold when velocities are correlated

� Power-law tail
gainloss gain



Energy Cascades (1D)Energy Cascades (1D)

Energetic particles “see” a static medium



Extreme Statistics (any D)Extreme Statistics (any D)

� Collision process: large velocities

� Stretching parameters related to impact angle

� Energy decreases, velocity magnitude increases

� Linear equation



Power-laws are genericPower-laws are generic

� Velocity distribution always has power-law tail

� Characteristic exponent varies with parameters

� Tight bounds
� Elastic limit is singular

Dissipation rate always divergent
Energy finite or infinite



The characteristic exponent σ (d=2,3)The characteristic exponent σ (d=2,3)

σ varies with spatial dimension, collision rules



Monte Carlo Simulations: Driven Steady StatesMonte Carlo Simulations: Driven Steady States

� Compact initial distribution
� Inject energy at very large 

velocity scales only
� Maintain constant total 

energy
� “Lottery” implementation: 

– Keep track of total energy 
dissipated, ET

– With small rate, boost a particle 
by ET



Further confirmation: extremal statisticsFurther confirmation: extremal statistics

Maxwell molecules (1D, 2D) Hard spheres (1D, 2D)



Injection, cascade, dissipationInjection, cascade, dissipation

�Energy is injected ONLY AT LARGE VELOCITY SCALES!
�Energy cascades from large velocities to small velocities
�Energy dissipated at small velocity scales

Experimental 
realization?

Energetic particle 
“shot” into static 

medium

Energy balance



Energy balanceEnergy balance

� Energy injection rate
� Energy injection scale
� Typical velocity scale
� Balance between energy injection and dissipation 

� For “lottery” injection: injection scale diverges with 
injection rate

Energy injection selects stationary solution Æ v0



Time dependent solutions (1D, λ>0)Time dependent solutions (1D, λ>0)

� Self-similar distribution

� Cutoff velocity decays

� Scaling function

Hybrid between steady-state and time dependent state

with Ben Machta (Brown)



� Linear Boltzmann equation

� Scaling solution, cutoff decays with Haff’s law

� Linear, nonlocal equation for scaling function  

� Laplace transform equation

� Infinite product solution

Solution via Laplace transform



Extreme statisticsExtreme statistics

� Scaling function

� Large velocities: as in free cooling

� Small velocities: non-analytic, log-normal, behavior  

Hybrid between steady-state and time dependent state

Maxwell Model (λ=0) only unsolved case!



A third family of solutions exists

Numerical confirmationNumerical confirmation

Velocity distribution Scaling function



Summary: solutions of kinetic theorySummary: solutions of kinetic theory

� Time dependent solution

� Time independent solution

� Hybrid solution

Are there other types of solutions?



Conclusions IConclusions I

� New class of nonequilibrium steady states
� Energy cascades from large to small velocities
� Power-law high-energy tail
� Energy input at large scales balances dissipation
� Associated similarity solutions exist as well
� Temperature insufficient to characterize velocities 
� Experimental realization: requires a different driving 

mechanism



� Energy injection: thermal forcing (at all scales)

� Energy dissipation: inelastic collision

� Steady state equation

The Thermally Forced Inelastic Boltzmann equationThe Thermally Forced Inelastic Boltzmann equation



Driven Steady States: extremal statisticsDriven Steady States: extremal statistics

� Energy injection: thermal forcing (at all scales)

� Energy dissipation: inelastic collision

� Steady state equation

� Stretched exponentials

T van Noije, M Ernst 97



Nonequilibrium velocity distributionsNonequilibrium velocity distributions

A Mechanically vibrated beads
F Rouyer & N Menon 00

B Electrostatically driven powders
I Aronson, J Olafsen, EB

� Gaussian core
� Overpopulated tail

� Fourth moment / curtosis Excellent agreement between 
theory and experiment

balance between 
collisional dissipation, 

energy injection from walls



Freely cooling states: similarity solutionsFreely cooling states: similarity solutions

� Linearized equation 

� Similarity solution

� Steady state equation

� Stretched exponentials (overpopulation)

Esipov, Poeschel 97



Conclusions IIConclusions II

� Conventional nonequilibrium steady states
� Energy cascades from large to small velocities
� Energy input at ALL scales balances dissipation
� Stretched exponential tails
� Low order moments (temperature, kurtosis) useful 
� Excellent agreement between experiments and 

kinetic theory



Who, then, can calculate the course of a molecule?
How do we know that the creation of worlds is not 
determined by the fall of grains of sand?

Victor Hugo, Les Miserables

I can calculate the motion of heavenly bodies,
but not the madness of people.

Isaac Newton



Clustering and ShocksClustering and Shocks
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