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‘ Plan I

. Basics: collision rules, collision rates

2. The Boltzmann equation
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. Extreme statistics and the linearized
Boltzmann equation

Forced steady states
Freely cooling states
Stationary states and energy cascades

Hybrid solutions
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‘ Driven Granular gas I

Vigorous driving .N >
Spatially uniform system .\ <o

Particles undergo binary collisions e l f

Velocities change due to \.7’.7‘%.

1. Collisions: lose energy

2. Forcing: gain energy

What is the typical velocity (granular “temperature”)?
T = (v°)
What is the velocity distribution?

f(v)



‘ Inelastic Collisions (1D) I

¢ Relative velocity reduced by O <r <1

I B P 73 9§ oo — m/n:; f)l,\\
vl — U — —T\(ul] —up) vl\ /UQ
¢ Momentum iIs conserved

v1 + v = uy + up ul/ \uz

¢ Energy is dissipated 2
l—r
AFE = 2 (uq — u2)2© Q

¢ Limiting cases

O completely inelastic (AE = max)
r =
1 elastic (AE =0)




‘ Inelastic Collisions (any D) I

¢ Momentum conservation

V1—|—V2=u1+u2 11]/ \112

¢ Energy loss _— Q Q

AE = [((ug —up) - n]? 1

4 J

¢ Limiting cases

~]O0 completely inelastic (AE = max)
|1 elastic (AE = 0)



‘ Non-Maxwellian velocity distributions I

JC Maxwell, Phil Trans Roy. Soc. 157 49 (1867)
1. Velocity distribution is isotropic

f(’U:Ea’Uya’Uz) = f (|v|)

2. No correlations between velocity components

f(vz, Uy, V) F f(’Ux)f(’Uy)f(UZ)

Only possibility is Maxwellian

f(vxavyavz)¢ce><p< U +v _l_v ) Ga

‘Granular gases: collisions create correlations ‘




‘ The Boltzmann equation (1D) I

¢ Collisionrule (linear) r=1-2p, p+qg=1

(u1,u2) — (pui + quo, pus + quy)
¢ Boltzmann equation (nonlinear and nonlocal)

—_ II 1. Y U N SRR N P .AI/\r NS N
3t - II aula “2J \U1)Jj\u2)|uij—u2| [0\U—puj] —quyp)
collision rate gain
¢ Collision rate related to interaction potential
d_ ]. (O |V|ax\vl\v,e” m

U(r) ~r~ 7 A=1-2
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‘Theory: non-linear, non-local, dissipative
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‘ The collision rate I

¢ Collision rate
_ A
K(uy,uz) = [(ug —up) - n|
¢ Collision rate related to interaction potential

e

d—1 |0 Maxwell molecules
Y ]1 Hard spheres

\

¢ Balance kinetic and potential energy

2~ = o~ 2

TT('I”')"‘M_W A=1-2
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& Collisional cross-section
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‘ Extreme Statistics ( 1D) I

¢ Collision rule: arbitrary velocities
(u1,u2) — (pui + quo, pun + quq)

® > —@ ® > © >
¢ Large velocities: linear but nonlocal process /v
v)\ ~ =
v — (pv,qu) O _»
¢ High- energles linear equatlon \
r\f ’U) )\ \ 1 /’U\ ™
n, U 1) ( ) A.l_l_,x‘f(f)_f(v)‘
vt P~ P q \4/ J
gam gain loss

Linear, nonlocal evolution equation‘




‘ Extreme Statistics (any D) I

¢ Collision process: large velocities

AU
2 (X
— =, (vcos (v, Bu)

¢ Stretching parameters related to impact angle

a=(1—p)cosé 5:\/1—(1—p2)c0529

¢ Energy decreases, velocity magnitude increases

o+ 52 <1 a+B8>1

¢ Linear equation
£
J




‘ Forced steady states: overpopulated tails I

T van Noije, M Ernst 97
¢ Energy injection: thermal forcing (at all scales)

dv/dt = n
¢ Energy dissipation: inelastic collision
v — (pv, qu)
¢ Steady state equation
2
Dd J;(U) LA T——fw)

1
T4 | T Ee=AeT f@—f(v)]

¢ Stretched exponentials

f(v) ~ exp (—vH'/\/Q)

0=




‘ Nonequilibrium velocity distributions I

Mechanically vibrated beads
F Rouyer & N Menon 00
Electrostatically driven powders
| Aronson & J Olafsen 05

f(v)

¢ Gaussian core

¢ Overpopulated tail
f(v) ~ exp (—[v])

0

10

¥ experiment A
O  experiment B
W — theory

™, —— Maxwellian

Excellent agreement between

theory and experiment

1 <6<3)/2
€ Kurtosis
__}3.55 theory
M 3.6 experiment

balance between
collisional dissipation,
energy injection from walls




‘ Comparing kinetic theories I

0

10

== maxwell molecules, £=1
= hard spheres, £=3/2
= maxwellian, £=2

% experiment-rouyer/menon
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‘ Freely cooling states: temperature decay I

5 Haff, JFM 1982
¢ Energy loss AT ~ (Av)

¢ Collision rate At ~ 1/(Av)>‘
¢ Energy balance equation

AT A2ty o T piday2
At S dt

¢ Temperature decays, system comes to rest
T~t2* = ) — §)
|

System comes to rest




‘ Temperature decay: dimensional analysis I

¢ Collision rate
K ~ (Av) ~ 07

¢ Collision rate inversely proportional to time

K~t™l = oy~ /A



‘ Freely cooling states: similarity solutions I

- Llnearlzed equatlon
O’JK’U)

Ul?

¢ Similarity solutlon
f(v) — tl/ACD(futl/)‘)
* Steady state equation

Noteto@) =2 | e (2] +

I_
/
T
N

¢ Stretched exponentials (overpopulation)

d(z) ~ exp (—ZA)



‘ An exact solution I

¢ One-dimensional Maxwell molecules

¢ Fourier transform obeys a closed equation F() =/dve““”f<v)

F(k) = F(pk)F(qk)
\K) \PK)L'\GR)

¢ Exponential solution
F'(k) = exp(—volk|)

¢ Lorentzian velocity distribution

1 1
flv) = mvg 1 + (v/vg)?

‘ Nontrivial stationary states do exist! ‘




‘ Are there nontrivial steady states? I

¢ Stationary Boltzmann equation

0= //dmduzf('ul) (un) |ur—un | S (v —pui —qua) —8(v—up)]
collision rate gain loss

Nalve answer: NO!

¢ According to the energy balance equation

dT
T =
dt

¢ Dissipation rate is positive

[ >0



‘ Cascade Dynamics (1D) I

¢ Collision rule: arbitrary velocities
(u1,u2) — (pui + quo, pun + quq)

® > —0 ® > © >

¢ Large velocities: linear but nonlocal process /v
~ ~a

v — (pv, qu) ()
~
¢ High-energies: linear equation

RN B 21 WS S 27 W
JA) =T33\ ) T g+ )

V \ ¥ /
loss gain gain

¢ Power-law tall

f) ~ o2




‘ Cascade Dynamics (any D) I

¢ Collision process: large velocities

YA
O\
= v (an ) (52

¢ Stretching parameters related to impact angle

a=(1—p)cosé 5:\/1—(1—p2)c0529

¢ Energy decreases, velocity magnitude increases
“+p°<1 at+p>1

¢ Steady state equation

Fo) = (L ;
a
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‘ Power-laws are generic I

¢ Velocity distributions always has power-law tail

¢ Exponent varies with parameters

(d+A—0c A+1 d+A 2 —70—d+1~\r—7d+ N
1—2F1< +2 ~, _5 _|2_ 71—p>_|\0 5 )T (557)
(1 _ yo—d—x I W |
(L —p)° I (5)I (=57)

¢ Tightbounds 1 <o—d—XA <2
¢ Elastic limit is singular 0 — d+2+A

Dissipation rate always divergent
Energy finite or infinite




‘ The characteristic exponent o I

op———

"I T R—T—

002 04 06 08 1
T

‘cvaries with spatial dimension, collision rules ‘




‘ Monte Carlo Simulations I

¢ Compact initial distribution

¢ Inject energy at very large
velocity scales only

¢ Maintain constant total f
energy

¢ “Lottery” implementation:

— Keep track of total energy
dissipated, E;

— With small rate, boost a particle
by E;

0.3

0.2

0.1

. |=— theory

© simulation

T
(%

Excellent agreement between theory and simulation




Further confirmation

Maxwell molecules (1D, 2D) Hard spheres (1D, 2D)
‘IO-1 — theory 10_-21 — theory
1 0-2 — simulation _ 1 0-3- —— simulation -
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‘ Injection, cascade, dissipation I

Experimental
realization?
Energetic particle
“shot” into static
medium

Energy balance

I_rvny2

YO jogy V

‘*Energy is injected at large velocity scales
‘*Energy cascades from large velocities to small velocities
*Energy dissipated at small velocity scales



‘ Energy balance I

¢ Energy injection rate 7Y

& Energy injection scale |/

¢ Typical velocity scale v

¢ Balance between energy injection and dissipation

v~ VAV /0g) 7

¢ For “lottery” injection: injection scale diverges with
Injection rate

oo JrTHEY e <d+2
U e=d=0) o > d 42



with Ben Machta (Brown)

‘ Self-similar collapse I

4
. T 10 g
¢ Self-similar distribution 5

10
Fon v (U)o
\V(®)) ¢,

¢ Cutoff velocity decays 10
V(t) ~ 1/ 0"
100
¢ Scaling function
o0 oo
—_ — n A An = 1/ A
®(@) = 3 Anexp[~(2")" I s
n— n

‘ Hybrid between steady-state and time dependent state




‘ Numerical confirmation I

Velocity distribution Scaling function

A third family of solutions exists




‘ Conclusions I

¢ New class of nonequilibrium stationary states

¢ Energy cascades from large to small velocities

¢ Power-law high-energy talil

¢ Energy input at large scales balances dissipation
¢ Associlated similarity solutions exist as well

¢ Temperature insufficient to characterize velocities

¢ Experimental realization: requires a different driving
mechanism



‘ Outlook I

¢ Spatially extended systems
¢ Spatial structures
¢ Polydisperses granular media

¢ Experimental realization

E. Ben-Naim and J. Machta, Phys. Rev. Lett. 94, 138001 (2005)
E. Ben-Naim, B. Machta, and J. Machta, cond-mat/0504187



‘ Deviation from Maxwell-Boltzmann I

¢ Kurtosis K S L

4 2\ 2 '
k= (v7)/(v7) 3.4
K
o =34 18(1—7“)2(10+7°)Q
33 —25r + 3r< — 3r° 3.2

¢ Restitution coefficient 7T

AFE (1 - r2> (Av)?

1. Velocity distribution independent of driving strength
2. Stronger dissipation yields stronger deviation

Exact solution of Maxwell’s kinetic theory: thermal forcing balances dissipation
EB, Krapivsky 02




