<u>Kinetic Theory of</u> <u>Granular Gases</u>

Eli Ben-Naim

Theory Division

Los Alamos National Laboratory

Plan

- 1. Basics: collision rules, collision rates
- 2. The Boltzmann equation
- 3. Extreme statistics and the linearized Boltzmann equation
- 4. Forced steady states
- **5. Freely cooling states**
- 6. Stationary states and energy cascades
- 7. Hybrid solutions

Experiments

Friction

D Blair, A Kudrolli 01

Rotation

K Feitosa, N Menon 04

Driving strength

W Losert, J Gollub 98

Dimensionality

J Urbach & Olafsen 98

♦ Boundary

J van Zon, H Swinney 04

Fluid drag

K Kohlstedt, I Aronson, EB 05

Long range interactions

D Blair, A Kudrolli 01; W Losert 02 K Kohlstedt, J Olafsen, EB 05

Substrate

G Baxter, J Olafsen 04

Deviations from equilibrium distribution

Driven Granular gas

- Vigorous driving
- Spatially uniform system
- Particles undergo binary collisions
- Velocities change due to
 - 1. Collisions: lose energy
 - 2. Forcing: gain energy

- What is the typical velocity (granular "temperature")? $T = \langle v^2 \rangle$
- What is the velocity distribution?

f(v)

Inelastic Collisions (1D)

Inelastic Collisions (any D)

• Normal relative velocity reduced by 0 < r < 1 $(v_1 - v_2) \cdot n = -r(u_1 - u_2) \cdot n$ • Momentum conservation $v_1 + v_2 = u_1 + u_2$ • Energy loss $\Delta E = \frac{1 - r^2}{4} [(u_1 - u_2) \cdot n]^2$ n

Limiting cases

 $r = \begin{cases} 0 & \text{completely inelastic } (\Delta E = \max) \\ 1 & \text{elastic } (\Delta E = 0) \end{cases}$

Non-Maxwellian velocity distributions

JC Maxwell, Phil Trans Roy. Soc. 157 49 (1867)

1. Velocity distribution is isotropic

$$f(v_x, v_y, v_z) = f(|v|)$$

2. No correlations between velocity components

$$f(v_x, v_y, v_z) \neq f(v_x)f(v_y)f(v_z)$$

Only possibility is Maxwellian

$$f(v_x, v_y, v_z) \neq C \exp\left(-\frac{v_x^2 + v_y^2 + v_z^2}{2T}\right) \xrightarrow{\Delta \vec{v}}$$

Granular gases: collisions create correlations

The Boltzmann equation (1D)

◆ Collision rule (linear) r = 1 - 2p, p + q = 1 $(u_1, u_2) \rightarrow (pu_1 + qu_2, pu_2 + qu_1)$

Boltzmann equation (nonlinear and nonlocal)

$$\frac{\partial f(v)}{\partial t} = \iint du_1 du_2 f(u_1) f(u_2) |u_1 - u_2|^{\lambda} [\delta(v - pu_1 - qu_2) - \delta(v - u_2)]$$
collision rate gain loss

Collision rate related to interaction potential

$$U(r) \sim r^{-\gamma}$$
 $\lambda = 1 - 2 \frac{d-1}{\gamma} = \begin{cases} 0 & \text{Maxwell molecules} \\ 1 & \text{Hard spheres} \end{cases}$

Theory: non-linear, non-local, dissipative

The collision rate

Collision rate

$$K(\mathbf{u}_1,\mathbf{u}_2) = |(\mathbf{u}_1 - \mathbf{u}_2) \cdot \mathbf{n}|^{\lambda}$$

Collision rate related to interaction potential

$$U(r) \sim r^{-\gamma}$$
 $\lambda = 1 - 2 \frac{d-1}{\gamma} = \begin{cases} 0 & Maxwell molecules \\ 1 & Hard spheres \end{cases}$

Balance kinetic and potential energy

$$v^2 \sim r^{-\gamma} \quad \Rightarrow \quad r \sim v^{-2/\gamma}$$

Collisional cross-section

$$\sigma \sim v r^{d-1} \quad \Rightarrow \quad \sigma \sim v^{1-\frac{2}{\gamma}(d-1)}$$

Extreme Statistics (1D)

$$\frac{\partial f(v)}{\partial t} = \left\langle (v\cos\theta)^{\lambda} \left[\frac{1}{\alpha^{d+\lambda}} f\left(\frac{v}{\alpha}\right) + \frac{1}{\beta^{d+\lambda}} f\left(\frac{v}{\beta}\right) - f(v) \right] \right\rangle$$

Forced steady states: overpopulated tails

T van Noije, M Ernst 97

Energy injection: thermal forcing (at all scales)

$$dv/dt = \eta$$

Energy dissipation: inelastic collision

Steady state equation

• Stretched exponentials $f(v) \sim \exp\left(-v^{1+\lambda/2}\right)$

Nonequilibrium velocity distributions

A Mechanically vibrated beads

F Rouyer & N Menon 00

B Electrostatically driven powders

I Aronson & J Olafsen 05

- Gaussian core
- Overpopulated tail
 - $f(v) \sim \exp\left(-|v|^{\delta}
 ight)$ $1 \le \delta \le 3/2$

♦ Kurtosis

$$\kappa = \begin{cases} 3.55 & \text{theory} \\ 3.6 & \text{experiment} \end{cases}$$

Excellent agreement between theory and experiment

balance between collisional dissipation, energy injection from walls

Comparing kinetic theories

Freely cooling states: temperature decay

Haff, JFM 1982

- Energy loss $\Delta T \sim (\Delta v)^2$
- Collision rate $\Delta t \sim 1/(\Delta v)^{\lambda}$
- Energy balance equation

$$\frac{\Delta T}{\Delta t} \sim -(\Delta v)^{2+\lambda} \quad \Rightarrow \quad \frac{dT}{dt} \sim -T^{1+\lambda/2}$$

Temperature decays, system comes to rest

$$T \sim t^{-2/\lambda} \quad \Rightarrow \quad f(v) \to \delta(v)$$

System comes to rest

Temperature decay: dimensional analysis

Collision rate

$$K \sim (\Delta v)^{\lambda} \sim v^{\lambda}$$

Collision rate inversely proportional to time

$$K \sim t^{-1} \quad \Rightarrow \quad v \sim t^{-1/\lambda}$$

Freely cooling states: similarity solutions

Esipov, Poeschel 97

• Linearized equation

$$\frac{\partial f(v)}{\partial t} = v^{\lambda} \left[\frac{1}{p^{1+\lambda}} f\left(\frac{v}{p}\right) + \frac{1}{q^{1+\lambda}} f\left(\frac{v}{q}\right) - f(v) \right]$$
• Similarity solution

$$f(v) \rightarrow t^{1/\lambda} \Phi(vt^{1/\lambda})$$
• Steady state equation

$$\frac{1}{\lambda} [\Phi(z) + z \frac{d}{dz} \Phi(z)] = z^{\lambda} \left[\frac{1}{p^{1+\lambda}} \Phi\left(\frac{z}{p}\right) + \frac{1}{q^{1+\lambda}} \Phi\left(\frac{z}{q}\right) - \Phi(z) \right]$$

• Stretched exponentials (overpopulation) $\Phi(z) \sim \exp\left(-z^{\lambda}
ight)$

An exact solution

- One-dimensional Maxwell molecules
- Fourier transform obeys a closed equation $F(k) = \int dv e^{ikv} f(v)$ F(k) = F(pk)F(qk)
- Exponential solution

$$F(k) = \exp(-v_0|k|)$$

Lorentzian velocity distribution

$$f(v) = \frac{1}{\pi v_0} \frac{1}{1 + (v/v_0)^2}$$

Nontrivial stationary states do exist!

Are there nontrivial steady states?

Stationary Boltzmann equation

$$0 = \iint du_1 du_2 f(u_1) f(u_2) |u_1 - u_2|^{\lambda} [\delta(v - pu_1 - qu_2) - \delta(v - u_2)]$$

collision rate gain loss

Naive answer: NO!

According to the energy balance equation

$$\frac{dT}{dt} = -\Gamma$$

 $\Gamma > 0$

Dissipation rate is positive

Cascade Dynamics (1D)

Cascade Dynamics (any D)

Power-laws are generic

Velocity distributions always has power-law tail

$$f(v) \sim v^{-\sigma}$$

Exponent varies with parameters

$$\frac{1 - {}_2F_1\left(\frac{d+\lambda-\sigma}{2},\frac{\lambda+1}{2},\frac{d+\lambda}{2},1-p^2\right)}{(1-p)^{\sigma-d-\lambda}} = \frac{\Gamma\left(\frac{\sigma-d+1}{2}\right)\Gamma\left(\frac{d+\lambda}{2}\right)}{\Gamma\left(\frac{\sigma}{2}\right)\Gamma\left(\frac{\lambda+1}{2}\right)}$$

- Tight bounds $1 \le \sigma d \lambda \le 2$
- Elastic limit is singular $\sigma \rightarrow d + 2 + \lambda$

Dissipation rate always divergent Energy finite or infinite

The characteristic exponent σ

 σ varies with spatial dimension, collision rules

Monte Carlo Simulations

- <u>Compact</u> initial distribution
- Inject energy at very large velocity scales only
- Maintain constant total energy
- <u>"Lottery</u>" implementation:
 - Keep track of total energy dissipated, E_T
 - With small rate, boost a particle by E_T

Excellent agreement between theory and simulation

Further confirmation

Energy is injected at large velocity scales
Energy cascades from large velocities to small velocities
Energy dissipated at small velocity scales

Energy balance

- Energy injection rate γ
- ullet Energy injection scale V
- Typical velocity scale v_0
- Balance between energy injection and dissipation

$$\gamma \sim V^{\lambda} (V/v_0)^{d-\sigma}$$

 For "lottery" injection: injection scale diverges with injection rate

$$V \sim \begin{cases} \gamma^{-1/(2-\lambda)} & \sigma < d+2\\ \gamma^{-1/(\sigma-d-\lambda)} & \sigma > d+2 \end{cases}$$

with Ben Machta (Brown)

Self-similar collapse

Hybrid between steady-state and time dependent state

Numerical confirmation

A third family of solutions exists

Conclusions

- New class of nonequilibrium stationary states
- Energy cascades from large to small velocities
- Power-law high-energy tail
- Energy input at large scales balances dissipation
- Associated similarity solutions exist as well
- Temperature insufficient to characterize velocities
- Experimental realization: requires a different driving mechanism

Outlook

- Spatially extended systems
- Spatial structures
- Polydisperses granular media
- Experimental realization

E. Ben-Naim and J. Machta, Phys. Rev. Lett. 94, 138001 (2005)E. Ben-Naim, B. Machta, and J. Machta, cond-mat/0504187

Deviation from Maxwell-Boltzmann

Velocity distribution independent of driving strength
 Stronger dissipation yields stronger deviation

Exact solution of Maxwell's kinetic theory: thermal forcing balances dissipation EB, Krapivsky 02