Jamming and tiling in fragmentation of rectangles
 Eli Ben-Naim
 Los Alamos National Laboratory

with: Paul Krapivsky (Boston Univ.)
arXiv://1905.06984
Physical Review E 100, 032122 (2019)

Talk, publications available from: http://cnls.lanl.gov/~ebn

> APS March Meeting
> Denver, CO, March 4, 2020

Fragmentation of rectangles

Start with a perfect grid
Pick (i) random grid point (ii) random direction Fragment rectangle into two smaller rectangles

System reaches a jammed state All rectangles are sticks ($1 \times k$ or $k \times 1$)

The jammed state
 Tiling by sticks

Tiling is:

- Polydisperse
- Dynamical

How many sticks? How long? How many jammed states?

Theoretical approach: recursion equations

- Random fragmentation process

Filippov 61 Spouge 84
Ziff, McGrady 85

$$
(m, n) \rightarrow \begin{cases}(i, n)+(m-i, n) & \text { with prob. } 1 / 2 \\ (m, j)+(m, n-j) & \text { with prob. } 1 / 2\end{cases}
$$

- Average number of sticks $S(m, n)$ in an $m \times n$ rectangle
- Recursion: sum over all possible (i) grid points (ii) directions $S(m, n)=\frac{1}{2} \times \frac{1}{m-1} \sum_{i=1}^{m-1}[S(i, n)+S(m-i, n)]+\frac{1}{2} \times \frac{1}{n-1} \sum_{j=1}^{n-1}[S(m, j)+S(m, n-j)]$
- Linear recursion equations for number of jammed sticks
$S(m, n)=\frac{1}{m-1} \sum_{i=1}^{m-1} S(i, n)+\frac{1}{n-1} \sum_{j=1}^{n-1} S(m, j)$

Asymptotic analysis

I. Continuum limit (very large rectangles)

$$
S(m, n)=\frac{1}{m} \int_{1}^{m} d i S(i, n)+\frac{1}{n} \int_{1}^{n} d j S(m, j)
$$

2. Convert integral equation into partial differential equation

$$
\partial_{\mu} \partial_{\nu} S(\mu, \nu)=S(\mu, \nu)
$$

$$
\begin{aligned}
\mu & =\ln m \\
\nu & =\ln n
\end{aligned}
$$

3. Introduce double Laplace transform

$$
\widehat{S}(p, q)=\int_{0}^{\infty} d \mu e^{-p \mu} \int_{0}^{\infty} d \nu e^{-q \nu} S(\mu, \nu)
$$

4. Obtain Laplace transform in compact form

$$
\widehat{S}(p, q)=\frac{1}{p q-1}
$$

5. Invert double Laplace transform (saddle point analysis)

$$
S(\mu, \nu)=\int_{-i \infty}^{i \infty} \frac{d p}{2 \pi i} \int_{-i \infty}^{i \infty} \frac{d q}{2 \pi i} \frac{e^{p \mu+q \nu}}{p q-1} \rightarrow S(\mu, \nu) \simeq \frac{e^{2 \sqrt{\mu \nu}}}{\sqrt{4 \pi \sqrt{\mu \nu}}}
$$

Average number of jammed sticks

- Asymptotic behavior

$$
S(m, n) \simeq \frac{e^{2 \sqrt{(\ln m)(\ln n)}}}{\sqrt{4 \pi \sqrt{(\ln m)(\ln n)}}}
$$

- Focus on very large rectangles with finite aspect ratio

$$
m \rightarrow \infty \quad \text { and } \quad n \rightarrow \infty \quad \text { with } \quad m / n=\mathrm{constant}
$$

- Universal behavior for all rectangles with same area

$$
S(A) \simeq \frac{A}{\sqrt{2 \pi \ln A}} \quad A=m n
$$

- Average stick length $\langle k\rangle=A / S$ grows slowly with area

$$
\langle k\rangle \simeq \sqrt{2 \pi \ln A}
$$

Behavior is independent of aspect ratio

Distribution of stick length

- Number of sticks of given length obeys same recursion

$$
S_{k}(m, n)=\frac{1}{m-1} \sum_{i=1}^{m-1} S_{k}(i, n)+\frac{1}{n-1} \sum_{j=1}^{n-1} S_{k}(m, j)
$$

- Leading asymptotic behavior

$$
P_{k} \simeq 2 k^{-2} \exp \left[-\frac{(\ln k)^{2}}{2 \ln A}\right]
$$

- Infinite-area limit: exact result

$$
P_{k}=\frac{2}{k(k+1)}
$$

Below average length: power law tail Above average length: log-normal decay

Numerical validation

perfect agreement for small length (within 0.1\%) convergence is very slow

Moments of length distribution

- Normalized moments

$$
M_{h}=\frac{\left\langle k^{h}\right\rangle}{\langle k\rangle}
$$

$$
\left\langle k^{h}\right\rangle=\sum_{k \geq 2} k^{h} P_{k}
$$

- Multiscaling asymptotic behavior

$$
M_{h} \sim A^{\mu(h)} \quad \text { with } \quad \mu(h)=\frac{(h-1)^{2}}{h}
$$

- Different spectrum than continuum version

$$
M_{h} \sim A^{\mu_{\mathrm{nojam}}(h)} \quad \text { with } \quad \mu_{\text {nojam }}(h)=\sqrt{h^{2}+1}-\sqrt{2}
$$

Nonlinear spectrum of scaling exponents
Discrete and continuous versions differ!!!

Discrete versus continuous fragmentation

discrete version process stops

continuous version
process never stops

Asymmetric fragmentation

-Two fragmentation events realized with different probabilities

$$
(m, n) \rightarrow \begin{cases}(i, n)+(m-i, n) & \text { with prob. }(1-\alpha) / 2 \\ (m, j)+(m, n-j) & \text { with prob. }(1+\alpha) / 2\end{cases}
$$

- Discrepancy between two extreme cases

$$
\begin{array}{lll}
S=\sqrt{A} & \alpha=1 & \text { (perfectly asymmetric) } \\
S \simeq A / \sqrt{2 \pi \ln A} & \alpha=0 & \text { (perfectly symmetric) }
\end{array}
$$

- Strongly asymmetric phase: purely power law

$$
S \sim A^{\sqrt{1-\alpha^{2}}} \quad \alpha>\frac{1}{\sqrt{2}}
$$

-Weakly asymmetric phase: power law + logarithmic correction

$$
S \sim(\ln A)^{-1 / 2} A^{1 /(2 \alpha)} \quad \alpha<\frac{1}{\sqrt{2}}
$$

Phase transition at finite asymmetry strength

The growth exponent

Sub-linear growth with area
Growth exponent has two distinct forms

Number of jammed configurations

"deterministic" fragmentation into four rectangles

first fragmentation point can be uniquely identified

recursion equation for the total number of jammed states

$$
T(m, n)=\sum_{1 \leq i \leq m-1} T(i, j) T(m-i, j) T(i, n-j) T(m-i, n-j)
$$

exponential growth with area

$$
\begin{gathered}
T \sim e^{\lambda A} \\
\lambda=0.2805
\end{gathered}
$$

Aspect ratio dependence?

Conclusions

- Random fragmentation of rectangles
- Process reaches a jammed state where all rectangles are sticks
- Recursion equations give statistical property of jammed state
- Number of jammed sticks is independent of aspect ratio
- Distribution of stick length decays as a power law
- Multiscaling: nonlinear spectrum of exponents for moments
- Asymmetric fragmentation: phase transition for growth exponent
- Generally, number of sticks grows sub-linearly with area
- Number of jammed states grows exponentially with area
- Abundance of exact analytic results

