Energy Cascades in

Granular Gases

Eli Ben-Naim

Theory Division

Los Alamos National Laboratory

with Jon Machta University of Massachusetts

talk, papers available: http://cnls.lanl.gov/~ebn

Plan

- **1. Granular gases in nature**
- 2. Nonequilibrium distributions
- 3. Driven steady-states
- 4. Cascade dynamics and stationary states
- 5. Associated time dependent states
- 6. Conclusions & outlook

Frozen granular gases

Saturn's rings

snow avalanche

Christoph Hormann

Swiss institute for snow and avalanch research

Large scale formation of matter in the universe

Max Tegmark, UPenn Sloan Digital Survey Michael Warren Los Alamos

Filaments in granular gases

X Nie, S Chen, EB 02

Energy dissipation in granular matter

Responsible for collective phenomena

- » Clustering I Goldhirsch, G Zanetti 93
- » Hydrodynamic instabilities E Khain, B Meerson 04
- **» Pattern formation** P Umbanhower, H Swinney 96
- Anomalous statistical mechanics
 - >No energy equipartition R Wildman, D Parker 02

Nonequilibrium energy distributions

$$P(E) \neq \exp\left(-E/kT\right)$$

Experiments

Friction

D Blair, A Kudrolli 01

Rotation

K Feitosa, N Menon 04

Driving strength

W Losert, J Gollub 98

Dimensionality

J Urbach & Olafsen 98

Boundary

J van Zon, H Swinney 04

Fluid drag

K Kohlstedt, I Aronson, EB 05

Long range interactions

D Blair, A Kudrolli 01; W Losert 02 K Kohlstedt, J Olafsen, EB 05

♦ Substrate

G Baxter, J Olafsen 04

Deviations from equilibrium distribution

Driven Granular gas

- Vigorous driving
- Spatially uniform system
- Particles undergo binary collisions
- Velocities change due to
 - 1. Collisions: lose energy
 - 2. Forcing: gain energy

- What is the typical velocity (granular "temperature")? $T = \langle v^2 \rangle$
- What is the velocity distribution?

f(v)

Non-Maxwellian velocity distributions

JC Maxwell, Phil Trans Roy. Soc. 157 49 (1867)

1. Velocity distribution is isotropic

$$f(v_x, v_y, v_z) = f(|v|)$$

2. No correlations between velocity components

$$f(v_x, v_y, v_z) \neq f(v_x)f(v_y)f(v_z)$$

Only possibility is Maxwellian

$$f(v_x, v_y, v_z) \neq C \exp\left(-\frac{v_x^2 + v_y^2 + v_z^2}{2T}\right)$$

Granular gases: collisions create correlations

Deviation from Maxwell-Boltzmann

Velocity distribution independent of driving strength Stronger dissipation yields stronger deviation

Exact solution of Maxwell's kinetic theory: thermal forcing balances dissipation EB, Krapivsky 02

Nonequilibrium velocity distributions

A Mechanically vibrated beads
F Rouyer & N Menon 00
B Electrostatically driven powders

I Aronson & J Olafsen 05

- Gaussian core
- Overpopulated tail
 - $f(v) \sim \exp\left(-|v|^{\delta}
 ight)$ $1 \le \delta \le 3/2$

Kurtosis

$$\kappa = \begin{cases} 3.55 & \text{theory} \\ 3.6 & \text{experiment} \end{cases}$$

Excellent agreement between theory and experiment

balance between collisional dissipation, energy injection from walls

Inelastic Collisions

Time dependent states

Haff, JFM 1982

- Energy loss $\Delta T \sim (\Delta v)^2$
- Collision rate $\Delta t \sim 1/(\Delta v)^{\lambda}$
- Energy balance equation

$$\frac{\Delta T}{\Delta t} \sim -(\Delta v)^{2+\lambda} \quad \Rightarrow \quad \frac{dT}{dt} \sim -T^{1+\lambda/2}$$

Temperature decays, system comes to rest

$$T \sim t^{-2/\lambda} \quad \Rightarrow \quad f(v) \to \delta(v)$$

Trivial steady-state

Kinetic Theory

• Collision rule (linear) r = 1 - 2p, p + q = 1 $(u_1, u_2) \rightarrow (pu_1 + qu_2, pu_2 + qu_1)$ Boltzmann equation (nonlinear and nonlocal) $\frac{\partial P(v)}{\partial t} = \iint du_1 du_2 f(u_1) f(u_2) |u_1 - u_2|^{\lambda} [\delta(v - pu_1 - qu_2) - \delta(v - u_2)]$ collision rate gain loss Collision rate related to interaction potential $U(r) \sim r^{-\gamma}$ $\lambda = 1 - 2 \frac{d-1}{\gamma} = \begin{cases} 0 & \text{Maxwell molecules} \\ 1 & \text{Hard spheres} \end{cases}$

Theory: non-linear, non-local, dissipative

Are there nontrivial steady states?

Stationary Boltzmann equation

$$0 = \iint du_1 du_2 f(u_1) f(u_2) |u_1 - u_2|^{\lambda} [\delta(v - pu_1 - qu_2) - \delta(v - u_2)]$$

collision rate gain loss

Naive answer: NO!

According to the energy balance equation

$$\frac{dT}{dt} = -\Gamma$$

Dissipation rate is positive

 $\Gamma > 0$

An exact solution

- One-dimensional Maxwell molecules
- Fourier transform obeys a closed equation $F(k) = \int dv e^{ikv} f(v)$ F(k) = F(pk)F(qk)
- Exponential solution

$$F(k) = \exp(-v_0|k|)$$

Lorentzian velocity distribution

$$f(v) = \frac{1}{\pi v_0} \frac{1}{1 + (v/v_0)^2}$$

Nontrivial stationary states do exist!

Cascade Dynamics (1D)

 Collision rule: arbitrary velocities $(u_1, u_2) \rightarrow (pu_1 + qu_2, pu_2 + qu_1)$ Large velocities: linear but nonlocal process (pv) $v \rightarrow (pv, qv)$ v**High-energies: linear equation** qv $f(v) = \frac{1}{p^{1+\lambda}} f\left(\frac{v}{p}\right) + \frac{1}{a^{1+\lambda}} f\left(\frac{v}{a}\right)$ loss gain gain Power-law tail $f(v) \sim v^{-2-\lambda}$

Cascade Dynamics (any D)

Collision process: large velocities

$$v \rightarrow (\alpha v, \beta v)$$

Stretching parameters related to impact angle

$$\alpha = (1-p)\cos\theta \quad \beta = \sqrt{1 - (1-p^2)\cos^2\theta}$$

• Energy decreases, velocity magnitude increases $\alpha^2 + \beta^2 \ge 1$ $\alpha + \beta \le 1$

Steady state equation

$$f(v) = \left\langle \frac{1}{\alpha^{d+\lambda}} f\left(\frac{v}{\alpha}\right) + \frac{1}{\beta^{d+\lambda}} f\left(\frac{v}{\beta}\right) \right\rangle$$

Power-laws are generic

Velocity distributions always has power-law tail

$$f(v) \sim v^{-\sigma}$$

Exponent varies with parameters

$$\frac{1 - {}_2F_1\left(\frac{d+\lambda-\sigma}{2},\frac{\lambda+1}{2},\frac{d+\lambda}{2},1-p^2\right)}{(1-p)^{\sigma-d-\lambda}} = \frac{\Gamma\left(\frac{\sigma-d+1}{2}\right)\Gamma\left(\frac{d+\lambda}{2}\right)}{\Gamma\left(\frac{\sigma}{2}\right)\Gamma\left(\frac{\lambda+1}{2}\right)}$$

- Tight bounds $1 \le \sigma d \lambda \le 2$
- Elastic limit is singular $\sigma \to d + 2 + \lambda$

Dissipation rate always divergent Energy finite or infinite

The characteristic exponent σ

 σ varies with spatial dimension, collision rules

Monte Carlo Simulations

- Compact initial distribution
- Inject energy at very large velocity scales only
- Maintain constant total energy
- <u>"Lottery"</u> implementation:
 - Keep track of total energy dissipated, E_T
 - With small rate, boost a particle by E_T

Excellent agreement between theory and simulation

Further confirmation

Maxwell molecules (1D, 2D)

Hard spheres (1D, 2D)

Injection, cascade, dissipation

Energy is injected at large velocity scales
Energy cascades from large velocities to small velocities
Energy dissipated at small velocity scales

Energy balance

- Energy injection rate γ
- ullet Energy injection scale V
- Typical velocity scale v_0
- Balance between energy injection and dissipation

$$\gamma \sim V^{\lambda} (V/v_0)^{d-\sigma}$$

 For "lottery" injection: injection scale diverges with injection rate

$$V \sim \begin{cases} \gamma^{-1/(2-\lambda)} & \sigma < d+2\\ \gamma^{-1/(\sigma-d-\lambda)} & \sigma > d+2 \end{cases}$$

Traditional forcing: Injection, dissipation

T van Noije, M Ernst 97

Energy injection: thermal forcing (at all scales)

$$dv/dt = \eta$$

Energy dissipation: inelastic collision

$$v \rightarrow (pv, qv)$$

Steady state equation

Stretched exponentials

$$f(v) \sim \exp\left(-v^{1+\lambda/2}\right)$$

with Ben Machta (Brown)

Self-similar collapse

Hybrid between steady-state and time dependent state

Numerical confirmation

A third family of solutions exists

Conclusions

- New class of nonequilibrium stationary states
- Energy cascades from large to small velocities
- Power-law high-energy tail
- Energy input at large scales balances dissipation
- Associated similarity solutions exist as well
- Temperature insufficient to characterize velocities
- Experimental realization: requires a different driving mechanism

Outlook

- Spatially extended systems
- Spatial structures
- Polydisperses granular media
- Experimental realization

E. Ben-Naim and J. Machta, PRL 91 (2005) cond-mat/0411473