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Themes

1. Scaling and multiscaling

2. Cascades

3. Pattern formation and bifurcations

4. Phase transitions and synchronization



1. Averaging



• N identical particles (grains, billiard balls)

• Each particle carries a number (velocity) 

• Particles interact in pairs (collision)

• Both particles acquire the average (inelastic)

The basic averaging process

(v1, v2)→
(

v1 + v2

2
,
v1 + v2

2

)

vi

Melzak 76



• Total number of particles is conserved

• Total momentum is conserved

• Energy is dissipated in each encounter

Conservation laws & dissipation

N∑

i=1

vi = constant

∆E =
1
4
(v1 − v2)2

Ei =
1
2
v2

i

We expect the velocities to shrink



• Dynamic treatment

Each particle collides once per unit time

• Random interactions

The two colliding particles are chosen randomly

• Infinite particle limit is implicitly assumed

• Process is galilean invariant

Set average velocity to zero

Some details

N →∞

〈x〉 = 0

x→ x + x0



• Definition

• Time evolution = exponential decay

• All energy is eventually dissipated

• Trivial steady-state

The temperature

T = 〈v2〉

dT

dt
= −λ T

T = T0e
−λt

P (v)→ δ(v)

λ =
1
2



• Kinetic theory

• Moments of the distribution

• Closed nonlinear recursion equations

• Asymptotic decay

The moments

Mn =
∫

dv vnP (v, t)
M0 = 1

M2n+1 = 0

dMn

dt
+ λnMn = 2−n

n−2∑

m=2

(
n

m

)
MmMn−m

Mn ∼ e−λnt with λn = 1− 2−(n−1)

λn < λm + λn−m

∂P (v, t)
∂t

=
∫∫

dv1dv2P (v1, t)P (v2, t)
[
δ

(
v − v1 + v2

2

)
− δ(v − v1)

]



• Nonlinear spectrum of decay constants

• Spectrum is concave, saturates

• Each moment has a distinct behavior

Multiscaling

λn = 1− 2−(n−1)

λn < λm + λn−m

Mn

MmMn−m
→∞ as t→∞

Multiscaling Asymptotic Behavior



• The Fourier transform

• Obeys closed, nonlinear, nonlocal equation

• Scaling behavior, scale set by second moment

• Nonlinear differential equation

• Solution 

The Fourier transform
F (k) =

∫
dv eikvP (v, t)

∂F (k)
∂t

+ F (k) = F 2(k/2)

F (k, t)→ f
(
ke−λt

)
λ =

λ2

2
=

1
4

−λ z f ′(z) + f(z) = f2(z/2) f(0) = 1
f ′(0) = 0

f(z) = (1 + |z|)e−|z|



• Self-similar form

• Obtained by inverse Fourier transform

• Power-law tail

1. Temperature is the characteristic velocity scale

2. Multiscaling is consequence of diverging 
moments of the power-law similarity function

The velocity distribution

P (v, t)→ eλtp
(
veλt

)

p(w) =
2
π

1
(1 + w2)2

p(w) ∼ w−4



• Stationary solutions do exist!

• Family of exponential solutions

• Lorentz/Cauchy distribution

Stationary Solutions

How is a stationary solution
consistent with energy dissipation?

F (k) = F 2(k/2)

F (k) = exp(−kv0)

P (v) =
1

πv0

1
1 + (v/v0)2



• Large velocities, cascade process

• Linear evolution equation

• Steady-state: power-law distribution

• Divergent energy, divergent dissipation rate

Extreme Statistics

(v1, v2)→
(

v1 + v2

2
,
v1 + v2

2

)

v →
(v

2
,
v

2

)

∂P (v)
∂t

= 4P
(v

2

)
− P (v)

P (v) ∼ v−2 4P
(v

2

)
= P (v)



Injection, Cascade, Dissipation

lnP (|v|)

ln |v|
Vv0

Injection selects the typical scale!

Lottery MC:
award one particle 

all dissipated energy

Experiment:
rare, powerful 

energy injections



I. Conclusions

• Moments exhibit multiscaling

• Distribution function is self-similar

• Power-law tail

• Stationary solution with infinite energy exists

• Driven steady-state

• Energy cascade



1I. Restricted Averaging



• Opinion measured by a continuum variable

• Compromise: reached by pairwise interactions 

• Conviction: restricted interaction range

• Minimal, one parameter model

• Mimics competition between compromise and 
conviction

The compromise process

−∆ < x < ∆

|x1 − x2| < 1

(x1, x2)→
(

x1 + x2

2
,
x1 + x2

2

)

Weisbuch 2001



• Given uniform initial (un-normalized) distribution

• Find final distribution

• Multitude of final steady-states

• Dynamics selects one (deterministically)

Problem set-up

P0(x) =

{
1 |x| < ∆
0 |x| > ∆

P∞(x) = ?

P0(x) =
N∑

i=1

mi δ(x− xi) |xi − xj | > 1

Multiple localized clusters



• Same master equation, restricted integration

Direct Monte Carlo simulation of stochastic process

• Numerical integration of rate equations

Numerical methods, kinetic theory

∂P (x, t)
∂t

=
∫∫

dx1dx2P (x1, t)P (x2, t)
[
δ

(
x− x1 + x2

2

)
− δ(x− x1

]

|x1 − x2| < 1



Rise and fall of central party

0 < ∆ < 1.871 1.871 < ∆ < 2.724

Central party may or may not exist!



Resurrection of central party

Parties may or may not be equal in size 

2.724 < ∆ < 4.079 4.079 < ∆ < 4.956



Bifurcations and Patterns



• Periodic sequence of bifurcations

1. Nucleation of minor cluster branch

2. Nucleation of major cluster brunch

3. Nucleation of central cluster

• Alternating major-minor pattern

• Clusters are equally spaced

• Period L gives major cluster mass, separation

Self-similar structure, universality

x(∆) = x(∆) + L L = 2.155



How many political parties?

•Data: CIA world factbook 2002
•120 countries with multi-party parliaments
•Average=5.8; Standard deviation=2.9

number of parties

fr
eq

ue
nc

y



• Masses are periodic

• Major mass

• Minor mass

Cluster mass

m(∆) = m(∆ + L)

M → L = 2.155

m→ 3× 10−4

gaps?Why are the minor clusters so small?



• Minor mass vanishes

• Universal exponent

Scaling near bifurcation points

L-2 is the small parameter
explains small saturation mass

m ∼ (∆−∆c)α

α =

{
3 type1
4 type3



• Rate of transfer from minor cluster to major cluster

• Process stops when

• Final mass of minor cluster

Heuristic derivation of exponent

dm

dt
= −m M m ∼ ε e−t

x ∼ e−tf /2 ∼ ε 〈x2〉 ∼ e−t

m(∞) ∼ m(tf ) ∼ ε3 α = 3

• Perturbation theory
• Major cluster
• Minor cluster

∆ = 1 + ε
x(∞) = 0
x(∞) = ±(1 + ε/2)



• Linear stability analysis

• Fastest growing mode

• Traveling wave (FKPP saddle point analysis)

Pattern selection

P − 1 ∝ ei(kx+wt) =⇒ w(k) =
8
k

sin
k

2
− 2

k
sin k − 2

dw

dk
=⇒ L =

2π

k
= 2.2515

dw

dk
=

Im(w)
Im(k)

=⇒ L =
2π

k
= 2.0375

2.0375 < L < 2.2515

Pattern selection is intrinsically nonlinear

Patterns induced by wave propagation from boundary
However, emerging period is different



II. Conclusions

• Clusters form via bifurcations

• Periodic structure

• Alternating major-minor pattern

• Central party does not always exist

• Power-law behavior near transitions

• Nonlinear pattern selection



III. Diffusive Averaging



Two independent competing processes

1. Averaging (nonlinear)

2. Random uncorrelated white noise (linear)

• Add diffusion term to equation (Fourier space)

Diffusive Forcing

(v1, v2)→
(

v1 + v2

2
,
v1 + v2

2

)

dvj

dt
= ηj(t) 〈ηj(t)ηj(t′)〉 = 2Dδ(t − t′)

(1 + Dk2)F (k) = F 2(k/2)

System reaches a nontrivial steady-state
Energy injection balances dissipation



• Solution by iteration

• Infinite product solution

• Exponential tail

• Also follows from 

Infinite product solution

F (k) =
1

1 + Dk2
F 2(k/2) =

1
1 + Dk2

1
(1 + D(k/2)2)2

F 4(k/4) = · · ·

P (v) ∝ exp
(
−|v|/

√
D

)
P (k) ∝ 1

1 + Dk2

∝ 1
k − i/

√
D

v →∞

D
∂2P (v)

∂v2
= −P (v)

F (k) =
∞∏

i=0

[
1 + D(k/2i)2

]−2i

Non-Maxwellian distribution/Overpopulated tails



• Steady-state equation

• Take the logarithm

• Cumulant solution

• Generalized fluctuation-dissipation relations

Cumulant solution

F (k)(1 + Dk2) = F 2(k/2)

ψ(k) + ln(1 + Dk2) = 2ψ(k/2)

ψ(k) = lnF (k)

F (k) = exp

[ ∞∑

n=1

ψn(−Dk2)n/n

]

ψn = λ−1
n =

[
1− 21−n

]−1



Experiment

“A shaken box of marbles” Menon 01
Aronson 05



III. Conclusions

• Nonequilibrium steady-states

• Energy pumped and dissipated by different 
mechanisms

• Overpopulation of high-energy tail with 
respect to equilibrium distribution



IV. Orientational Averaging



• Each rod has an orientation 

• Alignment by pairwise interactions 

• Diffusive wiggling

• Kinetic theory

Orientational Averaging

〈ηj(t)ηj(t′)〉 = 2Dδ(t − t′)
dθj

dt
= ηj(t)

0 ≤ θ ≤ π

∂P

∂t
= D

∂2P

∂θ2
+

∫ π

−π
dφ P

(
θ − φ

2

)
P

(
θ +

φ

2

)
− P.

(θ1, θ2)→
{(

θ1+θ2
2 , θ1+θ2

2

)
|θ1 − θ2| < π(

θ1+θ2+2π
2 , θ1+θ2+2π

2

)
|θ1 − θ2| > π



• Fourier transform 

• Order parameter  

• Probes state of system

• Closed equation for Fourier modes

Fourier analysis

Pk = 〈e−ikθ〉 =
∫ π

−π
dθe−ikθP (θ) P (θ) =

1
2π

∞∑

k=−∞
Pkeikθ

R = |〈eiθ〉| = |P−1|

R =

{
0 disordered state
1 perfectly ordered state

Pk =
∑

i+j=k

Gi,jPiPj Gi,j = 0 when |i− j| = 2n



• Critical diffusion constant

• Subcritical: ordered phase

• Supercritical: disordered phase

• Critical behavior

Nonequilibrium phase transition
Dc =

4
π
− 1

R > 0

R = 0

R ∼ (Dc −D)1/2



• Fourier modes decay exponentially with R

• Small number of modes sufficient

Distribution of orientation

Pk ∼ Rk



• Iterate the Fourier equation

• Series solution

Partition of Integers

R = r3R
3 + r5R

5 + · · ·

3

1

1 1

2

r3 = G1,2G1,1Partition rules

Pk =
∑

i+j=k

Gi,jPiPj =
∑

i+j=k

∑

l+m=j

Gi,jGl,mPiPlPm = · · ·

k = i + j

i != 0
j != 0

Gi,j != 0



Experiments

“A shaken dish of toothpicks”



IV. Conclusions

• Nonequilibrium phase transition

• Weak noise: ordered phase (nematic)

• Strong noise: disordered phase

• Solution relates to iterated partition of integers

• Only when Fourier spectrum is discrete: exact 
solution possible for arbitrary averaging rates


