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Jamming and tiling in two-dimensions
Pick two neighboring rectangles at random

Merge them if they are compatible

System reaches a jammed state
No two neighboring rectangles are compatible



The jammed state
no two neighbors share a common side

Kastelyan 61
Fisher 61
Lieb 67
Baxter 68
Kenyon 01



Features of the jammed state

•Local alignment
•Finite rectangle density

•Finite tile density

•Finite stick density

•Finite square density

•Area distribution of 
rectangles with width w 

⇢ = 0.1803

T = 0.009949

S = 0.1322

H = 0.02306
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No theoretical framework!



Jamming: mean-field version

• Start with N 1x1 tiles (elementary building blocks)

• Pick two rectangles at random

• Pick an orientation at random (vertical or horizontal)

• Merge rectangles if they are perfectly compatible

• System is jammed when f rectangles have:                    
f distinct horizontal sizes and f distinct vertical sizes 

+

(i1, j) + (i2, j) ! (i1 + i2, j)

(i, j1) + (i, j2) ! (i, j1 + j2)

System reaches a jammed state



An example of a jammed state

• Characterize rectangle by horizontal and vertical size

• Characterize rectangle by maximal and minimal size

• Width = minimal size, Length = maximal length

• Ordered widths of f=13 rectangles for N=10,000 

Width sequence has gaps!

(i, j)

! = min(i, j) ` = max(i, j)

(!, `)

{1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 9}



Number of jammed rectangles
•Average Number of rectangles grows algebraically with N 

•Nontrivial exponent

•Typical width of rectangles grows algebraically with N

•Area density of rectangles of width w decays as a 
power law

A single exponent characterizes the jammed state

F ⇠ N↵

↵ = 0.229± 0.002

! ⇠ N↵

m! ⇠ !�� with � = ↵�1 � 2



Numerical simulations
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N=10
8

N=10
9

m! ⇠ !��

! 1 2 3 4 5 6
m! 0.622 0.182 0.0694 0.0365 0.0214 0.0139
M! 0.622 0.804 0.873 0.910 0.931 0.945

Rectangles with finite width are macroscopic!
Rectangles with width 1,2,3,4,5 contain 95% of area

Still, the area distribution has a broad power-law tail!



Kinetic theory
•Straightforward generalization of ordinary aggregation 

•Allows calculation of the density of sticks

•Simple decay for the stick density and jamming time

• Jammed state properties give density decay and width growth

Jamming exponent characterizes the kinetics, too

dRi,j

dt
=

X

i1+i2=i

Ri1,jRi2,j � 2Ri,j

X

k�1

Rk,j +
X

j1+j2=j

Ri,j1Ri,j2 � 2Ri,j

X

k�1
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dS
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= �S2 � 2

X

i,j

R1,jRi,j

S ' t�1 =) ⌧ ⇠ N

⇢ ⇠ t↵�1 and w ⇠ t↵

Smoluchowski 1917



Numerical validation

Numerics validate approximation
Suggest two aggregation modes: elongating and widening
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Primary aggregation: elongation
•Aggregation between two rectangles of same width 

•Ordinary aggregation equation (example: sticks)

•Length distribution as in d=1, length grows linearly l~t 

•Behavior extends to all rectangles with finite width

+

dR1,`

dt
=
X

i+j=`

R1,iR1,j�2SR1,`�2
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with �!(x) = (2!/m!) exp(�2!x/m!)

R1,` ' (2/m1t
2
) exp(�2`/m1 t)

Finite width: problem reduces to one-dimensional aggregation
However, total mass for each width is not known



Numerical validation

Exponential scaling function
total mass set by the jammed state

0 1 2 3 4 5
x

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Φ
1

Eq. (17)

t=10
3

t=10
4

t=10
5

0 0.2 0.4 0.6 0.8 1
x

10
-6

10
-4

10
-2

10
0

10
2

Φ
2

eq.(23)

t=10
3

t=10
4

t=10
5



Secondary aggregation: widening
•Aggregation between two rectangles of same length 

•The area fraction is coupled to the size distribution

•Insights about relaxation toward jammed state  
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=
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Closure & theoretical determination of     remains elusive↵



Conclusions
• Random aggregation of compatible rectangles

• Process reaches a jammed state where all rectangles are 
incompatible

• Number of jammed rectangle grows as power-law

• Area distribution decays as a power law

• A single, nontrivial, exponent characterize both                    
the jammed state and the time-dependent behavior

• Primary aggregation: rectangles of same width

• Secondary aggregation: rectangles of same length 

• Slow transfer of “mass” from thin to wide rectangles

• Kinetic theory successfully describes primary aggregation 
process only


