Jamming and tiling
 in aggregation of rectangles

Eli Ben-Naim
Los Alamos National Laboratory

with: Daniel Ben-Naim (UC Santa Barbara) \& Paul Krapivsky (Boston Univ.)
J. Phys. A: Mathematical \& Theoretical 51, 455002 (2018)

Talk, publications available from: http://cnls.lanl.gov/~ebn
APS March Meeting, Boston MA, March 5, 2019

Jamming and tiling in two-dimensions

Pick two neighboring rectangles at random Merge them if they are compatible

System reaches a jammed state No two neighboring rectangles are compatible

The jammed state

no two neighbors share a common side

Kastelyan 61
Fisher 61
Lieb 67
Baxter 68
Kenyon 01

Features of the jammed state
-Local alignment

- Finite rectangle density

$$
\rho=0.1803
$$

- Finite tile density

$$
T=0.009949
$$

- Finite stick density

$$
S=0.1322
$$

- Finite square density

$$
H=0.02306
$$

- Area distribution of rectangles with width w

$$
m_{\omega} \sim \exp \left(- \text { const. } \times \omega^{2}\right)
$$

No theoretical framework!

Jamming: mean-field version

- Start with $N \mathrm{Ix}$ I tiles (elementary building blocks)
- Pick two rectangles at random
- Pick an orientation at random (vertical or horizontal)
- Merge rectangles if they are perfectly compatible

$$
\begin{aligned}
\left(i_{1}, j\right)+\left(i_{2}, j\right) & \rightarrow\left(i_{1}+i_{2}, j\right) \\
\left(i, j_{1}\right)+\left(i, j_{2}\right) & \rightarrow\left(i, j_{1}+j_{2}\right)
\end{aligned}
$$

- System is jammed when f rectangles have: f distinct horizontal sizes and f distinct vertical sizes

System reaches a jammed state

An example of a jammed state

- Characterize rectangle by horizontal and vertical size

$$
(i, j)
$$

- Characterize rectangle by maximal and minimal size

$$
(\omega, \ell)
$$

- Width $=$ minimal size, Length $=$ maximal length

$$
\omega=\min (i, j) \quad \ell=\max (i, j)
$$

- Ordered widths of $f=13$ rectangles for $N=10,000$

$$
\{1,1,2,2,3,3,4,4,5,5,6,7,9\}
$$

Width sequence has gaps!

Number of jammed rectangles

- Average Number of rectangles grows algebraically with N

$$
F \sim N^{\alpha}
$$

- Nontrivial exponent

$$
\alpha=0.229 \pm 0.002
$$

- Typical width of rectangles grows algebraically with N

$$
\omega \sim N^{\alpha}
$$

- Area density of rectangles of width w decays as a power law

$$
m_{\omega} \sim \omega^{-\gamma} \quad \text { with } \quad \gamma=\alpha^{-1}-2
$$

A single exponent characterizes the jammed state

Numerical simulations

$$
F \sim N^{\alpha}
$$

$$
m_{\omega} \sim \omega^{-\gamma}
$$

ω	1	2	3	4	5	6
m_{ω}	0.622	0.182	0.0694	0.0365	0.0214	0.0139
M_{ω}	0.622	0.804	0.873	0.910	0.931	0.945

Rectangles with finite width are macroscopic! Rectangles with width I, 2,3,4,5 contain 95% of area Still, the area distribution has a broad power-Iaw tail!

Kinetic theory

- Straightforward generalization of ordinary aggregation $\frac{d R_{i, j}}{d t}=\sum_{i_{1}+i_{2}=i} R_{i_{1}, j} R_{i_{2}, j}-2 R_{i, j} \sum_{k \geq 1} R_{k, j}+\sum_{j_{1}+j_{2}=j} R_{i, j_{1}} R_{i, j_{2}}-2 R_{i, j} \sum_{k \geq 1} R_{i, k}$
- Allows calculation of the density of sticks

$$
\frac{d S}{d t}=-S^{2}-2 \sum_{R, j} R_{i, R_{i, j}}
$$

- Simple decay for the stick density and jamming time

$$
S \simeq t^{-1} \quad \Longrightarrow \quad \tau \sim N
$$

- Jammed state properties give density decay and width growth

$$
\rho \sim t^{\alpha-1} \quad \text { and } \quad w \sim t^{\alpha}
$$

Jamming exponent characterizes the kinetics, too

Numerical validation

Numerics validate approximation
Suggest two aggregation modes: elongating and widening

Primary aggregation: elongation

- Aggregation between two rectangles of same width

$$
\square \square+\square \square \square
$$

- Ordinary aggregation equation (example: sticks)

$$
\frac{d R_{1, \ell}}{d t}=\sum_{i+j=\ell} R_{1, i} R_{1, j}-2 S R_{1, \ell}-2\left(\sum_{i} R_{i}\right) R_{1, \ell}
$$

- Length distribution as in $d=1$, length grows linearly $l \sim t$

$$
R_{1, \ell} \simeq\left(2 / m_{1} t^{2}\right) \exp \left(-2 \ell / m_{1} t\right)
$$

- Behavior extends to all rectangles with finite width

$$
\mathcal{R}_{\omega, \ell}(t) \simeq t^{-2} \Phi_{\omega}\left(\ell t^{-1}\right) \quad \text { with } \quad \Phi_{\omega}(x)=\left(2 \omega / m_{\omega}\right) \exp \left(-2 \omega x / m_{\omega}\right)
$$

Finite width: problem reduces to one-dimensional aggregation However, total mass for each width is not known

Numerical validation

Exponential scaling function total mass set by the jammed state

Secondary aggregation: widening

- Aggregation between two rectangles of same length

-The area fraction is coupled to the size distribution

$$
\frac{d m_{\omega}}{d t}=\frac{1}{2} \sum_{i+j=\omega} \sum_{\ell} \omega \ell \mathcal{R}_{i, \ell} \mathcal{R}_{j, \ell}-\sum_{j} \sum_{\ell} \omega \ell \mathcal{R}_{j, \ell} \mathcal{R}_{\omega, \ell}
$$

- Insights about relaxation toward jammed state $\mu_{\omega}=\frac{2 \omega}{m_{\omega}}$

$$
m_{\omega}(t)-m_{\omega}(\infty) \simeq C_{\omega} t^{-1} \quad \text { with } \quad C_{\omega}=-2 \omega \sum_{i+j=\omega} \frac{\mu_{i} \mu_{j}}{\left(\mu_{i}+\mu_{j}\right)^{2}}+4 \omega \sum_{j} \frac{\mu_{\omega} \mu_{j}}{\left(\mu_{\omega}+\mu_{j}\right)^{2}}
$$

Closure \& theoretical determination of α remains elusive

Conclusions

- Random aggregation of compatible rectangles
- Process reaches a jammed state where all rectangles are incompatible
- Number of jammed rectangle grows as power-law
- Area distribution decays as a power law
- A single, nontrivial, exponent characterize both the jammed state and the time-dependent behavior
- Primary aggregation: rectangles of same width
- Secondary aggregation: rectangles of same length
- Slow transfer of "mass" from thin to wide rectangles
- Kinetic theory successfully describes primary aggregation process only

