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The voter model is a simple model for coarsening with a nonconserved scalar order parameter. We investi-
gate coarsening and persistence in the voter model by introducing the quryftity defined as the fraction of
voters who changed their opiniamtimes up to timet. We show thatP,(t) exhibits scaling behavior that
strongly depends on the dimension as well as on the initial opinion concentrations. Exact results are obtained
for the average number of opinion chang@s, and the autocorrelation functioA(t)==(—1)"P,~t~%2in
arbitrary dimensiord. These exact results are complemented by a mean-field theory, heuristic arguments, and
numerical simulations. For dimensiods>2, the system does not coarsen, and the opinion changes follow a
nearly Poissonian distribution, in agreement with mean-field theory. For dimern$®fsthe distribution is
given by a different scaling form, which is characterized by nontrivial scaling exponents. For unequal opinion
concentrations, an unusual situation occurs where different scaling functions correspond to the majority and the
minority, as well as for even and oad

PACS numbes): 02.50-r, 05.40:+j, 64.60.Cn

[. INTRODUCTION should be considered as the analog of the domainlsjie
[5,8], and the exponenk is replaced by\., defined by
The theory of phase separation, or domain coarsening, has,(t)~ £ *c. In the voter model, temperature is absent but
undergone a significant development in the last three decadsice the dynamics is noiseless, the voter model dynamics is
[1]. The most important finding is that well-defined orderedzero temperature in nature. However, the “critical” tempera-
domains arise and grow with time in such a way that theture is also zero. If one introduces noise by allowing
coarsening process exhibits scaling. In other words, at thenvironment-independent opinion changes, the system does
late stages of the evolution the system is characterized by @ot coarser(see, e.g.[9]). Thus, we will actually establish
single length scal& (t) that gives a typical linear size of the \.=d for the voter model. A general discussion of the con-
domains. It is well established, at least for systems with alitions under which the equality=\.=d holds is given by
scalar order parameter, thaft)~t" with n=1/2 for non-  Majumdar and Hus§10].
conservedlynamics andh= 1/3 for conservedlynamics. For In this study, we introduce a family of quantities that pro-
the Ising spin model, Glauber spin-flip dynamics exemplifiesvides insight into the “history” of the coarsening process.
the former, while Kawasaki spin-exchange dynamics exemwe denote byP,(t) the fraction of voters who changed their
plifies the later. opinion exactlyn times during the time interval (9, The
Several important correlation functions exist. One suchfirst of these quantitiesPy(t), is equal to the fraction of
function, the autocorrelation or, equivalently, the two-timepersistent voters, i.e., voters who did not change their opin-
equal-space correlation functionA(t), is defined by ion up to timet. This quantity has been introduced indepen-
A(t)=(o(r,0)¢(r,t)), whereg(r,t) is the order parameter. dently for two equivalent one-dimensional models, the
Then, scaling impliesA(t)~L~(t), with an exponeni Glauber-Ising moddl11], and the single-species annihilation
[2]. The general two-point correlation functiorg(r,t) procesq12]. Furthermore, the corresponding generalizations
=(¢(0,0)¢(r,t)), can be expressed through, namely, to arbitrary dimensions were discussed 18] and[14], re-
g(r,t)=L"*G(r/L). Exact results fol are known in few spectively. Derridaet al. [15] established the exact asymp-
caseg3-6], while the boundsi/2<\=<d with d the spatial totic decay of this quantityP,(t)~t %% as suggested ear-
dimension were proposed by Fisher and H{@k For the lier by numerical simulations. Another exact res{i6]
O(m) vector model in thenm—c limit, A\=d/2 [4]. In this  establishe®y(t)~L #, with 8=0.17505 . .., for theone-
study, the value.=d is obtained for the voter model, de- dimensional1D) time-dependent Ginsburg-Landau equation
fined below. This result indicates that both the upper and that zero temperature.
lower bounds can be realized. For the voter model, several quantities such as the one-
It should be noted that in most coarsening processes thitme and the two-time correlations are exactly solvable in
dynamics does not exhibit a qualitative dependence on tharbitrary dimension$9,17]. These correlation functions al-
temperaturd as long ad <T.[1,7]. At the critical tempera- low an exact calculation of the average number of opinion
tureT=T,, the dynamics is generally different, and orderedchangegn) and other interesting quantities. Hence, the voter
domains usually do not occur. However, the correlationmodel is a natural starting point for the investigation of
length £(t) exists and grows with time a&(t)~t*?, where  P,(t). Although we do not obtain the full distribution, most
z is the dynamical exponent. The correlation lenditt) of its features are illuminated by combining the above exact
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53 COARSENING AND PERSISTENCE IN THE VOTER MODEL 3079

results with heuristic arguments and with the mean-field sorestricted to zero temperature; 1D noisy voter dynamics is

lution. Generally, P,(t) exhibits a scaling behavior. For also identical to Glauber dynamics at a positive temperature.

d>2, the scaling function is Poissonian and is peaked at We now consider the voter model dynamics on a mean-

n={n), while for d=1 the distribution is maximal near the field level, by simply treating all sites as neighbors. Such a

origin. Additionally, for unequal opinion concentrations dif- theory isexacton a complete graph. Moreover, it is expected

ferent scaling functions for even and odd opinion change$o hold in sufficiently large spatial dimensions. We first con-

are found. Using random walks techniques, we obtain theider the symmetric case where the opinions concentrations,

even and odd scaling functions in the limit of an infinitesimalc,. andc_, are equal, and the interesting case of unequal

minority concentration. concentrations will be discussed later. The fraction of sites
The rest of this paper is organized as follows. In Sec. ll,that have changed their opinions times up to timet,

we first solve forP,(t) on a complete graph. We then reex- evolves according to

press some exact relationships for the voter model, in arbi-

trary dimensiord, in terms of the distributior?,,(t). Com- dP, _ _p 1)

bining with the mean-field solution, these exact relationships dt n-1 oo

allow us to guess the scaling form Bf,(t). This guess sug-

gests a usual scaling form in one dimension, and a meangjth p_,=0 to ensured Py/dt=—P,. One can verify that

field-like sharply peaked distribution fa> 1. These predic- the dynamics of Eq(1) preserves the normalization condi-
tions are then compared with numerical data in one, two, anglon > P (t)=1. Solving Eq.(1) subject to the initial con-

three dimensions. In Sec. Ill, we describe the exact solutioijtion P, (0)= &,,, one finds that the opinion change distri-
of the mean-field equations for the case of initially differentption function is Poissonian,
concentrations. Then we present exact results for the auto-
correlation function in arbitrary dimensiath and exact re- n
sults for the fraction of persistent votePg(t) in one dimen- P, (t)= t_eft_ )
sion. We proceed by investigating the extreme case of n!
infinitesimal minority opinion. In this limit, the model is
equivalent to a pair of annihilating random walkers who arein particular, the fraction of persistent voters, i.e., voters who
nearest neighbor dt=0. Simplifying further the problem to did not change their opinion up to tinte decreases expo-
the case of a random walker near the absorbing boundary weentially, Po(t)=e™"'. The probability that a voter has its
derive a complete analytical solution. Finally, we performinitial opinion at time t is thus Pge==nP2n
numerical simulations for the case of unequal concentrations: (1+e~2')/2. Asymptotically, this probability exponen-
and compare the results with exact predictions. We concludgally approaches the value 1/2, and therefore voters quickly
with a brief summary in Sec. IV. “forget” their initial opinion.

The distribution is peaked around the averége=t, and
the width of the distribution, o, is given by
a’=(n?>)—(n)=t. In the limits, t—o%, n—w«, and

In this section we first define the voter model. We restrict(n—t)/+/t finite, P,(t) approaches a scaling form
attention to the symmetric case, i.e., equal opinion densities.
We start by analyzing the mean-field theory of the model, 1
and then obtain several exact results in arbitrary dimensions. P.(t)= —@m(
We then present a scaling ansatz and check it using numeri- g
cal simulations.

Il. EQUAL CONCENTRATIONS

”_(fm), 3

where the scaling distribution is Gaussia®..(x)
=(27) Y%exp(—x?/2). This infinite-dimension scaling solu-
tion will be compared below to simulation results in three
We start by defining the voter modgl8]. Consider an dimensions. To summarize, the quantiy(t) incorporates
arbitrary lattice and assume that each site is occupied by many statistical properties of the system, such as the prob-
“voter” who may have one of two opinions, denoted by  ability of maintaining the original opinion, the probability of
and —. Each site keeps its opinion during some time inter-having the original opinion, and the average number of opin-
val, distributed exponentially with a characteristic timeset  ion changes.
to unity for convenience, and then assumes the opinion of a
randomly chosen neighboring site. If a site is surrounded by
sites with the same opinion, it does not change its opinion.
Hence, such dynamics are zero temperature in nature. Noise We now review several relevant known exact results for
can be introduced by allowing a voter to change its opiniorthe voter model in arbitrary dimensiehand reexpress them
independently of its neighbors. However, a voter system within terms of P,(t). Both the one- and two-body equal-time
noisy dynamics does not coarsen, and we restrict ourselverrelation functiong9,17] are exactly solvable on an arbi-
to the noiseless voter dynamics. These dynamics are deary lattice in arbitrary dimension. It proves useful to formu-
simple that they naturally arise in a variety of situations, seelate the voter model on the language of Ising spins, i.e., a
e.d., [9,17]. An important link is with the Glauber-Ising + opinion is identified with+ 1 spin and a— opinion with
model: In one dimension, arahlyin 1D, the voter dynamics — 1 spin. The state of the lattice is described3sy[ S, ], and
is identical to the Glauber dynamics. This equivalence is nothe spin-flip ratew, (S)=W(S,— —S,) reads

A. Mean-field theory

B. Exact results
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t_1+d/2 d<2
1/Int, d=2
const, d>2.

1
wk<S>=1—Z—dsk§ Scre (4)

cy ()~ 9

with z4 the coordination humber. Here the sum on the right-
hand side runs over aﬂd nearest neighbors. It is_ponv_eni_ent Thus, whend<2, the density of active bonds vanishes for a
to rescale the time variable;~tzy/4. The probability distri- g fficiently long time, i.e., coarsening takes place in low di-
bution P(S,t) satisfies the master equation mensions. In contrast, fat>2, single-opinion domains do
not arise. This is not very surprising since at the critical point
d « ‘ well-ordered domains should not necessarily form. Follow-
aP(S,t)Izk: [Wi(S)P(S 1) =W (S)P(S,1)], (5  ing the above discussion, the average number of opinion
changes in the limit—o is obtained by integrating, _,

where the stat&® differs from S only at the sitek. One can 142, d<2
then derive a set of differential equations for the spin corre- /1 d=2
: - : (ny~4 Hint (10
lation functions(S; . . . S)=X=gS; . . . §P(S,t). The single- 4>2
and two-body correlation functions satisfy discrete Laplace t =2
equationd9],

The above results agree with the mean-field results when
d d>2. We therefore expect that fa>2, the distribution
2— =—z + , function P,,(t) approaches the Poissonian distribution of Eq.
dt<Sk> (S0 Eq: <Sk+%> (3). Similarly, the fraction of persistent votePy(t) should
decay exponentially in time as well. Interestingly, the exact
d result for the autocorrelation function indicates a subtle fail-
2a<sksq>=—2zd<sksq> (6) ure of the mean-field approach concerning the probability
that a voter has its initial opinionPg,e{t)==ZP,,(t)
=[1+A(t)]/2. From Eq.(8), one finds that asymptotically
+ 2 (SreS)+H Y (SSise). Pever(t) — 1/2~t~ %2 while the mean-field approach gives
& ' & ' Peve{t) —1/2~e~2.. Hence voters have a stronger than ex-
ponential memory, even far>2. Despite this erroneous pre-
On a simple(hypencubic lattice wherezy=2d, the gen-  diction, the mean-field theory is successful in predicting
eral solution for the average opinion is given by most features of the opinion change distribution function for
d>2. As Eq.(6) describes simple random walk&(t) equals
the probability to return to the origin, afd) is proportional
(Sy=e1> (S(0)) (1), (7) 'Eo theﬂnumber of distinct sites visited by a random walk
[ 19-21.

where 1,(x) is the multi-index function, I,(x) C. Scaling arguments

:ngjgdlkj(x), andl , is the modified Bessel function. The  We were unable to find the e>2<aErn(t) distribution for
autocorrelationA(t) = (Sy(0)Sy(t)) is of particular interest d=2, or higher moments such &s®). However, combining
since it is related to the opinion change distribution via theth® above results with scaling arguments proves useful. In
alternating sumA(t) =3 (— 1)"P,(t). The autocorrelation is ©°N€ dimension, the average number of changes scales as
found from Eq.(6), A(t)=e 93 (Sy(0)S(0))1,(t). In the (n)~t. We assume that this scale characterizes the distri-
simplest case of completely uncorrelated initial opinions,ution, or in other wordsg~(n)~t. Thus, we arrive at
with equal densities of the opposite opinions, the scaling form

(S0(0)S(0)) = 80, one finds . i
d Pa(t)= 01 ﬁ). (1)

— _ n — —t
A(t)_;( DPa(t) =& To(D], ® In general we will use the notationdy for the

d-dimensional scaling function. The nontrivial decay of the
persistent voter densityP,~t~ % [15], imPIies nontrivial
divergence of the scaling forrb,(z)~z 4 in the small
) o e argument limitz— 0. The tail of the distribution corresponds
relation length is given by the diffusion scalg(t)~ Wt a large number of opinion changes by a specific voter and
Therefore, the autocorrelation function scglegfa% for ar-  can be estimated by an intuitive argument. Such a voter must
bitrary d, thus implying that the exponent, is well defined  (eside at the boundary between two single-opinion regimes,
in all dimensions, and equal to,=d as claimed previously. and must change its mind constantly. The probability that
The average number of opinion change®,==,nP,, is  such a voter changes its mirtdtimes (one time per unit
simply related to the concentration of “active bonds®igh-  time), can be estimated b,(t) = exp(—constxt). It is also
bors with different opinions c,_=(1-(SS.¢)/2: natural to assume that the scaling function rapidly decays for
d(n)/dt=c,_. An evaluation of the active bonds density large z, ®,(z)~exp(—constz®). Combining this form
gives the following leading asymptotic behav[dr7]: with Eq. (11) gives Py(t)~exp(—consxt*?) and conse-

and thus asymptotically(t)=(2#t) %2, The diffusive na-
ture of the problenjsee, e.g., EQ6)] suggests that the cor-
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FIG. 1. Scaling for the symmetric case in one dimension. The FIG. 2. Distribution functionP,(t) versusn at time t=2000
quantity t¥?P.(t) is plotted versusn/tY? for different times, MCS in 2D.
t=10°,10%,10° Monte Carlo stegfMCS).
decays exponentially. These results indicate that the above
mentioned discrepancy regarding the autocorrelation func-
tion is not crucial in understanding the opinion change dis-

quently, =2. To summarize, the limiting behavior of the
one-dimensional scaling function is

714 71 tribution function.
' The marginal two-dimensional case is especially interest-
®1(2)~) exp( —constxz?), z>1. (12 g P y

ing. While it is expected that the distribution will be roughly
Poissonian, some deviation from the mean-field predictions
This scaling behavior is different in nature than the scalingare expected. We find numerically that the distribution obeys
behavior for dimensiongd>2. While for d=2, a well-  the scaling form of Eq(3), and exhibits a well-defined peak
defined peak in the distribution function occurs near the avin the vicinity of (n)~t/Int. However, in 2D, the system still
erage, the one-dimensional distribution is a decreasing funcparsens, and the distribution exhibits some low-dimensional
tion of n. Moreover, the Gaussian function features. The distribution is not a symmetric function of the
& (2) = (2m) Y%exp(—2) is symmetric around its average, variablen—(n) (Fig. 2). Additionally, an intriguing behavior

while no such symmetry occurs fdr=1, as the distribution ¢, he fraction of persistent voters is found numeric&g.
is peaked neam=0. Despite these differences, the tail of the 3)

distribution of Eq.(12) agrees with the mean-field distribu-
tion of Eqg. (3). In fact, the above heuristic argument for the Po(t)~exp(—constx In?t). (13
largen behavior is valid in arbitrary dimensions.
Thus the fraction of persistent voters decays faster than the
D. Simulation results 1D power-law behavior and slower than the mean-field ex-

We implement the voter model using a simple Monte
Carlo simulation. A simple(hypencubic lattice is chosen
with a linear sizeL, and periodic boundary conditions are 0.0 - '
imposed. A simulation step consists of choosing randomly an
active bond(i.e., a bond between neighbors with different
opiniong and changing the opinion of one of the two voters. 5.0
After each such step, time is incremented by the inverse
number of active bonds and the active bond list is updated.
This simulation procedure is efficient for spatial dimensions
d<2 since the system coarsens and the number of active &
bonds decreases as the simulation proceeds. The results be-=
low correspond to one realization on a lattice of linear di-
mensionL= 10", 10°, and 2x1(? in 1D, 2D, and 3D, re- -150
spectively.

In one dimension, the numerical results confirm the scal-

ing ansatz of Eq(11), as shown in Fig. 1. Interestingly, the
maximum of the distribution occurs at=1, and the distri- 0.0 20.0 , 400 60.0
bution decays monotonically for>1. The postulated limit- [In(t)]
ing behaviors of the scaling distribution are also confirmed.
To test the validity of the mean-field theory, we performed FIG. 3. Fraction of persistent voters in 2By(t) versus IAt. An
numerical simulations in three dimensions. The resultingaverage over 300 samples of linear size 10° for ¢, =c_=1/2
P.(t) distribution agrees with the Poissonian distribution of (solid line and over 50 samples of linear size=10° for
Eqg. (2), and furthermore, the fraction of persistent votersc,=1-c_=1/4 (dashed ling

(D]

-10.0
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ponential behavior, and a naive logarithmic correction to the Paver=C(Cs+coe™ 2,
mean-field behavior does not hold. The width of the distri- S
bution o is not given by a logarithmic correction to the Po=C.C_(1—e 2. (16)

mean-field(where o~1?), and our best fit gives~1/Int

with @>1. The 2D case is difficult from a numerical point of The = autocorrelation  function A(t) =P et P even
view since logarithmic corrections occur, and a large tempo-— P4~ Pogqis then given by

ral range is required to distinguish such slowly varying cor-

rections from algebraic behavior with small expon€gritg]. A(t)=(c,—c_)%+4c,c_e 2, 17

A voter quickly forgets its initial opinion, even if statistically

it is more likely to have its initial opinion, since
Our previous exposition has assumed that the initial conCi+02—>20+C— .

centrations of dissimilar species are equal,=c_=1/2. The fraction of persistent voters is found by solving

The case of unequal concentrations,#c_ , is interesting dPg/dt=—2c.Pg and it is found that

as well. The reason is that the voter model dynamics has a . et

remarkable feature: AlthougHocally the opinion does Py=c.e . (18

change(the dynamics is nonconserved in najurglobally ) . )
both opinions are conserved. In the language of the IsinJh“S' the fraction of persistent voters decays exponentially

model, it can be said that at zero temperature the magnetiz&S Well- The decay constant is simply given by the density of
tion remains constant. This hidden integral leads to severPPOSite opinion. This result indicates that even in the case
peculiarities that will be illuminated first on a mean-field ©f @ small concentration of one opinion, the fraction of per-

level and then for a special case in one dimension. sistent majority voters decays exponentially with time.
To solve Eqgs(14) we introduce the generating functions

IIl. UNEQUAL CONCENTRATIONS

A. Mean-field theory >
+ _ * 2n
To write the general mean-field theory, it is necessary to Fevef(t'w)_nzo Pan(OW™,
distinguish between voters according to their initial opinions.
Hence, we introducé; (t) [P, (t)], the fraction of voters o
with the + (—) initial opinion that has changed their opinion Fodtw)= >, Py, (Hhw?*L, (19
n=0

n times up to timet. If all sites are neighbors, these distri-

tions evolv rding t : s .
butions evolve according to This reduces the infinite set of rate equations to four equa-

dpP;, tions,
—gt —2(cP31—c_Pgy), -
even + +
gt~ 2(CaWFouq CxFeven,
N
dP2n+1_ + +
gt~ 2(C-Pan=c:Paniy), dFZ,
[o] + +
dt :2(C:WFgVen_Cingd)' (20)
dp,, B 3
TnZZ(C—F’zn—fCJr P2n), ExpressingF oy Via Fo,., We reduce the system of first-

order differential equation$20) to a pair of second-order

_ equations forFe{t,w) and Fg,{t,w). Solving these
dPani1 (14) equations subject to the proper boundary conditions yields

dt

=2(C4Py—C_Pani9),
sinh(tA)
with P=,=0. The initial conditions ard®, (t=0)=C. &no. A )
These rate equations reduce to Ekj.for the symmetric case (21)
c.=c_=1/2. .
It is again useful to consider the fraction of voters thatWhere a shorthand notatiod, = \/1__4C+C—(1_W_2)’ has
have (do not havé their initial opinion, P2, =3>,Ps, ~ Deen used. In principle, one then meS;.(t) andP, (t) by
(P~ P .). Summation of Eqs(14) gives expanding the generating functions. Th_ls Iead; to rathgr cum-
odd™ =n® 2n+1 bersome results. However, the most interesting scaling re-
sults correspond to the limitt—o,1-w—+0 with
—2c2 —2p= (15) (1—w)t kept finite. In this scaling limit,
- even 1—A—4c,.c_(1—w)t. Substituting this into Eq(21) we
find F 3,e=c2 exd —4c, c_(1—w)t]. Then we findF 54y, note
One can find that the global opinion concentrationsthat in the scaling limit the generating functions become the
C. =P et Pagqare conserved and thBf 4= P,44. Solving  Laplace transforms oP, (t) and P, (t), and perform the
these last rate equations subject to the proper initial condinverse transformation. Finally, we arrive at the following
tions gives scaling results:

Favelt.W)=c.e™ | cosh{tA)=(c, —c_)

dPz APy

even

dt dt
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P Pon Paii Paia continuation to arbitraryq of the relgtionc: 1/q, whi(_:h
2 2 " cc T cc clearly holds in the equal-concentration case with an integer
+ - A A g. Therefore,q.=1/c.. For the above example, =2/3,
1 (n—2c.c_t)? g_=3/2 implies3_=0.2349. In general, the concentration
= —exp{ — —} (22)  of persistent voters decays algebraically,
J2me,c_t 2c.c_t
Py ~t A=

In particular, we see that far, #c_ the distribution func-
tion for the even number of changeB,,=P,,+P,,, is
larger than the distribution function for the odd number of 2 1
changes,P,,, =P, 1+ P51 Equation (22) suggests B.=pB(cs)=—[cos {(y2c. —12) ]~ =. (24)
that it is possible to avoid these “even-odd oscillations,” by ™ 8
making a transformation to a modified opinion change dis-

tribution P,=P,+P,,,. We also note that the scaling dis- gjmpje scaling function in one dimension. The-0 behav-
tribution on the right-hand side of E(R?) is identical to the 5 reflects the anomalously large number of persistent voters
|nf|n|te—d|men5|on scaling function, previously obtained for ¢, ,nq in the system at long times. On the other hand, Eq.
the symmetric case. (24) implies a difference in nature of the scaling functions
for sites of inital + and — opinions, P (t)
B. Exact results =d5 (n/\t)/(c. ). In the limit of largez=n/\/t, the tail

Although the above results were obtained using meanis dominated by Gaussian fluctuations, while in the limit
field considerations, similar behavior characterizes the exa@—0, the anomalous decay of E(?4) determines the be-
solution. By generalizing the solution of E@®), the autocor- havior. Combining these two limits, we have
relation function is found,

with

Following Eq. (11), P,(t) can be written in terms of a

72Ple) -1 z<1
D (2)~ _ 2 s 25
A(t):E (_1)nPn:(C+_C_)2+4C+C_[|o(t)eit]d. 1( ) eXF( consiX z ), z>1. ( )
(23) i i o - .
In the limit of a vanishing minority opinion concentration,
The Ilimiting value of the autocorrelation function, ¢+ —0, one has[3+—'>l, andg_=2c, /m—0. . .
Both the mean-field results and our numerical simula-

—c_)? isi ical with th -field th ECL7).
(., —c )%, is identical with the mean-field theory Ed7) H'f)ns, to be described in the following, suggest that the dis-

Again the conclusion remains the same, at the late stages but ¢ b f ch domi ;
the process a single voter opinion cannot be used to detef/Pution of an even number of changes dominates over Its

mine its initial opinion. Similar to the symmetric case, the odd counterpart. We expect that the above suggested scaling

autocorrelation function decays algebraically rather than exf_orm_ holds_for_ the_ even distribution, or equn_/alently, for the
modified distributionP,+P,,. ;. To summarize, the exact

ponentially  with time. Since Pg,~[1+A(t)]/2 : ! . .
=P, ,=[1-A(1)]/2, we also learn that a voter is more form of the fraction of persistent voters combined with scal-

likely to have its initial opinion ing considerations suggest that different scaling functions
Mean-field theory suggests that the fraction of persisten‘forres‘)ond to the minority and the majority opinions.

voters decays faster for the minority. It is interesting to in- S _

vestigate the same for the one-dimensional situation. It is C. Infinitesimal concentrations

instructive to start with the special case of =1/3 and For better understanding of the asymmetric case, it is use-
c_=2/3. Let us formally split the— opinion into two  ful to consider the case of an infinitesimal concentration of
equivalent subopinions. Hence, there are three equiprobabighe opinion,c. —0. We naturally restrict ourselves to the
opinions, one+ opinion and two— subopinions. We now  sjtuation where a single- voter is placed in a sea of
identify this system as the zero-temperature three-state Potgpinion. Identifying an interface between and— domains
model, or as a voter model with three opinions. Thewith a random walker, an equivalence to two annihilating
dynamics is unchanged, a voter chooses a nearegindom walkers who are nearest neighbors=ab is estab-
neighbor randomly, and assumes its opinion. Eventually, W@ished. The distributiorP,(t) is thus equal to the fraction of
will not distinguish between the— subopinions. For sijtes visitech times by the two walkers. We further simplify
the kinetic g-state Potts model witff =0, the fraction of  the problem by considering the fraction of sites visited by a
persistent spins decays according Rg(t)~t #®, with  single random walk with a trap as one of its nearest neigh-
B(q)=2m"?cos ¥(y2q 1—1/1/2)]?>-1/8; see[15]. In-  bors. Although the two problems are not identical, we expect
deed, for the symmetric voter modej=2 and(2)=3/8.  that the results are similar in nature and differ only by nu-
The concentration of persistent minority speciBg,(t), is  merical prefactors. The reason is that the distance between
equal to the fraction of persistent spins in tipestate Potts the two random walks itself performs a random walk.

model withq=3. Using the notatioP, (t)~t #=, one has In the limit of a vanishing opinion concentration,
B.=B(3)=0.5379. Of courseB_+ B, , since changes be- C;—0, the opinion change densif,(t) is equal to zero.
tween — subopinions should not be counted. The exponentHowever, if we divideP, (t) by the density of the interfaces,
B_ can be found by allowing a noninteger number of opin-c.c_, and then go to the limit, — 0, we obtain a nontrivial
ions, q=1/c_=3/2. This formula is found by an analytical distribution, Iin1+ﬂoP,j(t)/c+c,. This distribution gives
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the total number of links crossedtimes by the walker; we After having crossed the linkk(1k) twice, the walker
will denote it by P,(t). could cross this link again before reaching the adsorbing bar-
As said previously, for the symmetric initial conditions, rier atx=0. Any such crossing from the left happens with
c,=c_=1/2, the scaling behavior of the form probability 1-1/k, while the next crossing from the right
Pn(t):rl’chl(n/\/f) is expected. However, for asymmetric happens with probability 1. Thus, we arrive at the remark-
initial conditions, two different scaling forms, even and odd,ably simple formula expressirfg, (=) through the zeta func-
should appear. In the present extreme case, we expeton
Pon(t)=t™ "D/ V1) and P (t) =t 2D n/\1).
We learn from Eq(25) that ® oo =®P; ~2z ! near the ori- * 1\"1
gin. Hence, the distribution function approaches a time- Ponsa() =2, (1_F) i@
independent form: lim, .P,(t)~n~™. k=2
These results can be confirmed by considering the anal- "
ogy to a single random walk near a trap. As the walker will => ( )(— DHMe(m+2)—-1]. (27
ultimately come to the origin with probability 1, every link m=0 \ M
(k—1k),k=2 will be crossed an even number of time and
so the ultimate distributiorP,,,,()=0 for n=1 [and  For largen, the sum can be approximated by the integral
P1()=1, since the link (0,1) is crossed with ultimate prob-
ability one by the walker So, in the extreme case that we 12 L]
are considering, the even-odd oscillations are obvious and Pon(@)=] (1—¢)" ld¢= ==, (28
pronounced: The asymptotic even values are positive, while 0 n n
the odd values are zero.
In order to computeP,(«) for n even, we consider the which confirms the above prediction.
link (k—1k). The probability that the walker starting at  To determine the scaling functionsb,,{(z) and
x=1 reaches for the first time=Kk, thus crossing the link &  ,(z), it proves useful to conside?,(x,t), the probabil-
(k—1k), is given by p(k)=1/k [20]. Then the ultimate ity that the walker passastimes throughx during the time
probability that the walker will go from site=k to site interval (0t). Then,P(t) is then given by
x=Kk—1, crossing the linkk—1 k) a second time, is 1. The
probability that the walker starting at=k—1 will arrive at o .
x=0 before crossing the linkk(=1Kk) again, is given by P.(t)=2>, pn(x,t):f dxP,(x,t). (29)
1/k. Thereforek 2 is the contribution of the link K—1,k) x=2 2
into P,(), the average number of links crossed twice by
the walker. Thus, we have

In this equation and in the following we will treat as a

= ) continuous variable; in the long-time limit, this should be
T .
P.(o0) = () —1= — 1. 26 asymptotically correct.
2() g’z 2= ¢ ) 6 (28 We then write forP,(x,t):

2n

t t—ty t=t—tp t=Zj<on-1ti
Pon(x,t)= fodtlpl(xrtl) fo dtypa(ty) fo dtzps(X,tz) ... fo dtonPa(tan) Pa X,t—zl £ (30)

and

2n+1

dt2n+lp3(x,t2n)p5(t— 21 ti)- (31)

t=Zj<onti

t t—t, t—t—t,
Pons1(X,t)= fodtlpl(xytl)J’o dtopy(ty) fo dtzpa(x,tz) . .. fo

We consider a walker starting g§=1; p;1(X,t) is the prob- walker has performedn oscillations around the link
ability that this walker reacheg=x at timet without going  (x—1,), and at timet a walker, or his remains, is to the left
to the originy=0; p,(t) is the probability that this walker of x. Equation(31) has been constructed similarly and de-
first reaches the origin at timg ps(x,t) is the probability  scribes the situation with a walker to the rightofat time
that this walker first passes at the origin at tilnavithout  t. The convolution structure of Eq&30) and(31) suggests to

passing throughy=x; pa(X,t) is the probability that this apply the Laplace transform. Indeed,P,(x,s)
walker with an absorbing boundary gt=x does not pass — [Zdte StP,(x,t), satisfy
n il y

through the origin up to timé; and ps(t) is the probability

that this walker does not reach the origin up to tim&qua- ~ - - I N1

tion (30) is cumbersome in form but simple in nature: The P2n(X,8) = P1(X,8)[P2(S)]"[Pa(X,8)]" " "Pa(X,s) (32)
formula for P,,(x,t) is just a finite-time generalization of

Eqg. (27); namely, it corresponds to the situation when aand
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Pan+1(x,8) = Pa(x,9)[P2()[Ps(x.)]"Bs(s). (33 11 i
Fortunately, the probabilitieﬁ)j have been already computed noJmt’
[21]: Pon(t)= 1 \/ﬂ F{ nz) (42)
—\/—exp — —]|, n>t.
y - Sinl’(\/g) n° N 7 4t
Pa(x.s ~ sinh(xy/s)’
_ For the odd distribution, a similar scaling form is ex-
Pa(s)=e"%, pected:
N sinH (x—1)+/s] 1 t
S)=E—— T 34 =—d' | —
PaX.8) = ys) (39 Pansa(t)= odu( nz)- (43
Pa(X,5)= m When (5—0), we can use the naive expansion as previously
s but we should keep the upper limit finitess~ 2, since the
~ integrand logarithmically diverges on the upper limit:
- 1-pa(s)
Ps(s)= s = o102 -
~ e ms s dx( 1)” e ms =
P =— —|1-=| = E ,
It is in principle possible now to compute varioBg(t). For 2n+1(S) Js ) X X Js 1(NVs)
example, the contribution tB4(t) from links withk=2 is (44)
~ ~ 1-e 5 © dx . o w1
P,(s)—Py(18)= sinh( \/g) _ with the exponential integralE,(y)=[,duu” “exp(-u).
S 2 sinh(xs) Making use of Eq.(43) one gets another relation for

1 e Pan+1(8),
= —gz—sinh(ys)In[coth(s)]  (35)

p <s>=fwdte—stid>’ (L)Z”Fd—Te‘%’ dT)
In(lls) 2n+1 0 \/f odd n2 0 ﬁ od ’
~ »- (s—0), (36) (45)

i —n2
where the contribution from the first link (0,1) is With a=n"s. _ .
P,(11)=1— 1/, which gives the asymptotic value of Thus we obtain the Laplace transform of the function

Do TY/NT,
Int
Pi()=1—1mt+ — (t—). (37) . G
! vamt fd—Te‘qTCD(’)du(T)=e— d_ye—y_ (46)
0 \T Vg lay

We now turn to determination of the scaling functions. In
the long-time limit, {—«), corresponding tog—0), Eq.

(32) becomes Performing the inverse Laplace transform, we get

e—nv‘g 1
2

1

X

: " ‘Dédm_rd_f fd | e -
Pon(X,S)= -~ , (39) T , 2,8 N7 mex 3T
(47)

which then implies

) . —né Performing asymptotic analysis yields
Pon(9= | axPrie=S— @9
2 In(t/n?)
_ _ . , n<it
Performing the inverse Laplace transfof2g], one finds VAt
L . Pans1(t)= 1 \/E ’{ nz) . (48
_= n —\/—expg — —|, >t
Pon(t) nerfc( \/E) (40 n T t

Inde_ed the qnticipated .scaling pehavior suggested earlier [§otice that in the both limiting caseB, . 1(t) <P (t).
confirmed with the scaling function It proves insightful to compute the moments of even and
D ofz)=2 terfo(z/2). (41) odd distributions, Mgve,(t)=2n>1(2n)pP_2n(t) _an_d
MP(t) ==n=0(2n+1)PP,,,1(t). Asymptotically, it is
In particular, the limiting forms are easy to compute even moments
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+1
4pr(pT
MBet) =EptP2  E,= . (49)

T opm

Equation(49) is valid only for p>0 [when (p— +0), the
prefactor E, divergeg. To determine the most interesting
zero moment, i.e., the total number of links crossed even
timesMOeven(t)=EffP2n(t), we use the Laplace transform of
Eq. (39 to obtain MS (s)=In[1—exp(+s)]/s
=|n(1/s)/2s and eventually,

M2ef )~ (y+Int)/2, (50)

with y=0.577215 the Euler constant. This result is consis-

tent with a direct summation (ﬂ’zn(m):n_l up ton= \/f FIC;. 4. Eve_n el1lr21d odd distribu_tionI functions for dggerq# in
For negative p, even moments are finiteMpeve,(Oo) 1D. T e_quantlty_t Pa(t)/(c.c_) is plotted versus/t*< Differ-
—2P¢(1—p). ent scaling functions correspond to the evepper curvesand the

odd (lower curve$ parts of the distribution. The solid lines corre-
spond to the case, =1/4 for one sample of linear side=10P.
The dashed lines correspond to the case-0 for 10° samples.

Odd moments behave similarlyMB(t) = O tP2. A
lengthy computation gives the prefactor

We also performed simulations for the extreme case
c,.—0, where one site with initial opinios- is in a sea of
1-6% — opinions. As shown above, this problem is equivalent to
(51)  the average number of times a link is crossed by two anni-

hilating random walkers. We show on Fig. 4 the even and

Equation(51) is valid for all nonnegative, and in particular odd scaling functions for forealizations of this system. Th-

the (average total number of links crossed odd times ap- easymptotic results Eq&12) found in the simplified problem
proaches a surprising constant, of one random walker in the presence of an absorbing

boundary conditions are verified up to numerical prefactors.
In particular, the even scaling functions of Fig. 4 are found to

p
2p+1 r
2 F(1+2 . 1n ot
opz—f du(l—u?) 7z | dé
m 0 0

1 (1 In(1-p? behave asymptoticallyz(~0) as ®.{(z)=5/(4z), to be
Moo= — o—| du———===In2. (52)  compared with® g {2)=1/z of Eq. (41).
2m)o " J(1-u?)
Thus although the odd part of thig, distribution approaches IV. SUMMARY

zero ast—eo, the moments remain nonirivial. We have investigated the voter model, one of the simplest

models of nonequilibrium statistical mechanics witncon-
serveddynamics. We have introduced the set of quantities
D. Simulation results P,(t), defined as the fraction of voters who changed their
To test the above predictions we performed numericaPpinion n times up to timet. The distributionP,(t) was
simulations of the voter model with different initial concen- shown to exhibit a scaling behavior that strongly depends on
trations, in one dimension. The rich behavior predicted bythe dimension of the system and on the opinion concentra-
the mean-field and the exact results was confirmed by th#ons. Ford>2, the system does not coarsen, and the distri-
simulation results. We studied the fraction of persistent votbution is Poissonian. In one dimension, we have solved for
ers for the case, =1/3, and we found the decay exponentsP (t) in the extreme case when the minority opinion is in-
B+=0.54 andg_=0.23 for the minority and the majority finitesimal. The case when the minority phase occupies a
opinion, respectively. These values are in excellent agreenegligible volume has been studied in the classical a8
ment with Eq.(24). for the conservedlynamics and has proven very important in
We also confirmed that each of the four functionsthe development of the theory of phase ordering kingtigs
P2,(t) and P3,,4(t) can be rewritten in a scaling with the |t would be very interesting to generalize the extreme-case
scaling variablen/\ﬁ. The dominance of the even part of the solution to arbitraryd.
distribution P,,>P,,.1, is nicely demonstrated by Fig. 4 The quantityP,(t) reflects the history of the coarsening
(one realization of a system of 48iteg, and the asymptotics process. Knowledge of this distribution enables insight into
of the even scaling function ER5) are verified. interesting quantities such as the fraction of consistent or
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