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The voter model is a simple model for coarsening with a nonconserved scalar order parameter. We investi-
gate coarsening and persistence in the voter model by introducing the quantityPn(t), defined as the fraction of
voters who changed their opinionn times up to timet. We show thatPn(t) exhibits scaling behavior that
strongly depends on the dimension as well as on the initial opinion concentrations. Exact results are obtained
for the average number of opinion changes,^n&, and the autocorrelation function,A(t)[((21)nPn;t2d/2 in
arbitrary dimensiond. These exact results are complemented by a mean-field theory, heuristic arguments, and
numerical simulations. For dimensionsd.2, the system does not coarsen, and the opinion changes follow a
nearly Poissonian distribution, in agreement with mean-field theory. For dimensionsd<2, the distribution is
given by a different scaling form, which is characterized by nontrivial scaling exponents. For unequal opinion
concentrations, an unusual situation occurs where different scaling functions correspond to the majority and the
minority, as well as for even and oddn.

PACS number~s!: 02.50.2r, 05.40.1j, 64.60.Cn

I. INTRODUCTION

The theory of phase separation, or domain coarsening, has
undergone a significant development in the last three decades
@1#. The most important finding is that well-defined ordered
domains arise and grow with time in such a way that the
coarsening process exhibits scaling. In other words, at the
late stages of the evolution the system is characterized by a
single length scaleL(t) that gives a typical linear size of the
domains. It is well established, at least for systems with a
scalar order parameter, thatL(t);tn with n51/2 for non-
conserveddynamics andn51/3 forconserveddynamics. For
the Ising spin model, Glauber spin-flip dynamics exemplifies
the former, while Kawasaki spin-exchange dynamics exem-
plifies the later.

Several important correlation functions exist. One such
function, the autocorrelation or, equivalently, the two-time
equal-space correlation function,A(t), is defined by
A(t)5^f(r ,0)f(r ,t)&, wheref(r ,t) is the order parameter.
Then, scaling implies:A(t);L2l(t), with an exponentl
@2#. The general two-point correlation function,g(r ,t)
5^f(0,0)f(r ,t)&, can be expressed throughl, namely,
g(r ,t)5L2lG(r /L). Exact results forl are known in few
cases@3–6#, while the boundsd/2<l<d with d the spatial
dimension were proposed by Fisher and Huse@2#. For the
O(m) vector model in them→` limit, l5d/2 @4#. In this
study, the valuel5d is obtained for the voter model, de-
fined below. This result indicates that both the upper and the
lower bounds can be realized.

It should be noted that in most coarsening processes the
dynamics does not exhibit a qualitative dependence on the
temperatureT as long asT,Tc @1,7#. At the critical tempera-
tureT5Tc , the dynamics is generally different, and ordered
domains usually do not occur. However, the correlation
lengthj(t) exists and grows with time asj(t);t1/z, where
z is the dynamical exponent. The correlation lengthj(t)

should be considered as the analog of the domain sizeL(t)
@5,8#, and the exponentl is replaced bylc , defined by
Ac(t);j2lc. In the voter model, temperature is absent but
since the dynamics is noiseless, the voter model dynamics is
zero temperature in nature. However, the ‘‘critical’’ tempera-
ture is also zero. If one introduces noise by allowing
environment-independent opinion changes, the system does
not coarsen~see, e.g.,@9#!. Thus, we will actually establish
lc5d for the voter model. A general discussion of the con-
ditions under which the equalityl5lc5d holds is given by
Majumdar and Huse@10#.

In this study, we introduce a family of quantities that pro-
vides insight into the ‘‘history’’ of the coarsening process.
We denote byPn(t) the fraction of voters who changed their
opinion exactlyn times during the time interval (0,t). The
first of these quantities,P0(t), is equal to the fraction of
persistent voters, i.e., voters who did not change their opin-
ion up to timet. This quantity has been introduced indepen-
dently for two equivalent one-dimensional models, the
Glauber-Ising model@11#, and the single-species annihilation
process@12#. Furthermore, the corresponding generalizations
to arbitrary dimensions were discussed in@13# and @14#, re-
spectively. Derridaet al. @15# established the exact asymp-
totic decay of this quantity,P0(t);t23/8, as suggested ear-
lier by numerical simulations. Another exact result@16#
establishesP0(t);L2b, with b50.175075 . . . , for theone-
dimensional~1D! time-dependent Ginsburg-Landau equation
at zero temperature.

For the voter model, several quantities such as the one-
time and the two-time correlations are exactly solvable in
arbitrary dimensions@9,17#. These correlation functions al-
low an exact calculation of the average number of opinion
changeŝn& and other interesting quantities. Hence, the voter
model is a natural starting point for the investigation of
Pn(t). Although we do not obtain the full distribution, most
of its features are illuminated by combining the above exact
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results with heuristic arguments and with the mean-field so-
lution. Generally,Pn(t) exhibits a scaling behavior. For
d.2, the scaling function is Poissonian and is peaked at
n5^n&, while for d51 the distribution is maximal near the
origin. Additionally, for unequal opinion concentrations dif-
ferent scaling functions for even and odd opinion changes
are found. Using random walks techniques, we obtain the
even and odd scaling functions in the limit of an infinitesimal
minority concentration.

The rest of this paper is organized as follows. In Sec. II,
we first solve forPn(t) on a complete graph. We then reex-
press some exact relationships for the voter model, in arbi-
trary dimensiond, in terms of the distributionPn(t). Com-
bining with the mean-field solution, these exact relationships
allow us to guess the scaling form ofPn(t). This guess sug-
gests a usual scaling form in one dimension, and a mean-
field-like sharply peaked distribution ford.1. These predic-
tions are then compared with numerical data in one, two, and
three dimensions. In Sec. III, we describe the exact solution
of the mean-field equations for the case of initially different
concentrations. Then we present exact results for the auto-
correlation function in arbitrary dimensiond, and exact re-
sults for the fraction of persistent votersP0(t) in one dimen-
sion. We proceed by investigating the extreme case of
infinitesimal minority opinion. In this limit, the model is
equivalent to a pair of annihilating random walkers who are
nearest neighbor att50. Simplifying further the problem to
the case of a random walker near the absorbing boundary we
derive a complete analytical solution. Finally, we perform
numerical simulations for the case of unequal concentrations
and compare the results with exact predictions. We conclude
with a brief summary in Sec. IV.

II. EQUAL CONCENTRATIONS

In this section we first define the voter model. We restrict
attention to the symmetric case, i.e., equal opinion densities.
We start by analyzing the mean-field theory of the model,
and then obtain several exact results in arbitrary dimensions.
We then present a scaling ansatz and check it using numeri-
cal simulations.

A. Mean-field theory

We start by defining the voter model@18#. Consider an
arbitrary lattice and assume that each site is occupied by a
‘‘voter’’ who may have one of two opinions, denoted by1
and2. Each site keeps its opinion during some time inter-
val, distributed exponentially with a characteristic timet, set
to unity for convenience, and then assumes the opinion of a
randomly chosen neighboring site. If a site is surrounded by
sites with the same opinion, it does not change its opinion.
Hence, such dynamics are zero temperature in nature. Noise
can be introduced by allowing a voter to change its opinion
independently of its neighbors. However, a voter system with
noisy dynamics does not coarsen, and we restrict ourselves
to the noiseless voter dynamics. These dynamics are so
simple that they naturally arise in a variety of situations, see,
e.g., @9,17#. An important link is with the Glauber-Ising
model: In one dimension, andonly in 1D, the voter dynamics
is identical to the Glauber dynamics. This equivalence is not

restricted to zero temperature; 1D noisy voter dynamics is
also identical to Glauber dynamics at a positive temperature.

We now consider the voter model dynamics on a mean-
field level, by simply treating all sites as neighbors. Such a
theory isexacton a complete graph. Moreover, it is expected
to hold in sufficiently large spatial dimensions. We first con-
sider the symmetric case where the opinions concentrations,
c1 and c2 , are equal, and the interesting case of unequal
concentrations will be discussed later. The fraction of sites
that have changed their opinionsn times up to timet,
evolves according to

dPn
dt

5Pn212Pn , ~1!

with P21[0 to ensuredP0 /dt52P0 . One can verify that
the dynamics of Eq.~1! preserves the normalization condi-
tion, (nPn(t)[1. Solving Eq.~1! subject to the initial con-
dition Pn(0)5dn0 , one finds that the opinion change distri-
bution function is Poissonian,

Pn~ t !5
tn

n!
e2t. ~2!

In particular, the fraction of persistent voters, i.e., voters who
did not change their opinion up to timet, decreases expo-
nentially, P0(t)5e2t. The probability that a voter has its
initial opinion at time t is thus Peven5(nP2n
5(11e22t)/2. Asymptotically, this probability exponen-
tially approaches the value 1/2, and therefore voters quickly
‘‘forget’’ their initial opinion.

The distribution is peaked around the average^n&5t, and
the width of the distribution, s, is given by
s25^n2&2^n&5t. In the limits, t→`, n→`, and
(n2t)/At finite, Pn(t) approaches a scaling form

Pn~ t !5
1

s
F`S n2^n&

s D , ~3!

where the scaling distribution is GaussianF`(x)
5(2p)21/2exp(2x2/2). This infinite-dimension scaling solu-
tion will be compared below to simulation results in three
dimensions. To summarize, the quantityPn(t) incorporates
many statistical properties of the system, such as the prob-
ability of maintaining the original opinion, the probability of
having the original opinion, and the average number of opin-
ion changes.

B. Exact results

We now review several relevant known exact results for
the voter model in arbitrary dimensiond and reexpress them
in terms ofPn(t). Both the one- and two-body equal-time
correlation functions@9,17# are exactly solvable on an arbi-
trary lattice in arbitrary dimension. It proves useful to formu-
late the voter model on the language of Ising spins, i.e., a
1 opinion is identified with11 spin and a2 opinion with
21 spin. The state of the lattice is described byS[@Sk#, and
the spin-flip rateWk(S)[W(Sk→2Sk) reads
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Wk~S!512
1

zd
Sk(

ei
Sk1ei

, ~4!

with zd the coordination number. Here the sum on the right-
hand side runs over allzd nearest neighbors. It is convenient
to rescale the time variable,t→tzd/4. The probability distri-
butionP(S,t) satisfies the master equation

d

dt
P~S,t !5(

k
@Wk~S

k!P~Sk,t !2Wk~S!P~S,t !#, ~5!

where the stateSk differs fromS only at the sitek. One can
then derive a set of differential equations for the spin corre-
lation functions^Sk . . .Sl&[(SSk . . .SlP(S,t). The single-
and two-body correlation functions satisfy discrete Laplace
equations@9#,

2
d

dt
^Sk&52zd^Sk&1(

ei
^Sk1ei&,

2
d

dt
^SkSl&522zd^SkSl&

1(
ei

^Sk1ei
Sl&1(

ei
^SkSl1ei&.

~6!

On a simple~hyper!cubic lattice wherezd52d, the gen-
eral solution for the average opinion is given by

^Sk&5e2td(
l

^Sl~0!&I k2 l~ t !, ~7!

where I k(x) is the multi-index function, I k(x)
5)1< j<dI kj(x), andI n is the modified Bessel function. The

autocorrelationA(t)5^S0(0)S0(t)& is of particular interest
since it is related to the opinion change distribution via the
alternating sumA(t)5((21)nPn(t). The autocorrelation is
found from Eq.~6!, A(t)5e2td( l^S0(0)Sl(0)&I l(t). In the
simplest case of completely uncorrelated initial opinions,
with equal densities of the opposite opinions,
^S0(0)Sl(0)&5d l0 , one finds

A~ t !5(
n

~21!nPn~ t !5@e2tI 0~ t !#
d, ~8!

and thus asymptotically,A(t).(2pt)2d/2. The diffusive na-
ture of the problem@see, e.g., Eq.~6!# suggests that the cor-
relation length is given by the diffusion scale,j(t);At.
Therefore, the autocorrelation function scales asj2d for ar-
bitrary d, thus implying that the exponentlc is well defined
in all dimensions, and equal tolc5d as claimed previously.

The average number of opinion changes,^n&5(nnPn , is
simply related to the concentration of ‘‘active bonds’’~neigh-
bors with different opinions! c12[(12^SlSl1e&)/2:
d^n&/dt5c12 . An evaluation of the active bonds density
gives the following leading asymptotic behavior@17#:

c12~ t !;H t211d/2, d,2

1/lnt, d52

const, d.2.
~9!

Thus, whend<2, the density of active bonds vanishes for a
sufficiently long time, i.e., coarsening takes place in low di-
mensions. In contrast, ford.2, single-opinion domains do
not arise. This is not very surprising since at the critical point
well-ordered domains should not necessarily form. Follow-
ing the above discussion, the average number of opinion
changes in the limitt→` is obtained by integratingc12 ,

^n&;H td/2, d,2

t/ lnt, d52

t, d.2.
~10!

The above results agree with the mean-field results when
d.2. We therefore expect that ford.2, the distribution
functionPn(t) approaches the Poissonian distribution of Eq.
~3!. Similarly, the fraction of persistent votersP0(t) should
decay exponentially in time as well. Interestingly, the exact
result for the autocorrelation function indicates a subtle fail-
ure of the mean-field approach concerning the probability
that a voter has its initial opinionPeven(t)5(P2n(t)
5@11A(t)#/2. From Eq.~8!, one finds that asymptotically
Peven(t)21/2;t2d/2, while the mean-field approach gives
Peven(t)21/2;e22t. Hence voters have a stronger than ex-
ponential memory, even ford.2. Despite this erroneous pre-
diction, the mean-field theory is successful in predicting
most features of the opinion change distribution function for
d.2. As Eq.~6! describes simple random walks,A(t) equals
the probability to return to the origin, and^n& is proportional
to the number of distinct sites visited by a random walk
@19–21#.

C. Scaling arguments

We were unable to find the exactPn(t) distribution for
d<2, or higher moments such as^n2&. However, combining
the above results with scaling arguments proves useful. In
one dimension, the average number of changes scales as
^n&;At. We assume that this scale characterizes the distri-
bution, or in other words,s;^n&;At. Thus, we arrive at
the scaling form

Pn~ t !5
1

At
F1S n

At D . ~11!

In general we will use the notationFd for the
d-dimensional scaling function. The nontrivial decay of the
persistent voter density,P0;t23/8 @15#, implies nontrivial
divergence of the scaling formF1(z);z21/4, in the small
argument limit,z→0. The tail of the distribution corresponds
to a large number of opinion changes by a specific voter and
can be estimated by an intuitive argument. Such a voter must
reside at the boundary between two single-opinion regimes,
and must change its mind constantly. The probability that
such a voter changes its mindt times ~one time per unit
time!, can be estimated byPt(t)5exp(2const3t). It is also
natural to assume that the scaling function rapidly decays for
large z, F1(z);exp(2const3za). Combining this form
with Eq. ~11! gives Pt(t);exp(2const3ta/2) and conse-
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quently,a52. To summarize, the limiting behavior of the
one-dimensional scaling function is

F1~z!;H z21/4, z!1

exp~2const3z2!, z@1. ~12!

This scaling behavior is different in nature than the scaling
behavior for dimensionsd.2. While for d>2, a well-
defined peak in the distribution function occurs near the av-
erage, the one-dimensional distribution is a decreasing func-
tion of n. Moreover, the Gaussian function
F`(z)5(2p)21/2exp(2z2) is symmetric around its average,
while no such symmetry occurs ford51, as the distribution
is peaked nearn50. Despite these differences, the tail of the
distribution of Eq.~12! agrees with the mean-field distribu-
tion of Eq. ~3!. In fact, the above heuristic argument for the
largen behavior is valid in arbitrary dimensions.

D. Simulation results

We implement the voter model using a simple Monte
Carlo simulation. A simple~hyper!cubic lattice is chosen
with a linear sizeL, and periodic boundary conditions are
imposed. A simulation step consists of choosing randomly an
active bond~i.e., a bond between neighbors with different
opinions! and changing the opinion of one of the two voters.
After each such step, time is incremented by the inverse
number of active bonds and the active bond list is updated.
This simulation procedure is efficient for spatial dimensions
d<2 since the system coarsens and the number of active
bonds decreases as the simulation proceeds. The results be-
low correspond to one realization on a lattice of linear di-
mensionL5107, 103, and 23102 in 1D, 2D, and 3D, re-
spectively.

In one dimension, the numerical results confirm the scal-
ing ansatz of Eq.~11!, as shown in Fig. 1. Interestingly, the
maximum of the distribution occurs atn51, and the distri-
bution decays monotonically forn.1. The postulated limit-
ing behaviors of the scaling distribution are also confirmed.
To test the validity of the mean-field theory, we performed
numerical simulations in three dimensions. The resulting
Pn(t) distribution agrees with the Poissonian distribution of
Eq. ~2!, and furthermore, the fraction of persistent voters

decays exponentially. These results indicate that the above
mentioned discrepancy regarding the autocorrelation func-
tion is not crucial in understanding the opinion change dis-
tribution function.

The marginal two-dimensional case is especially interest-
ing. While it is expected that the distribution will be roughly
Poissonian, some deviation from the mean-field predictions
are expected. We find numerically that the distribution obeys
the scaling form of Eq.~3!, and exhibits a well-defined peak
in the vicinity of ^n&;t/ lnt. However, in 2D, the system still
coarsens, and the distribution exhibits some low-dimensional
features. The distribution is not a symmetric function of the
variablen2^n& ~Fig. 2!. Additionally, an intriguing behavior
for the fraction of persistent voters is found numerically~Fig.
3!,

P0~ t !;exp~2const3 ln2t !. ~13!

Thus the fraction of persistent voters decays faster than the
1D power-law behavior and slower than the mean-field ex-

FIG. 1. Scaling for the symmetric case in one dimension. The
quantity t1/2Pn(t) is plotted versusn/t1/2 for different times,
t5103,104,105 Monte Carlo step~MCS!.

FIG. 2. Distribution functionPn(t) versusn at time t52000
MCS in 2D.

FIG. 3. Fraction of persistent voters in 2D,P0(t) versus ln
2t. An

average over 300 samples of linear sizeL5103 for c15c251/2
~solid line! and over 50 samples of linear sizeL5103 for
c1512c251/4 ~dashed line!.
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ponential behavior, and a naive logarithmic correction to the
mean-field behavior does not hold. The width of the distri-
bution s is not given by a logarithmic correction to the
mean-field~wheres;t1/2), and our best fit givess;t/ lnat
with a.1. The 2D case is difficult from a numerical point of
view since logarithmic corrections occur, and a large tempo-
ral range is required to distinguish such slowly varying cor-
rections from algebraic behavior with small exponents@17#.

III. UNEQUAL CONCENTRATIONS

Our previous exposition has assumed that the initial con-
centrations of dissimilar species are equal,c15c251/2.
The case of unequal concentrations,c1Þc2 , is interesting
as well. The reason is that the voter model dynamics has a
remarkable feature: Althoughlocally the opinion does
change~the dynamics is nonconserved in nature!, globally
both opinions are conserved. In the language of the Ising
model, it can be said that at zero temperature the magnetiza-
tion remains constant. This hidden integral leads to several
peculiarities that will be illuminated first on a mean-field
level and then for a special case in one dimension.

A. Mean-field theory

To write the general mean-field theory, it is necessary to
distinguish between voters according to their initial opinions.
Hence, we introducePn

1(t) @Pn
2(t)#, the fraction of voters

with the1 (2) initial opinion that has changed their opinion
n times up to timet. If all sites are neighbors, these distri-
butions evolve according to

dP2n
1

dt
52~c1P2n21

1 2c2P2n
1 !,

dP2n11
1

dt
52~c2P2n

1 2c1P2n11
1 !,

dP2n
2

dt
52~c2P2n21

2 2c1P2n
2 !,

dP2n11
2

dt
52~c1P2n

2 2c2P2n11
2 !, ~14!

with P21
6 [0. The initial conditions arePn

6(t50)5c6dn0 .
These rate equations reduce to Eq.~1! for the symmetric case
c15c251/2.

It is again useful to consider the fraction of voters that
have ~do not have! their initial opinion, Peven

6 5(nP2n
6

(Podd
6 5(nP2n11

6 ). Summation of Eqs.~14! gives

dPeven
6

dt
52

dP odd
6

dt
52c6

2 22Peven
6 . ~15!

One can find that the global opinion concentrations
c65Peven

6 1Podd
7 are conserved and thatPodd

1 5Podd
2 . Solving

these last rate equations subject to the proper initial condi-
tions gives

Peven
6 5c6~c61c7e

22t!,

Podd
6 5c1c2~12e22t!. ~16!

The autocorrelation function A(t)5Peven
1 1P even

2

2Podd
1 2Podd

2 is then given by

A~ t !5~c12c2!214c1c2e
22t. ~17!

A voter quickly forgets its initial opinion, even if statistically
it is more likely to have its initial opinion, since
c1
2 1c2

2 >2c1c2 .
The fraction of persistent voters is found by solving

dP0
6/dt522c7P0

6 and it is found that

P0
65c6e

22c7t. ~18!

Thus, the fraction of persistent voters decays exponentially
as well. The decay constant is simply given by the density of
opposite opinion. This result indicates that even in the case
of a small concentration of one opinion, the fraction of per-
sistent majority voters decays exponentially with time.

To solve Eqs.~14! we introduce the generating functions

Feven
6 ~ t,w!5 (

n50

`

P2n
6 ~ t !w2n,

Fodd
6 ~ t,w!5 (

n50

`

P2n11
6 ~ t !w2n11. ~19!

This reduces the infinite set of rate equations to four equa-
tions,

dFeven
6

dt
52~c6wFodd

6 2c7Feven
6 !,

dFodd
6

dt
52~c7wFeven

6 2c6Fodd
6 !. ~20!

ExpressingFodd
6 via Feven

6 , we reduce the system of first-
order differential equations~20! to a pair of second-order
equations forFeven

1 (t,w) and F even
2 (t,w). Solving these

equations subject to the proper boundary conditions yields

Feven
6 ~ t,w!5c6e

2tS cosh~ tD!6~c12c2!
sinh~ tD!

D D ,
~21!

where a shorthand notation,D5A124c1c2(12w2), has
been used. In principle, one then findsPn

1(t) andPn
2(t) by

expanding the generating functions. This leads to rather cum-
bersome results. However, the most interesting scaling re-
sults correspond to the limitt→`,12w→10 with
(12w)t kept finite. In this scaling limit,
12D→4c1c2(12w)t. Substituting this into Eq.~21! we
find Feven

6 .c1
2 exp@24c1c2(12w)t#. Then we findFodd

6 , note
that in the scaling limit the generating functions become the
Laplace transforms ofPn

1(t) and Pn
2(t), and perform the

inverse transformation. Finally, we arrive at the following
scaling results:
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P2n
1

c1
2 .

P2n
2

c2
2 .

P2n11
1

c1c2
.
P2n11

1

c1c2

.
1

A2pc1c2t
expF2

~n22c1c2t !
2

2c1c2t
G . ~22!

In particular, we see that forc1Þc2 the distribution func-
tion for the even number of changes,P2n5P2n

1 1P2n
2 , is

larger than the distribution function for the odd number of
changes,P2n115P2n11

1 1P2n11
2 . Equation ~22! suggests

that it is possible to avoid these ‘‘even-odd oscillations,’’ by
making a transformation to a modified opinion change dis-
tribution P̃n[Pn1Pn11 . We also note that the scaling dis-
tribution on the right-hand side of Eq.~22! is identical to the
infinite-dimension scaling function, previously obtained for
the symmetric case.

B. Exact results

Although the above results were obtained using mean-
field considerations, similar behavior characterizes the exact
solution. By generalizing the solution of Eq.~8!, the autocor-
relation function is found,

A~ t !5( ~21!nPn5~c12c2!214c1c2@ I 0~ t !e
2t#d.

~23!

The limiting value of the autocorrelation function,
(c12c2)

2, is identical with the mean-field theory Eq.~17!.
Again the conclusion remains the same, at the late stages of
the process a single voter opinion cannot be used to deter-
mine its initial opinion. Similar to the symmetric case, the
autocorrelation function decays algebraically rather than ex-
ponentially with time. Since Peven5@11A(t)#/2
>Podd5@12A(t)#/2, we also learn that a voter is more
likely to have its initial opinion.

Mean-field theory suggests that the fraction of persistent
voters decays faster for the minority. It is interesting to in-
vestigate the same for the one-dimensional situation. It is
instructive to start with the special case ofc151/3 and
c252/3. Let us formally split the2 opinion into two
equivalent subopinions. Hence, there are three equiprobable
opinions, one1 opinion and two2 subopinions. We now
identify this system as the zero-temperature three-state Potts
model, or as a voter model with three opinions. The
dynamics is unchanged, a voter chooses a nearest
neighbor randomly, and assumes its opinion. Eventually, we
will not distinguish between the2 subopinions. For
the kinetic q-state Potts model withT50, the fraction of
persistent spins decays according toP0(t);t2b(q), with
b(q)52p22@cos21(A2q2121/A2)#221/8; see @15#. In-
deed, for the symmetric voter model,q52 andb(2)53/8.
The concentration of persistent minority species,P0

1(t), is
equal to the fraction of persistent spins in theq-state Potts
model withq53. Using the notationP0

6(t);t2b6, one has
b15b(3)>0.5379. Of course,b2Þb1 , since changes be-
tween2 subopinions should not be counted. The exponent
b2 can be found by allowing a noninteger number of opin-
ions, q51/c253/2. This formula is found by an analytical

continuation to arbitraryq of the relationc51/q, which
clearly holds in the equal-concentration case with an integer
q. Therefore,q651/c6 . For the above example,c252/3,
q253/2 impliesb2>0.2349. In general, the concentration
of persistent voters decays algebraically,

P0
6;t2b6

with

b65b~c6!5
2

p2 @cos21~A2c621/A2!#22
1

8
. ~24!

Following Eq. ~11!, Pn(t) can be written in terms of a
simple scaling function in one dimension. Thez→0 behav-
ior reflects the anomalously large number of persistent voters
found in the system at long times. On the other hand, Eq.
~24! implies a difference in nature of the scaling functions
for sites of initial 1 and 2 opinions, Pn

6(t)
5F1

6(n/At)/(c6At). In the limit of largez5n/At, the tail
is dominated by Gaussian fluctuations, while in the limit
z→0, the anomalous decay of Eq.~24! determines the be-
havior. Combining these two limits, we have

F1
6~z!;H z2b~c6!21, z!1

exp~2const3z2!, z@1. ~25!

In the limit of a vanishing minority opinion concentration,
c1→0, one hasb1→1, andb2>2c1 /p→0.

Both the mean-field results and our numerical simula-
tions, to be described in the following, suggest that the dis-
tribution of an even number of changes dominates over its
odd counterpart. We expect that the above suggested scaling
form holds for the even distribution, or equivalently, for the
modified distributionPn1Pn11 . To summarize, the exact
form of the fraction of persistent voters combined with scal-
ing considerations suggest that different scaling functions
correspond to the minority and the majority opinions.

C. Infinitesimal concentrations

For better understanding of the asymmetric case, it is use-
ful to consider the case of an infinitesimal concentration of
one opinion,c1→0. We naturally restrict ourselves to the
situation where a single1 voter is placed in a sea of2
opinion. Identifying an interface between1 and2 domains
with a random walker, an equivalence to two annihilating
random walkers who are nearest neighbors att50 is estab-
lished. The distributionPn(t) is thus equal to the fraction of
sites visitedn times by the two walkers. We further simplify
the problem by considering the fraction of sites visited by a
single random walk with a trap as one of its nearest neigh-
bors. Although the two problems are not identical, we expect
that the results are similar in nature and differ only by nu-
merical prefactors. The reason is that the distance between
the two random walks itself performs a random walk.

In the limit of a vanishing opinion concentration,
c1→0, the opinion change densityPn(t) is equal to zero.
However, if we dividePn

2(t) by the density of the interfaces,
c1c2 , and then go to the limitc1→0, we obtain a nontrivial
distribution, limc1→0Pn

2(t)/c1c2 . This distribution gives
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the total number of links crossedn times by the walker; we
will denote it byPn(t).

As said previously, for the symmetric initial conditions,
c15c251/2, the scaling behavior of the form
Pn(t)5t21/2F1(n/At) is expected. However, for asymmetric
initial conditions, two different scaling forms, even and odd,
should appear. In the present extreme case, we expect
P2n(t)5t21/2Feven(n/At) and P2n11(t)5t21/2Fodd(n/At).
We learn from Eq.~25! thatF even[F1

2;z21 near the ori-
gin. Hence, the distribution function approaches a time-
independent form: limt→`Pn(t);n21.

These results can be confirmed by considering the anal-
ogy to a single random walk near a trap. As the walker will
ultimately come to the origin with probability 1, every link
(k21,k),k>2 will be crossed an even number of time and
so the ultimate distributionP2n11(`)50 for n>1 @and
P1(`)51, since the link (0,1) is crossed with ultimate prob-
ability one by the walker#. So, in the extreme case that we
are considering, the even-odd oscillations are obvious and
pronounced: The asymptotic even values are positive, while
the odd values are zero.

In order to computePn(`) for n even, we consider the
link (k21,k). The probability that the walker starting at
x51 reaches for the first timex5k, thus crossing the link
(k21,k), is given by p(k)51/k @20#. Then the ultimate
probability that the walker will go from sitex5k to site
x5k21, crossing the link (k21,k) a second time, is 1. The
probability that the walker starting atx5k21 will arrive at
x50 before crossing the link (k21,k) again, is given by
1/k. Therefore,k22 is the contribution of the link (k21,k)
into P2(`), the average number of links crossed twice by
the walker. Thus, we have

P2~`!5 (
k52

`
1

k2
5z~2!215

p2

6
21. ~26!

After having crossed the link (k21,k) twice, the walker
could cross this link again before reaching the adsorbing bar-
rier at x50. Any such crossing from the left happens with
probability 121/k, while the next crossing from the right
happens with probability 1. Thus, we arrive at the remark-
ably simple formula expressingPn(`) through the zeta func-
tion

P2n12~`!5 (
k52

` S 12
1

kD n 1k2
5 (

m50

n S nmD ~21!m@z~m12!21# . ~27!

For largen, the sum can be approximated by the integral

P2n~`!.E
0

1/2

~12j!n21dj5
1222n

n
.
1

n
, ~28!

which confirms the above prediction.
To determine the scaling functionsFeven(z) and

F odd(z), it proves useful to considerPn(x,t), the probabil-
ity that the walker passesn times throughx during the time
interval (0,t). Then,Pn(t) is then given by

Pn~ t !5 (
x52

`

Pn~x,t !.E
2

`

dxPn~x,t !. ~29!

In this equation and in the following we will treatx as a
continuous variable; in the long-time limit, this should be
asymptotically correct.

We then write forPn(x,t):

P2n~x,t !5E
0

t

dt1p1~x,t1!E
0

t2t1
dt2p2~ t2!E

0

t2t12t2
dt3p3~x,t3! . . . E

0

t2( i<2n21t i
dt2np2~ t2n!p4S x,t2(

i51

2n

t i D ~30!

and

P2n11~x,t !5E
0

t

dt1p1~x,t1!E
0

t2t1
dt2p2~ t2!E

0

t2t12t2
dt3p3~x,t3! . . . E

0

t2( i<2nti
dt2n11p3~x,t2n!p5S t2 (

i51

2n11

t i D . ~31!

We consider a walker starting aty051; p1(x,t) is the prob-
ability that this walker reachesy5x at time t without going
to the originy50; p2(t) is the probability that this walker
first reaches the origin at timet; p3(x,t) is the probability
that this walker first passes at the origin at timet without
passing throughy5x; p4(x,t) is the probability that this
walker with an absorbing boundary aty5x does not pass
through the origin up to timet; andp5(t) is the probability
that this walker does not reach the origin up to timet. Equa-
tion ~30! is cumbersome in form but simple in nature: The
formula for P2n(x,t) is just a finite-time generalization of
Eq. ~27!; namely, it corresponds to the situation when a

walker has performedn oscillations around the link
(x21,x), and at timet a walker, or his remains, is to the left
of x. Equation~31! has been constructed similarly and de-
scribes the situation with a walker to the right ofx at time
t. The convolution structure of Eqs.~30! and~31! suggests to
apply the Laplace transform. Indeed, P̃n(x,s)
5*0

`dte2stPn(x,t), satisfy

P̃2n~x,s!5 p̃1~x,s!@ p̃2~s!#n@ p̃3~x,s!#n21p̃4~x,s! ~32!

and
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P̃2n11~x,s!5 p̃1~x,s!@ p̃2~s!#n@ p̃3~x,s!#np̃5~s!. ~33!

Fortunately, the probabilitiesp̃ j have been already computed
@21#:

p̃1~x,s!5
sinh~As!

sinh~xAs!
,

p̃2~s!5e2As,

p̃3~x,s!5
sinh@~x21!As#
sinh~xAs!

, ~34!

p̃4~x,s!5
12 p̃3~x,s!

s
,

p̃5~s!5
12 p̃2~s!

s
.

It is in principle possible now to compute variousPn(t). For
example, the contribution toP1(t) from links with k>2 is

P̃1~s!2 P̃1~1,s!5
12e2As

s
sinh~As!E

2

` dx

sinh~xAs!

5
12e2As

s3/2
sinh~As!ln@coth~As!# ~35!

.
ln~1/s!

2As
~s→0!, ~36!

where the contribution from the first link (0,1) is
P1(1,t)5121/Apt, which gives the asymptotic value of

P1~ t !.121/Apt1
lnt

A4pt
~ t→`!. ~37!

We now turn to determination of the scaling functions. In
the long-time limit, (t→`), corresponding to (s→0), Eq.
~32! becomes

P̃2n~x,s!.
e2nAs

s

1

x2 S 12
1

xD
n21

, ~38!

which then implies

P̃2n~s!5E
2

`

dxP̃2n~x,s!.
e2nAs

ns
. ~39!

Performing the inverse Laplace transform@22#, one finds

P2n~ t !5
1

n
erfcS n

A4t D . ~40!

Indeed the anticipated scaling behavior suggested earlier is
confirmed with the scaling function

Feven~z!5z21erfc~z/2!. ~41!

In particular, the limiting forms are

P2n~ t !.5
1

n
2

1

Apt
, n!At

1

n2
A4t

p
expS 2

n2

4t D , n@At.
~42!

For the odd distribution, a similar scaling form is ex-
pected:

P2n11~ t !5
1

At
Fodd8 S t

n2D . ~43!

When (s→0), we can use the naive expansion as previously
but we should keep the upper limit finite,<s21/2, since the
integrand logarithmically diverges on the upper limit:

P̃2n11~s!.
e2nAs

As
E
2

s21/2
dx

x S 12
1

xD
n

.
e2nAs

As
E1~nAs!,

~44!

with the exponential integralE1(y)5*y
`duu21exp(2u).

Making use of Eq. ~43! one gets another relation for
P̃2n11(s),

P̃2n11~s!5E
0

`

dte2st
1

At
Fodd8 S t

n2D5nE
0

`dT

AT
e2qTFodd8 ~T!,

~45!

with q5n2s.
Thus we obtain the Laplace transform of the function

Fodd8 (T)/AT,

E
0

`dT

AT
e2qTFodd8 ~T!5

e2Aq

Aq
E

Aq

`dy

y
e2y. ~46!

Performing the inverse Laplace transform, we get

Fodd8 ~T!

AT
5E

0

Tdt

2t
erfcS 1

A4t
D 1

Ap~T2t!
expS 2

1

4~T2t!D .
~47!

Performing asymptotic analysis yields

P2n11~ t !.5
ln~ t/n2!

A4pt
, n!At

1

n2
A2t

p
expS 2

n2

t D , n@At.
~48!

Notice that in the both limiting cases,P2n11(t)!P2n(t).
It proves insightful to compute the moments of even and

odd distributions, Meven
p (t)5(n>1(2n)

pP2n(t) and
Modd

p (t)5(n>0(2n11)pP2n11(t). Asymptotically, it is
easy to compute even moments
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Meven
p ~ t !5Ept

p/2, Ep5

4pGS p11

2 D
pAp

. ~49!

Equation~49! is valid only for p.0 @when (p→10), the
prefactorEp diverges#. To determine the most interesting
zero moment, i.e., the total number of links crossed even
timesM even

0 (t)5(1
`P2n(t), we use the Laplace transform of

Eq. ~39! to obtain Meven
0 (s). ln@12exp(2As)#/s

. ln(1/s)/2s and eventually,

Meven
0 ~ t !;~g1 lnt !/2, ~50!

with g>0.577215 the Euler constant. This result is consis-
tent with a direct summation ofP2n(`)5n21 up to n5At.
For negative p, even moments are finite,M even

p (`)
52pz(12p).

Odd moments behave similarly,Modd
p (t)5Opt

p/2. A
lengthy computation gives the prefactor

Op5

22p11GS 11
p

2D
p E

0

1

dm~12m2!
p21
2 E

0

m

du
up11

12u2
.

~51!

Equation~51! is valid for all nonnegativep, and in particular
the ~average! total number of links crossed odd times ap-
proaches a surprising constant,

Meven
0 52

1

2pE0
1

dm
ln~12m2!

A~12m2!
5 ln2. ~52!

Thus although the odd part of thePn distribution approaches
zero ast→`, the moments remain nontrivial.

D. Simulation results

To test the above predictions we performed numerical
simulations of the voter model with different initial concen-
trations, in one dimension. The rich behavior predicted by
the mean-field and the exact results was confirmed by the
simulation results. We studied the fraction of persistent vot-
ers for the casec151/3, and we found the decay exponents
b150.54 andb250.23 for the minority and the majority
opinion, respectively. These values are in excellent agree-
ment with Eq.~24!.

We also confirmed that each of the four functions
P2n

6 (t) andP2n11
6 (t) can be rewritten in a scaling with the

scaling variablen/At. The dominance of the even part of the
distribution P2n.P2n11 , is nicely demonstrated by Fig. 4
~one realization of a system of 106 sites!, and the asymptotics
of the even scaling function Eq.~25! are verified.

We also performed simulations for the extreme case
c1→0, where one site with initial opinion1 is in a sea of
2 opinions. As shown above, this problem is equivalent to
the average number of times a link is crossed by two anni-
hilating random walkers. We show on Fig. 4 the even and
odd scaling functions for 108 realizations of this system. Th-
easymptotic results Eqs.~42! found in the simplified problem
of one random walker in the presence of an absorbing
boundary conditions are verified up to numerical prefactors.
In particular, the even scaling functions of Fig. 4 are found to
behave asymptotically (z→0) as Feven(z).5/(4z), to be
compared withFeven(z).1/z of Eq. ~41!.

IV. SUMMARY

We have investigated the voter model, one of the simplest
models of nonequilibrium statistical mechanics withnoncon-
serveddynamics. We have introduced the set of quantities
Pn(t), defined as the fraction of voters who changed their
opinion n times up to timet. The distributionPn(t) was
shown to exhibit a scaling behavior that strongly depends on
the dimension of the system and on the opinion concentra-
tions. Ford.2, the system does not coarsen, and the distri-
bution is Poissonian. In one dimension, we have solved for
Pn(t) in the extreme case when the minority opinion is in-
finitesimal. The case when the minority phase occupies a
negligible volume has been studied in the classical work@23#
for theconserveddynamics and has proven very important in
the development of the theory of phase ordering kinetics@1#.
It would be very interesting to generalize the extreme-case
solution to arbitraryd.

The quantityPn(t) reflects the history of the coarsening
process. Knowledge of this distribution enables insight into
interesting quantities such as the fraction of consistent or

FIG. 4. Even and odd distribution functions for differentc1 in
1D. The quantityt1/2Pn(t)/(c1c2) is plotted versusn/t1/2. Differ-
ent scaling functions correspond to the even~upper curves! and the
odd ~lower curves! parts of the distribution. The solid lines corre-
spond to the casec151/4 for one sample of linear sizeL5106.
The dashed lines correspond to the casec1→0 for 108 samples.
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‘‘frozen’’ sites, the fraction of sites with their original opin-
ion, and the average number of changes in a site. This study
suggests thatPn(t) is a tool for investigations of coarsening
processes in more realistic models. It’s possible that a Pois-
sonian Pn(t) generally describes systems that do not
coarsen, while asymmetric distributions that are pronounced
near the origin correspond to coarsening systems.
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