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We study fragmentation of a random recursive tree into a forest by repeated removal of nodes.
The initial tree consists of N nodes and it is generated by sequential addition of nodes with each
new node attaching to a randomly-selected existing node. As nodes are removed from the tree, one
at a time, the tree dissolves into an ensemble of separate trees, namely, a forest. We study statistical
properties of trees and nodes in this heterogeneous forest, and find that the fraction of remaining
nodes m characterizes the system in the limit N — oco. We obtain analytically the size density ¢s of

trees of size s. The size density has power-law tail ¢s ~ s

—a

with exponent o = 1 + % Therefore,

the tail becomes steeper as further nodes are removed, and the fragmentation process is unusual in
that exponent « increases continuously with time. We also extend our analysis to the case where
nodes are added as well as removed, and obtain the asymptotic size density for growing trees.

PACS numbers: 02.50.-r, 05.40.-a, 89.75.Hc

I. INTRODUCTION

Random trees [1, 2] underlie a variety of physical pro-
cesses including collisions [3, 4], fragmentation [5], and
fractal aggregation [6]. These random structures are
found in data storage and retrieval in computer science
[7-10] and they provide a framework for studies in bio-
logical evolution [11-14].

Previous studies of random trees typically deal with
random structures generated by sequential addition of
nodes [1, 2]. The same holds for widely-used models of
network formation which generally describe strictly grow-
ing networks [15-19]. Yet, in many applications includ-
ing social networks [20-22], evolutionary trees [12, 13],
and technological networks, nodes may disappear so the
network can increase or decrease in size.

A number of recent studies of trees formed by addition
and removal of nodes focus on the connectivity of indi-
vidual nodes and in particular, the degree distribution
[23-28]. Node removal can cause fragmentation into sep-
arate connected components (see Figure 1). Yet, theoret-
ical tools for analyzing connected components in random
structures undergoing fragmentation are limited [19, 22]
and statistical properties of groups of connected nodes in
such processes remain largely an open question.

Here, we analyze connected components of a random
recursive tree undergoing fragmentation caused by re-
moval of nodes. The original tree is formed by sequential
addition of nodes: in each elementary step one node is
added and it is attached to an existing node that is se-
lected at random. This process is repeated until a tree
with N nodes forms. As nodes are removed from the
tree, it fragments into multiple connected components,
each having a tree structure. The resulting “forest” con-
sists of multiple trees (see Figure 2). Our main goal is
to find the size distribution of connected components in
this heterogeneous forest.

As a preliminary step, we establish the fragment-size
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FIG. 1: The fragmentation process. Removal of the indicated
node (filled circle) fragments a tree of size N = 10 (left) into
three separate trees with sizes s = 4, s = 3, and s = 2 (right).
Each fragment correspond to a branch of that node.

distribution when a single node is removed. This quan-
tity plays the role of a “kernel” for the fragmentation
process that ensues as nodes are repeatedly removed from
the system. We use a dynamical formulation where the
number of nodes plays the role of time, and use rate
equations to describe how the fragment-size distribution
evolves. We find the fragment-size distribution analyti-
cally as a function of the fraction of remaining nodes m
in the limit N — oco. The density ¢ of fragments of size
s has the algebraic tail
1

¢s~s @ with
When an infinitesimal fraction of nodes are removed, the
tail is the broadest, ¢, ~ s~2, but throughout the frag-
mentation process, the distribution becomes gradually
narrower. The exponent « increases monotonically with
time and it ultimately diverges when a finite number of
nodes remain.

We also consider growing forests formed by simultane-
ous addition and removal of nodes. In this case, the size
distribution is narrower as it has an exponential tail.

The rest of this article is organized as follows. We
first describe the tree fragmentation process and define
the fragment size density (Section IT). In Section III, we



consider fragmentation by removal of a single node and
derive the fragment-size density as a function of size N.
This quantity allows us to write recursion relations for
the evolution of the size density throughout the fragmen-
tation process. We obtain a scaling solution where the
fraction of remaining nodes m plays the role of a scal-
ing variable (Section IV). In Section V, we consider the
situation where nodes are added and removed at con-
stant rates, and obtain the leading asymptotic behavior
for very large fragments. We conclude with a summary
and a discussion in Sec. VI. The Appendix details a few
technical derivations.

II. THE FRAGMENTATION PROCESS

We study fragmentation of a random tree through se-
quential removal of nodes. The starting point is a ran-
dom recursive tree [1, 2]. This tree is generated by se-
quential addition of nodes with each new node attached
to a randomly-selected existing node. Starting with one
isolated node, this process repeats until the tree reaches
initial size N. The tree has N — 1 links and hence, it has
no loops.

In each time step, one node is selected at random and
it is removed from the system together with all of the
links connected to it. Hence, the total number of nodes
M at time t is simply

M(t) =N —t. (2)

At time ¢ = 0 there are N nodes, and the process ends
at time t = N — 1 with a single remaining node.

As nodes are removed from the system, the tree frag-
ments into multiple connected components. Figure 1 de-
picts removal of the very first node and Figure 2 shows
the resulting forest after a finite fraction nodes have been
removed. Removal of nodes dissolves the tree into an
ensemble of connected components, each having a tree
structure.

The evolving forest is a collection of distinct trees and
our primary goal is to characterize the sizes of trees in
this heterogeneous forest. Let F, n(t) be the average
number of trees of size s at time ¢ in a system of (ini-
tial) size N. This quantity corresponds to an average
over infinitely many independent realizations of the tree
generation process and over infinitely many independent
realizations of the node removal process. The initial con-
dition is a single tree of size s = N, Fy ny(0) = ;s n, and
the final state is a single node, Fs (N — 1) = J,1.

The total number of trees is deterministic only at the
initial and the final state, but generally, this quantity
fluctuates from realization to realization. In contrast, the
total number of nodes (2) is a deterministic quantity. The
number of nodes normalizes the fragment-size density

> sFon(t)=N—t. (3)

FIG. 2: The random forest. Shown is a representative ex-
ample where fraction m = 3/4 of the initial N = 500 nodes
remain.

Our main goal is to find the fragment-size density as a
function of time in the limit N — oo.

IIT. THE BRANCH-SIZE DENSITY

As a preliminary step, we study Fi y(1), the fragment-
size density after a single node has been removed. We de-
fine a branch as the subtree attached to a node through
one of its links. Figure 1 shows that removal of a node
with three links and hence three branches, leads to three
fragments. Therefore, there is a one-to-one correspon-
dence between the branches of a node and the fragments
generated when that node is removed. Of course, the
number of branches equals the node degree.

Let P; n be the average number of branches con-
taining s nodes of a randomly selected node in a ran-
dom recursive tree of size N. This quantity is equiva-
lent to the fragment-size density at time ¢ = 1, that is
Ps,N = FsyN(l).

The zeroth moment of the branch-size density gives
the average number of branches per node and the first
moment gives the total number of nodes minus one,

;PS,N = 2(ZVJ\[_ 1)7

ZSP&N =N-1. (4
A tree with N nodes has N — 1 links and every link con-
nects two branches. Hence, the total number of branches
is 2(N —1), and the average number of branches per node
is simply 2(N — 1)/N. The second identity follows from
(3).

The density Ps ny satisfies the recursion equation

N s—1 N —s
PS - Ps— PS
JNA+1 N1 ( N 1,N + N ,N)
1
+ —— (05,1 +0s.N) - (5)

N +1



This recursion is subject to the “initial condition”
P;1 = 0. The first two terms account for contributions
from existing branches while the last two terms repre-
sent branches created by the newly added node; hence
the respective weights N—H and N +1- When a new node
attaches to a branch of size s, the branch size grows by
one, that is, s — s+ 1. A branch of size s consequently

expands with probability <;; otherwise the branch main-

tains its size with probability &= =5 The last two terms

reflect that a new link generates two new branches, one
of size s = 1 and one of size s = N. By summing (5), it
is possible to check that the recursion is compatible with
the sum rules (4).

Using the recursion relations (5) we can find the
branch-size density for small trees. Starting with P, ; =0
we use the recursion relations (5) iteratively to find

65,1 N=2
2 2
25,1 + 25, N=
PS N= 37 ,1 + 31 2 . 3 (6)
) 12 69 1+ 5‘3 2+ 125€ 3 N:47
§1651+1652+1683+ 5.4 N=5

It is also possible to check these expressions by enumer-
ating all possible tree morphologies for 2 < N < 5 and
removing a randomly-selected node. Also, the densities
listed in (6) satisfy the sum rules (4). The expressions
(6) suggest that the fragment-size density is symmetric,
Ps n = Py_s,n. This symmetry reflects that the recur-
sion relation (5) is invariant under the transformation
s — N —s.

We can also rewrite (6) in a way that manifests the
general behavior

Pio = (15 + 13) 01

Ps3 = ( %)(51—*‘552

Py = (15 4)( s1+058) + (35 + 33) 0s2

Pis = (f5+ 15) (o1 +050) + (g5 + 35) (62 + 8,3)-

These expressions suggest the general form

1 1
P =
Nt ) T NN +1=s)

(7)

for 1 < s < N — 1. Furthermore, equation (7) can be
justified by induction. When N = 2, we have P; » = 1.
We can also verify that the expression (7) satisfies the
recursion equation (5) for all 1 < s < N — 1. If we
substitute (7) into the left-hand side and the right-hand
side of the recursion equation (5), we sce that if Py y is
given by (7) then according to the recursion equation,
so is Ps y41. We also note that the first term ﬁ in

(7) which does not depend on tree size N coincides with
the distribution of in-component size for a random tree
25, 29).

For very large trees, N > 1, the density (7) adheres to
the scaling form Py x ~ (1/N?)¥ (s/N). In terms of the
normalized branch size x = s/N, the scaling function is
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FIG. 3: The scaling function ¥ versus the scaling variable x.

(see Figure 3)

V) = 5+

(8)
for 0 < x < 1 and it has the symmetry ¥(z) = ¥(1 —z).
We note that the fragment-size density has a power-law
tail Fs n(1) ~ s72 for s < N in the limit N — oo.

IV. THE FRAGMENT-SIZE DENSITY

We now consider the distribution of fragment size af-
ter multiple nodes have been removed from the system.
Importantly, every fragment is itself a random recursive
tree. Indeed, every fragment is a piece of the original
tree, that is, a subset of connected nodes. Further, this
subset expands by same growth mechanism that governs
the entire tree. If a new node is attached to this subset,
then every one of the nodes is equally likely to receive
this new connection.

This key observation allows us to treat the problem
analytically. Since fragments are equivalent to the initial
tree, the outcome of the very first fragmentation event
characterizes all subsequent fragmentation events. Con-
sequently, the tree fragmentation process reduces to an
ordinary fragmentation process [30-33]. Throughout this
process, a random tree of size [ generates a fragment of
size 1 < s <1 —1 with probability P, ; [34, 35]. Hence,
the tree morphology is entirely encapsulated by the frag-
mentation kernel Ps; given in (7).

The fragment-size density evolves according to the lin-
ear recursion equation

Fu(t+1) = F(t) — sfo(t) + >_1fi(1) (9)

I>s
Here, we  introduce  the  rescaled  density
fs(t) = Fo(t)/ > s Fs(t), with the normalization

<8 fs = 1; this normalization reflects that the proba-
bility a randomly-selected node resides in a tree of size s
equals s fs. Henceforth, the dependence on system size is
made implicit, Fs(t) = Fs n(t). The recursion equation
(9) describes the tree fragmentation process. The loss



term equals fragment size because the probability the
removed node belongs to a tree is proportional to tree
size. The gain term reflects the fragmentation process:
trees fragment with probability proportional to their size
and hence the term [ f;, while the second quantity P,
is simply the fragmentation kernel. We can verify, using
the second identity in (4), that the total number of nodes
M = % sFs decreases by one in each fragmentation
event in agreement with (2).

Starting with the initial condition Fs(0) = d, n, we
iterate the recursion equation (9) once and by construc-
tion, recover the fragmentation kernel Fy(1) = Ps . We
now substitute the expressions (6) for small N and iterate
the recursion (9) a second time to obtain the fragment-
size density once two nodes are removed,

55’1 N:3
F9(2) = 53 1+ 153 2 N=4 (10)
3951+ 20,0+ 25,3 N=5

These expressions can be manually verified by exact enu-
meration. Removal of a second node breaks the symme-
try in (7) because small fragments become more probable
at the expense of large ones.

Our main interest is the behavior in the limit N — oo.
In this limit, we can treat time as a continuous variable
and convert the difference equation (9) into the differen-
tial equation

dF
- —st+zlfl Py (11)

I>s

The total number of nodes M = ) _F; and the total
number of trees in the forest "= )" _ F, obey the differ-
ential equations dM/dt = —1 and dT'/dt = 1 — 2T /M,
respectively. These evolution equations are obtained by
summing the rate equations (9) and employing the first
two moments of the fragmentation kernel (4). Using the
initial conditions M (0) = N and T'(0) = 1 we obtain the
leading behavior in the limit N — oo

M = Nm, and T=Nm(1l—-m). (12)
Here, we introduce the fraction of remaining nodes
m = (N —t)/N. As expected, the number of nodes and

trees are both proportional to system size. As a result,
the average tree size (s) is given by (s) = (1 —m)~ L.

The quantities M and T suggest that the fraction of
remaining nodes m characterizes the state of the system
in the limit N — oo. Results of numerical integration of
the recursion equation (9) confirm that the fragment-size
density depends only on the fraction of remaining nodes
in this limit (see figure 4). Hence, we seek a scaling solu-
tion for the fragment-size density. Formally, the scaling
solution ¢y is defined by

Oalm) = i AT (13)

4

with m = (N — t)/N kept fixed. The fragment-size den-
sity which in principle depends on two variables, system
size N and time ¢, becomes a function of a single scal-
ing variable, the fraction of remaining nodes m in the
large-size limit. The quantity s ¢ is the probability that
a randomly selected node is part of a tree of size s, and
accordingly Y s¢, = 1.

We now substitute Fy = M ¢, into the rate equation
(11) and introduce the time variable T = fot dt'[1/M(t")]
such that dr/dt = 1/M. This time variable is related
to the fraction of remaining nodes m = e~ 7. With

these transformations, the normalized density ¢s = ¢(7)
obeys the rate equation
d¢s Lo Loy
=(1—5)¢s (14
¢+Z[ s+1) l—s)(l+1—s) (14)

Here, we used the explicit form of P ;.

Results of the numerical integration of (9) suggest that
the tail of the size density is algebraic (see Figure 4). Fur-
thermore, in Appendix A we show that asymptotic anal-
ysis of the rate equation (14) yields the power-law decay
(1). In a number of random structures including net-
works generated by preferential attachment, power-law
tails correspond to ratios of Gamma functions [36]. In
these contexts, a ratio of Gamma functions is the discrete
analog of an algebraic function of a continuous variable.
As we show below, such behavior applies to our fragmen-
tation process.

We postulate that the size distribution is a ratio of
Gamma functions

I(s)I'(a)

¢s = (a0 — Z)W’

(15)

The prefactor is set by the normalization > s¢s = 1
In appendix B, we show that ¢, in (15) satisfies the “evo-
lution” equation

(a—l) ¢ = (I=s) ¢S+Z{ lsd—i)—ll s)l(f)—:—l—s) (16)

for all s > 1 with the to-be-determined parameter .

for all s > 1. This equation describes how ¢, () changes
as function of a. Since the right-hand sides of (14) and
(16) are identical, the original rate equation (14) is sat-
isfied if dos/dT = (o — 1)d¢ps/dcv. Thus, we deduce that
(15) is a solution of the evolution equation (14) when the
parameter a evolves according to

— =a—1. 17

dr “ (17)
Together with the initial condition a(0) = 2 that follows
from (7), we obtain o« = 1+ €7 and find the parameter «
as a function of remaining nodes,

1
=14 —. 18
a1+ (18)
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FIG. 4: The size density fs = Fs/M versus s for the case
m = 1/2. Shown are: (i) results of numerical iteration
of the recursion equation (9) for N = 10°, N = 10*, and
N = 10° (color lines); (ii) corresponding results of Monte
Carlo simulations (color circles); and (iii) The limiting distri-
bution (15) [black line]. Simulation results represent an aver-
age over 4.5 x 10%, 5 x 102, and 10? independent realizations
with N = 103, N = 10*, and N = 10, respectively.

Equations (15) and (18) constitute the exact solution for
the scaling function defined in (13). From this solution,
we can recover the average tree size, (s) = 1/(1 —m).
The fraction of trees can also be obtained explicitly for
small tree sizes
1—-m

= T

The results (15) and (18) establish our main re-
sult announced in (1). Using the asymptotic behavior
I'(x)/T(x+a) — 2% as x — oo we deduce ¢5 ~ C' s~
with prefactor C' = (o —2)I'(«v) and exponent « given in
(18). This prefactor vanishes in the limit o — 2 because
the number of trees vanishes according to (12).

The exponent « increases monotonically throughout
the fragmentation process. This behavior shows that the
tail of the size density becomes gradually steeper as more
nodes are removed. The size density (1) also has the un-
usual property that the exponent governing the tail is
time dependent, a = 1+ % Power-law tails with fized
exponents have been observed in models of fragmentation
[37-40]. Hence, the tree fragmentation process which
has an unusual nonmonotonic fragmentation kernel (7)
also has the unusual property that the power-law expo-
nent varies continuously with time. In many fragmen-
tation processes, the size distribution becomes universal,
namely, it does not evolve with time, once the fragment
size is scaled by the typical fragment size [36]. Frag-
mentation of random trees does not follow this generic
pattern as manifest from the fact that the exponent (18)
is not fixed.

The power-law tail (1) shows that the forest created by
the node removal process is heterogeneous and includes
trees of a variety of sizes (Figure 2). When the size of the
initial tree N is large but finite, the solution (15) and its
power-law tail (1) hold only for sizes s < Spmax. The size

distribution is sharply suppressed beyond this maximal
scale which represents the size of the largest tree in the
forest. The cutoff scale sp.x can be obtained by the
extreme statistics criterion 1 ~ N> fs. From this
heuristic argument, the cutoff grows algebraically with
system size

Smax ~ N (20)

Hence, as more nodes are removed, the range of validity
of (15) and (1) shrinks. For example, when m = 1/2
then smax ~ VN and as shown in figure 4, the rate of
convergence toward the N — oo limiting behavior slows
down with increasing N. In particular, astronomically
large trees are needed to realize the power-law behavior
(1) in the limit m — 0.

We verified the theoretical predictions using direct in-
tegration of the recursion equation (9) and using Monte
Carlo simulations of the tree fragmentation process (fig-
ure 4). The Monte Carlo simulation results agree with
numerical solution of the recursion equation (9) for fi-
nite N. This agreement supports the assertion that frag-
ments remain statistically equivalent to random recursive
trees throughout the fragmentation process. Also, the
numerical results agree with the scaling behavior (13).
Finally, we confirmed the scaling function (15) for the
case m = 1/2 for which ¢4 = 2[s(s + 1)(s +2)] L.

The Monte Carlo simulations were performed by mim-
icking the tree creation and fragmentation processes. To
generate the initial configuration, a random recursive tree
of size N was constructed. The tree is formed by sequen-
tial addition of nodes. The attachment probability is
uniform such that every existing node is equally likely to
receive a new link. Then, nodes are removed, one at a
time, until M nodes remain. The simulation results pre-
sented in this paper represent an average over multiple
independent realizations of the tree creation and node
removal processes.

For completeness, we briefly mention the degree dis-
tribution. We consider links to be directed and restrict
our attention to the in-degree distribution. Let Ag(m)
be the average number of nodes with k incoming links
once m nodes have been removed. It is well known that
for the random recursive tree, the degree distribution is
exponential, Az(0) = N 27571 [36]. Since the fragments
remain equivalent to a random recursive tree, we expect
the degree distribution to remain exponential. By gener-
alizing similar calculations in refs. [19, 23, 36], it is simple
to obtain the in-degree distribution

A = Na~ k1 (21)

The in-degree distribution remains exponential through-
out the fragmentation process and the exponent a gov-
erns the exponential decay of the in-degree distribution.



V. ADDITION AND REMOVAL OF NODES

Several recent studies have addressed the situation
where nodes can be added or removed [23-28]. In this
Section, we consider the case where nodes are added at
constant rate r and removed (as above) with unit rate.
Both processes are completely random: a newly added
node links to a randomly selected node, and nodes are
selected at random for removal. Initially, the system con-
sists of a single node M(0) = 1. The number of nodes
obeys the rate equation dM/dt = r — 1 and hence, it
grows steadily with time

M) =1+ (r—1)t. (22)

We restrict our attention to the growing case, r > 1. The
total number of trees T is not affected by the addition
process, so it evolves according to dT'/dt =1 — 2T /M as
above. Solving this rate equation subject to the initial
condition T'(0) = 1, we express the number of trees as a
function of the number of nodes

1 r

= M+ —— M2/, 23
r+1 +r+1 (23)

T(M)

In the long-time limit, the average tree-size does not de-
pend on time, (s) — r+ 1 as ¢ — oo. The second term
in (23) is negligible in this limit, and we thus conclude
that statistical properties of the forest are characterized
by the parameter r alone.

It is straightforward to generalize the evolution equa-
tion (11) for F(t) the average number of trees of size s
at time ¢,

dF,
dt

rl(s=1)for—sf]=sfo(t)+ D 1fi(t) Poy. (24)

I>s

The initial condition is F5(0) = ds,1. The first two terms
characterize changes due to node addition and simply
reflect that the probability a tree expands by addition of
a new node is proportional to its size. In writing (24)
we assume that fragments are statistically equivalent to
a random recursive tree. By summing this rate equation,
we can verify dM/dt = r — 1.

Since the average size approaches a constant, we ex-
pect that the normalized size density Fy/M approaches
a steady state. Hence, we define the limiting size-density
¢s = limy_,oo F5(t)/ > . s Fs(t). From the evolution
equation (24) we deduce that this limiting distribution
obeys

0 = 7r[(s=1Dos—1— (s + 1)os] (25)

Loy Lo
a (5_1)¢S+§[s(5+1) * (l=s)(l+1-y9)

We restrict our attention to very large trees. The sim-
ulation results suggest that the tail of the size density is
exponential, although there is an algebraic correction,

b5~ s (26)
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FIG. 5: The size distribution ¢s versus s for the case r = 2.
Shown are results of numerical integration of equation (24).
Also shown are results of Monte Carlo simulations for ¢t = 107,

averaged over 8.5 x 10° independent runs.

for s > 1. For such a distribution, the first sum in (25) is
negligible compared with the second sum, and the leading
behavior of the second sum is (see Appendix C)

2 (- 5)(ll¢—&l- 1—s) (crs +c2) s, (27)

I>s
in the limit s — oo The two con-
stants are aa=1+("1=1)In(1—~) and
co=(B-1)[1+y 'In(l —7)]. By substituting

(27) into (25), we obtain the recursion relation

(o1as =)o (1 o o

that applies for very large sizes, s — oco. By comparing
the two dominant terms, we confirm the leading expo-
nential behavior ¢s ~ +° with (r+1—¢1)y =r. This
gives v = 1 —e ", Next, we substitute (26) into (28) and
compare the magnitudes of the leading corrections oc s~
to find y(r — 1 — ¢3) = (6 — 1). Hence, § = r, and the
tail of the size density decays according to

¢s~s " (1— e_r)s . (29)

As the addition rate r grows, the power-law becomes
steeper but the exponential becomes shallower. Conse-
quently, the two terms become comparable over a grow-
ing range with the cross-over scale s, ~ e". When
s K Sy, the powerlaw decay is dominant and only when
s > s, does the distribution decay exponentially. We
also note that in the presence of addition, very large
trees become less probable and the forest becomes less
heterogeneous.

We numerically simulated the node addition and re-
moval process. In each simulation step, with proba-
bility 7 a new node is added and with probability
ﬁ one node is deleted. Time is augmented as follows,
t—t+ % after each step. When a single node remains,
deletion is prohibited. The Monte Carlo simulation re-
sults confirm that the rate equation (25) yields the exact




size distribution (Figure 5). Hence, even in the presence
of node addition, fragments remain statistically equiva-
lent to a random recursive tree.

VI. CONCLUSIONS

In summary, we studied fragmentation of a single ran-
dom tree by sequential removal of nodes. The emerging
random forest is an ensemble of disconnected random
trees of disparate sizes. The size distribution of trees in
this forest has an algebraic tail and the exponent charac-
terizing this decay increases continuously with the num-
ber of removed nodes.

The original tree expands through sequential addition
of nodes and it dissolves through sequential removal of
nodes. The morphology of the fragments mirrors that of
the parent fragment and thanks to this feature, knowl-
edge of the very first fragmentation event allows us to de-
scribe the outcome of subsequent fragmentation events.
This key observation enables us to obtain statistical prop-
erties of groups of connected nodes, thereby going beyond
characterization of individual nodes.

We also considered a forest created by addition and
removal of nodes and found that in this case, too, trees
remain random throughout the evolution process. How-
ever, the size density becomes narrower and it has an
exponential, rather than algebraic, tail.

For completeness, we mention that stochastic processes
where random trees are cut recursively have been studied
extensively by applied probabilists [41-50]. Such studies
have been motivated by applications such as evolution-
ary trees arising in mathematical biology as well as data
storage and retrieval algorithms in computer science. In
these rigorous studies the trees are typically fragmented
by removal of edges, rather than nodes. An interest-
ing challenge is to establish the algebraic tree-size distri-
bution (15) using combinatorics and probability theory
methods.

It is illuminating to compare fragmentation of random
trees with fragmentation of linear chains of connected

nodes where internal nodes have degree two, except for
the end nodes that have degree one. In this case, the frag-
mentation kernel is simply Ps; = 2/l for 1 < s <1 — 1.
Clearly, fragments maintain the linear morphology of the
parent tree. This case is equivalent to most basic frag-
mentation process, the random scission process where a
linear rod fragments repeatedly at a randomly selected
location. By substituting the kernel into (9) and repeat-
ing the steps leading to (15), it is easy to see that the
fragment-size density is purely exponential [36]

bs = (1 —m)>m*~1, (30)

where m is again the fraction of remaining nodes. This
example shows that tree morphology strongly affects the
outcome of the fragmentation process. The distribution
of fragment size can therefore be used to probe the struc-
ture of the fragmented objects.

A number of experiments on fragmentation of solid
objects have reported power-law size distributions with
a wide range of exponents [51-53]. Our study suggests
the intriguing scenario where the power-law exponent can
change throughout the fragmentation process and may
depend on the structure or the geometry of the frag-
mented object. Geometry-dependent exponents were re-
cently reported in fragmentation of polygonal plates [54].
It will be indeed interesting to find physical fragmenta-
tion processes [55-57] where the size distribution becomes
steeper with time. Our study deals with discrete objects
where fragment size has a lower bound. A natural ex-
tension of our study is to study fragmentation of more
complicated random or disordered structures.
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APPENDIX A: HEURISTIC DERIVATION OF EQUATION (1)

For very large sizes, the first sum in the rate equation (14) is negligible compared with the second. Let us evaluate
the leading asymptotic behavior of the second sum using the shorthand notation u(s) = s ¢,

. u(s +n) N Nt u(s) +u'(s) - n Nt
;n(nJrl) _; n(n+1) _U(S);

11 ) +u/(s) Z 1o u(s) + (Ins)u/(s). (A1)

n
n=1

This heuristic derivation assumes that the size density decays sufficiently slowly (see also Appendix C). Hence, the

evolution equation for the size density becomes

or

52 (80s). (A2)

This equation gives the power-law tail ¢ ~ s~ and the evolution equation (17).

APPENDIX B: DERIVATION OF EQUATION (16)

We first write the ratio of Gamma functions (15) as a product

¢s = (s = Dlla—2) []
k=0

s—1

1
k+a

(B1)



Next we differentiate ¢ with respect to the parameter «,

s—1
dos 1 1
= — S B2
da (a—? kz:_ok—i-a>¢ (B2)
Equation (16) follows from (B2) and the following identity
s—1
Lo Ly 1 1
1— )b, —a-1D|— -5 — ] o.. B3
(1=9)¢ +§5(5+1)+§(175)(l75+1) (a=1) a—2 kZ:OkJroz ¢ (B3)
This identity follows from sums involving the Gamma function. The first sum is evaluated as follows
(s+n) (s+ 1) s+ 2 (s+2)(s+3)
— T(s+n+a)  s(s+DI(s+1+a) s+l+a (s+1+a)(s+2+a)
(s —1)!
= ————— o F(1 2; 1 ;1
F(s—|—1+a)2 1(Ls+2s+1+051)
1 (s—1)!

T (@a-2)T(s+a) (B4)

In the last step, we used the identity o F(a, b;¢;1) = [I'(e)T'(c—a—0b)]/[T'(c—a)T'(c—b)] obeyed by the hypergeometric
function [58]. The second sum is evaluated as follows

Il Il Il
Z(z—s)(z—sﬂ)mm) B Z(l—s)F(Z+a) _Z;(l—s—i-l)l“(l—i-a)

I>s I>s

o (s=1)! s 4 = s+1
S T(s+a—-1) [\s+a—-1 S kta s+a—1
s—1
(s—1)! 1
—(a—1 B5
I'(s+«) s—(a )k: E+a (B5)
Here, we employed two identities involving the Gamma function. The first one is shown as follows,
i (s+mn)! (s 1) 1+ s+2 n (s+2)(s+3) L
nl(s+n+a) T(s+1+a) 2s+1+a) 3(s+1+a)(s+2+a)
(s+1)!
= ———————3F(1,1 2;2 1 i1
F(S+1+O{)3 2(7,S+ ’ 7S+ +Oé7)
s—1
s! 1
= . B6
I'(s+a) E+a (B6)
k=—1
A second identity we used follows from this identity by a simple unit shift in the summation variable
s+n)! (s —1)! s+1
= . B7
nzz:ln—l—l [(s+n+a) F(s+a—1 (Zk+a s—|—a—1> (B7)

APPENDIX C: DERIVATION OF EQUATION (27)

To derive (27), we substitute the exponential times power-law form (26) into the second sum in (25) and evaluate
the two leading terms for large s

0 s+n 1-Bs+n > 1+ns 1*5771
> I s ey
n(n+1) - 7 n(n+1)

n=1 n=1

n

= (sznn+1 (1-4)

n

L

,71’7,
n+1

sy {l+(v ' =Dl =) s+ (B-1)[L+7 " In(1—)]}. (C1)
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