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We study the role of phylogenetic trees on correlations in mutation processes. Generally, correlations decay
exponentially with the generation number. We find that two distinct regimes of behavior exist. For mutation
rates smaller than a critical rate, the underlying tree morphology is almost irrelevant, while mutation rates
higher than this critical rate lead to strong tree-dependent correlations. We show analytically that identical
critical behavior underlies all multiple point correlations. This behavior generally characterizes branching
processes undergoing mutati¢61063-651X99)01606-3

PACS numbes): 87.10+e, 87.15.Cc, 02.56:r, 87.23.Kg

I. INTRODUCTION Il. PAIR CORRELATIONS

Let us formulate the model first. The sequences are taken
’ . . X .~ to be of unit length, i.e., single symbol, and the correspond-
Ccesses mclqdlng _populanon_ growth, mutation, eXtInCtlon’ing alphabet consists of two letters. The numeric valaes
and interaction with the environment, to name a i}, _7 1 are conveniently assigned to these letters. We wil
Genetic sequences are strongly affected by such processgg, s on binary trees where the number of children equals
and thus provide an important clue to their nature. The onyyo. This structure is deterministic in that both the number of
going effort of reconstructing evolution histories given the chjldren and the generation lifetime are fixed. Nevertheless,
incomplete set of mapped sequences constitutes much of ote results apply qualitatively to stochastic tree morphologies
current understanding of biological evolution. as well. Finally, the mutation process is implemented as fol-

However, this challenge is extraordinary as it involves anows: with probability 1—p a child equals his predecessor
inverse problem with an enormous number of degrees ofvhile with probabilityp a mutation occurs, as illustrated in
freedom. Statistical methods such as maximum likelihood=ig. 1. The mutation process is invariant under the transfor-
techniques coupled with simplifying assumptions on the namationc— — o andp—1—p, and we restrict our attention
ture of the evolution process are typically used to infer theto the case & p=<1/2 without loss of generality.
structure of the underlying evolutionary tree, i.e., the phylog- A natural question is how correlated are the various
eny[2-5]. leaves(or nodes of a tree in a given generatiqor equiva-

Genetic sequences such as RNA/DNA or amino acid selently, time)? ConsiderG,(k) the average correlation be-
quences can be seen as words with letters taken from dWeen two nodes at thieth generation
alphabet of 4 or 20 symbols, respectively. Generally, there
are nontrivial intrasequence correlations that influence the Ga(k)={(ai0y)). ()

evolution of the entire sequence. Additionally, the structure i L
of the evolutionary tree plays a role in this process as on .he first average should be taken over all realizations for a

generally expects that the closer sequences are on this tr B(,ed pair of nodes #j, while the second average is taken

the more correlated they afé]. In this study, we are inter- over all different pairs belonging to the same generation. The
ested in describing the influence of the latter aspect, namely
the phylogeny, on the evolution of sequences. Specifically,
we examine correlations between sequences, thereby
complementing related studies on changes in fluctuations anc
entropy due to the phylogeriy—9]. To this end, we consider
particularly simple sequences and focus on a model that
mimics the competition between the fundamental processes
of mutation and duplication.

The rest of this paper is organized as follows. In Sec. Il,
the model is introduced, and the main result is demonstrated z,=+1
using the pair correlations. Correlations of arbitrary order are
obtained and analyzed asymptotically in Sec. Ill. To examine
the range of validity of the results, generalizations to sto-
chastic tree morphologies and sequences with larger alpha-
bets are briefly discussed in Secs. IV and V. Section VI
discusses implications for multiple site correlations in se- FIG. 1. The mutation process on a two-generation binary tree.
guences with independently evolving sites. We concluderhe multiplicative variabler indicates whether a mutation oc-
with a summary and a discussion in Sec. VII. curred.

Biological evolution is influenced by a number of pro-
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above average gives equal weights to all pairs and thus it
corresponds to a uniformly chosen sample. For example,
consider this quantity at the second generatse Fig. 1,
Go(2)=[({0304)+(0305) +{0306)]/3. One index (=3)
may be fixed since all nodes in a given generation are
equivalent.

To evaluate averages, it is useful to assign a multiplicative
random variabler,= =1 to every branch of the tree such that
oj=o;7; with j the predecessor of One hasri=1 (—1)
with probability 1-p (p), and consequently,

(=(n)=1-2p. @ (O

Pa!r co_rr_elatlons are readily cal_cu_lated using ﬁhe'_arl- FIG. 2. The trivial “star” phylogeny. The path connecting two
ables: writing o3=0¢7m 73 and similarly for o, gives

; nodes always contains the tree root.
(0304)=(00T173007174) =(0371737). Since of=1{=1,

this correlation simplifies,(o30,4)={7374). Furthermore, ) o .

mutation processes on different branches are independeldtion probability is smaller than the critical ope<p,, then
and consequently(r;7))=(7;)(7;) when i#j. Thus, A=a whileinthe complementary cage=1/\2.
(0304)=(7)? and similarly (o305)=(0306)=(7)*. The As a reference, it is useful to consider the decay of the
overall picture becomes clear: when calculating two-poin2verage node valué, (k) = (o). At the kth generation, the
correlations, the path to the tree root is traced for each nod@ath to each node involvek branches and thus, (k)

As 72=1, doubly counted branches cancel. Only branches™ G1(0)a* with G4(0)= (o). Writing G,(k)~ 8, then

that trace the path to the first common ancestor are relevant @ for all mutation probabilities, in contrast with the
In other words, asymptotic behavior 06G,(k). Below the critical mutation

rate, G,(k) <[ G;(k)/G,(0)]?, indicating that knowledge of
<(Ti0'j>=<7'>di~J (3)  the one-point average suffices to characterize correlations.
In fact, the above behavior can be attributed to the tree
with d; ; the “genetic distance” between two points, the morphology. To see that, it is useful to consider a structure-
minimal number of branches that connect two nodes. Indeeqless morphology where the only ancestor shared by two
at the second generatiaty ,=2, d3s=d3s=4, and conse- nodes is the tree root itsefsee Fig. 2 Using the notation
quently G,(2)=(a?+2a")/3 with the shorthand notation G* to denote correlations on this “star” morphology, we see
a:<T>=1; 2p. This genkefa”ZZES inkto a geometric seriesthat the average remains unchange@(k)=G?% (k)
Gy(k)=(a’+2a"+. - +271a?)/(2~1).  Evaluating —G*(0)ak. The star morphology is trivial in that all genetic

this sum gives the pair correlation distances are equat; ;=2k wheni+j. Thus, pair correla-
@ (2a))-1 tions are immediately obtained from the avera@g (k)
Gy(k)= P (4)  =[G¥(k)/G}(0)]?=a?*. As branches in the star morphol-
P _

ogy do not interact, no correlations develop.
Interestingly, pair correlations are not affected by the initial " contrast, norltnwal phylogenies do induce correlations.
state, i.e.. the value of the tree root. Indeed, G,(k) >G5 (k) when p>0. Interestingly, wherp

For sufficiently large generation numbers, the leading or-<Pc, merely the asymptotic prffactmrzl(zaz—.:_l_)>1 in
der of the pair correlation decays exponentially with the genEd- (5) is enhanced anG,(k) <G5 (k). As the critical point

eration number. However, different constants characterizé approached, this constant diverges thereby signaling the

this decay, depending on the mutation probability transition into a second regime. Whpe»p., the decay con-
stant itself is enhanced and the ratBy(k)/G3 (k) grows
a? ok - exponentially. The mutation probability affects only the
2a2-1% P=Pe asymptotic prefactor, and the decay consfantl/\2 is de-
Ga(k)= 2 (5  termined by the tree morphology. We conclude that the non-

trivial phylogeny generates significant correlations for larger
than critical mutation probabilities.

This behavior can be understood and partially rederived
using a heuristic argument. Genetically close nodes are
highly correlated, while distant pairs are weakly correlated,
as indicated by Eq3). On the other hand, distant pairs are
1 ( 1 ) more numerous. Both effects are magnified exponentially for

o ok <
1-2a2° @ PTPe
As seen from Eq4), the transition between the two different
behaviors occurs whend®=1 or alternatively at the follow-
ing mutation probability:

1— — 6) large generation numbers, and their competition results in a
V2 critical point. Different mechanisms dominate on different
sides of this point. Specifically, the number of minimal ge-
Although in general correlations decay exponenti@hy(k) netic distance pairsd=2) is 2~ 1, while the number of
~ 8%, the decay constang exhibits two distinct behaviors maximal distance pairsd=2k) is 22—, The rule (3)
which depend on the mutation probabiliy When the mu- gives the relative contributions of these two terms to the

pczi
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overall two-point correlation: ¥ a? versus 2& 12k, When the tree morphology is nontrivial, the minimal-sum

These are simply the first and last terms in the geometricules (7) and (8) imply that such factorization no longer
series that led to Eq4). Comparing these two terms in the holds. For binary trees, it is possible to obtain these correla-
limit k—oo correctly reproduces the most relevant aspectstions recursively. Let us assign the indices, 1,2 ,% to the

i.e., the location of the critical poin®) and the decay con- kth generation nodes and order them as follows:i {<i
stants of Eq(5). We conclude that competition between the < - - - <i,<2X. As the average over the realizations is per-
multiplicity and the degree of correlation of close and distantformed first, the average correlation requires a summation
nodes underlies the transition. over all possible choices of nodes,

lll. HIGHER-ORDER CORRELATIONS Fo(k)= E <0'i10'i2' o). (11)

The above analysis gives useful intuition for the overall 1siy=ip=---<ip=2

gualitative behavior. Yet it can be generalized into a moreF,roper normalization gives thenode correlation
complete treatment that addresses correlations of arbitrary
order. This set of quantities is helpful in determining the
extent to which this picture applies, and in particular, Gn(k)an(k)/
whether the transition is actually a phase transition.

Multiple point correlations obey a rule similar to E@).

For example, consider the four-node averdgeo,0506)  tion. They all share the tree root as a common ancestor. The
in Fig. 1. Using the 7 variables, we rewrite

229 - > 5 two first generation nodes naturally divide this group into
(03040506) =001 72737475 ), and4 since o°=7"=1 w0 independently evolving subgroups. This partitioning
we get (03040506)=(T3747576) =(7)" OF (0304050%6) procedure allows a recursive calculation of the correlations.

=(0304)(050%). The four-point average equals a product of Formally, a given choice of nodes<li;<i,<- - - <i <2
two-point averages with the indices chosen so as to minimizg, partitioned into two subgroups as follows<1,<- - -

the total number of branches. This can also be seen by tra<*<im$2k—1 and X l41<i . <. <i;<2K li2k 1

ing the path of each node to the tree root and cancelinghese subgroups involve differentvariables, so their cor-
doubly counted branches. Thus, E) generalizes as fol- |gjations factorize

2k
n ) (12

Consider a group of nodes taken from th&th genera-

lows:
<0'i0'j0'k0'|>:<7'>di’j’k'lv (7 (i) oony a){Ti y 0y 13
with the four-point genetic distance The proportionality constant depends upon the paritynof
andn—m. Even correlations are independent of the tree root,
di j ki =min{d; ;+dy,d; +d;,;,di . (8)  while odd correlations are proportional to the average value

of the tree root. This extends to subtrees as well, and since
Similarly, the law for arbitrary order averagegig raisedto  o,=1, the average value of the root of both subtreesr)s
a power equal to the-point genetic distance. This distance This factor accompanies all odd correlations. Substituting
is obtained by considering all possible decompositions intdq. (13) into Eq.(11) shows that the summation factorizes as
pairs of nodes. The genetic distance is the minimal sum ofvell. Using F(k=1)=21<i <. < <10, -0y ) Te-
the corresponding pair distances. Averages over an odd NUyces the problem to two subtrees that are one generation

ber of nodes can be obtained by adding a “pseudo” node a¢norter. and a recursion relation fBr(k) emerges,
the root of the tree and using the conventiin,.—k when

i belongs to thekth generation. The averade ) is gener- n
ated by the root and this factor multiplies all odd-order cor- Fo(k)= 2 Fu(k—=1)ByFp_m(k—1)By_m, (14
relation. Since even-order correlations are independent of the m=0

root value, and odd correlations are simply proportional to . . B
{ag), we set{op)=1 in what follows without loss of gener- with the boundary condition&,(0)= dn ot on,1. The sum-
mation corresponds to theet+ 1 possible partitions of a group

ality. ) .
The average-point correlation is defined as follows: of n nodes into two subgroups. The weight of the odd corre-
lations is accounted for bB,,,
Gn(k)={(oi,0i, - - 0i ), ©) 1. n=o2r
. B,= 15
where the averages are taken over all realizations and over “l({7r), n=2r+1. =

all possible choices af distinct nodes at thieth generation.

For the trivial star phylogeny, the-point genetic distance is Using the definition(11), the sumsF (k) vanish whenever

constant and equals a product of the correlation order and tHe>2%. This behavior emerges from the recursion relations as

generation numberi=nk. Consequently, all averages are well. Additionally, one can check that the sums are properly

trivial as knowledge of the one-point average immediatelynormalized in the no mutation casex< 1),Fn(k)=(§k)

gives all higher-order average§ (k)=[G7(k)]", or ex- whenn<2k,

plicitly For sufficiently smalh, it is possible to evaluate the sums
explicitly using Egs.(14). The average correlations are then

Gr(k)=a" (100 found using Eq(12),



PRE 59 GENETIC CORRELATIONS IN MUTATION PROCESSES 7003

Go(k)=1, Hencef,, is positive and finite for alh, which validates the
ansatz(17) in the regimep<p..
Gy(k)=a¥, In principle, the coefficients can be found by introducing
(16) the generating functions
@ (2a?)k-1
Gk = 207—1 271

f(2)=2, f,2". (20)

(4a%) = (4a%)

32 dgz-1 (272

Multiplying Eq. (19) by z" and summing oven yields the

Ga(K)= . . . Y
3(k) 202—1 (2%~ 1)(2k-2) following equation for the generating functions:

Indeed, these quantities agree with the previous results for f(2a2) = f(2)+1(-2) af(Z)—f(—Z) 2 2D

n=1,2 and equal unity whep=0. We see that correlations 2 2

involve a sum of exponentials. Furthermore, it appears that

the condition 22>=1 still separates two different regimes of This equation reflects the structure of the recursion relations.
behaviors. However, calculating higher correlations explic-A factor « is generated by each odd-index coefficient and, as
itly is not feasible as the expressions are involved for large a result, the odd part of the generating functigféz) — f

Instead, we perform an asymptotic analysis that more clearly—z)]/2=f,z+f;z3+ - - -

exposes the leading large generation number behavior.

Let us consider first the regimp<<p. or equivalently
2a?>1. From Eq.(16), we see that the leading largebe-
havior of the average correlation satisf@s(k) ~ a"* for n

is multiplied by «. Although a
general solution of this equation appears rather difficult, it is
still possible to obtain results in the limiting cases. It is use-
ful to check that whena=1, the above equation reads
f(2z)=12(z) which together with the boundary conditions

=0, 1, 2, and 3. We will show below that this behavior fo=f;=1 gives f(z)=exp@ or f,=1/nl. As g,—1, the

extends to higher-order correlations, i.e.,

Gp(K)=gna" . (17

In other words, the following limita=lim_,.[G,(k)]¥"*
exists and is independent of As correlations are larger
when the phylogeny is nontrivial, one expects ti&af(k)
=G} (k) orin terms of the prefactorg,,=g} =1. Combin-
ing Eqg. (12) with the leading behavior of the combinatorial

normalization constanﬁb~2”k/n! gives the asymptotic be-
havior of the sums

Fo(k)=f,(2a)™  with (18
Substituting Eq.(18) into the recursion relation(14)
eliminates the dependence on the generation nukylzerd a

recursion relation for coefficients, is found,

n

fn(za)n:mzo frBmfn-mBn-m, (19

with B, of Eq. (15). These recursion relations are consistent

with the conditiond ,=f,=1. The cas&= 2 reproduces the
coefficient f,= a?/[ (2a)?—2]. The divergence at @®=1
indicates that the ansaid7) breaks down at the critical

point. To show that the ansatz holds in the entire range 0

=p<p., one has to show that the coefficieri{sare posi-
tive and finite for alln. Rewriting the recursiof(19) explic-
itly, fo[(2a)"—2B,]=30 "4 fBmfn_mBn_m, allows us to
prove this. Sincdy=1>0, then to complete a proof by in-
duction one needs to show that a positifiye ; implies a

positive f,,. The right-hand side of the recursion is clearly

positive and thus the positivity df, hinges on the positivity
of the term (2)"—2B,. When 2?>1, then a>1/\2
and certainly 2>1. Combining this with the inequality
(2a)?>>2>2B, shows that (2)"—2B,>0 when n=2.

trivial correlations are recovere,— G}, , indicating that
the role played by the tree morphology diminishes in the no
mutation limit.

In the limit p—p, it is possible to extract the leading
behavior of the asymptotic prefactors. Here, it is sufficient to
keep only the highest powers of the diverging term 242
—1). The calculation in this case is identical to the one de-
tailed below for the cas@>p. and we simply quote the
results,

2 r

2r! a
— | | " n=2r
o (k rl |2(2a°—1) ’
=Y erenp w2
T TPy

(22

In this limit, the odd-order correlations simply follow from
their even counterparts and, for examdlg,, ;=f5, .

In the complementary cage>p., it proves useful to re-
write the recursion relation€l9) for the even and odd cor-
relations separately,

r

F2r<k>=§0 Fas(k—1)F5 o5(k—1)

r-1
ta? 2 Fosea(k=DFarzea(k=1),
(23

r

F2r+1(k):20152=:0 Fos(K—1)Fy_ps+1(k—1).

The leading asymptotic behavior of E(.6) implies Fy(k)
:fo, Fl(k)ZfO(Za)k, Fz(k)2f22k, and F3(k)
=f,2%(2a)" with fo=1 andf,=a?/[2—(2a)?]. Let us as-
sume that this even-odd pattern is general,
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Far(k) =122,

24
Fors1(K)=152%(2a) . 24

Substituting this ansatz into E€R3) shows that the second
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2ri k| _,
Tz 27k n=2r
N(SE (29
(2!’:;1) |:§:| 27k(r+l/2)' n=2r+1.

summation in the recursion for the even correlations is neg-

ligible asymptotically. Both equations reduce to

r

1:2r2r:sgo f25f2r—251 (25)

and therefore the pattei24) holds whenp>p.. It is seen
that odd correlators are enslaved to the even ones.

Generally, the diverging quantity |1/—2a?| is replaced
with the finite (but ever growing quantity k. The algebraic
modification to the leading exponential behavior in E2P)

is reminiscent of the logarithmic corrections that typically
characterize critical behavior in second-order phase transi-
tions[10].

To obtain the coefficients, we introduce the generating

functions f(z)=3,f,z?", which satisfiesf(0)=1, f'(0)
=0, andf"(0)=f,=a?/[2(1—2a?)]. The recursion rela-
tion translates into the following equation fb¢z):

f(\22)=[f(2)]2

Its solution is f(z)=exd(a2)¥2(1—2a?)]. Thus, f,,
=1/r'[f,]". From Egs(17) and(18), the leading asymptotic
behavior in the regim@.<p<1/2 is found,

(26)

2rtf o ], )
— Kr n=2r
M 2(1-2a9| %
Gal=\ rsin| a2 T
rl [2(1 2a%)) @2 AL
: — LA

(27)

Using the Stirling formulan! =27nn"e™", it is seen that
the coefficientsg,, have nontrivial r behavior asgs,,
=04 1/(2r+1)=\2[2a%(1—2a?)]"r".

The even-order correlations have identical asymptotic b

havior to the two-point correlation: lign...[G,, (k)]Y¥?¥

e_

IV. STOCHASTIC TREE MORPHOLOGIES

The following question arises: how general is the behav-
ior described above? The binary tree considered was particu-
larly simple as it involved a fixed number of children and a
fixed generation lifetime. Below we show that relaxing either
of these conditions does not affect the nature of the results.

Let us first consider tree morphologies with a varying
number of children, i.e., the trees are generated by a stochas-
tic branching process where with probabil®y there arer
children. This probability sums to unit{,P,=1, and the
average number of children is given By)==,rP,. As a
result, the average number of nodes at kktte generation is
(r)%, indicating that the tree “survives” only ifr)>1, a
classical result of branching processes thddn]. The rule
(3) is independent of the tree morphology, and, therefore,
one can repeat the heuristic argument in Sec. Il. The extreme
contributions to the average pair correlations have the rela-
tive weights(r)<~1a? and (r)2&~Da2k Comparing these
two terms asymptotically shows that the critical point is a
simple generalization of Eq6),

=1/{/2 for all r. The odd-order correlations behave differ-

ently, however, as this limit depends on the correlation order: 1 [1
iMoo Gop 4 1(K) Y@ +Dk=1/2(2) Y2+, Thus, only Pe=5|1- (ry)’
in the limit r—o do the even- and odd-order correlations

agree. However, this conclusion is misleading since the d
cay rate of theproperly normalizedodd-order correlations ancestry size varies between 1 and This indicates that

oGrzég rl(clf))r/rglgtli(c)JrTSG\ZI{/(ek)cclJi(:Iﬁj %r:'(t:ﬁ;tt?h;hgécogyt?:tee\g??\;vogorreIations are significant over a larger range of mutation
point correlations .characterizes the decay of all higher-orderates for smaller trees. The h_eurlstlc argument alsp gives the
correlations. 5ec§y constarﬁ, and thg leading as;_/mptonc.behawor of Eq.
From Egs.(22) and(27), we see that the coefficients di- ©) |s|general|zed by swnply replacmg 2 wiln). A more
verge according to complete treatment of thIS. problem is actually possible and
closely follows Eq.(4). Again, the ancestry sizg) replaces
the deterministic value 2. As both the results and the overall

behavior closely follow the deterministic case, we do not

as the critical point is approacheg—p.. Since the corre- detail them here.

lations must remain finite, this indicates that the purely ex- A second possible generalization is to morphologies with
ponential behavior must be modified wher-p.. Indeed, & varying generation lifetime. Such tree morphologies can be
evaluating Eq(16) at p=p, yields F,(k)=f,2X and F (k) realized by considering a continuous time variable. Branch-
=£,23%2 with f,=k/4, i.e., the even-odd pattern of EQ4) ing is assumed to occur with a constant ratd-or such tree

is reproduced. Furthermore, the valuefgfshows that the morphologies, the number of nodes(t) obeys n(t)
diverging quantity 14— 2«?| is simply replaced bk. This = wn(t), which gives an exponential growtt{t) =e"'. Simi-
implies that the coefficients become generation dependentgrly, the mutation process is assumed to occur with a con-

(30

®he critical mutation rate varies from 0 to 1/2 as the average

1:2r:f2r+1~|pc_p|7r (28)

f,— f,(K). Assuming the pattern E€R4), substituting it into
Eq. (25), and following the steps that led to E@Q7) yields
the critical behavior

stant ratey. A useful characteristic of this process is the
autocorrelatiorA(t) = (o (0)o(t)). To evaluate its evolution,
we note thatA(t+dt)=(1— ydt)A(t) — ydtA(t) when dt
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—0. Therefore, A(t)=—2yA(t) and one findsA(t) a=[(7)|=|1—p(1—-¢€'%)|=1-2p(1—p)(1—cosd). Fur-
=e 2", The quantitiesn(t) and A(t) allow calculation of thermore, it is sensible to consider arbitrary phase shifts 0
the average pair correlation. < @<27 since the identitypo=rr=1 rather thans"= 7"

Let us pick two nodes at timeand denote their values by —1 was used to evaluate correlations.
oi(t) andgy(t), and let the genetic distance between these The critical point is determined from the condition
two nodes ber. Using their first common ancestare(t  (rya?=1. This equation has a physical solution only when
—7)=0i(t—7)=0;(t—7) and the identityr°=1, their cor-  24< g<2(7— ¢) with the shorthand notation
relation can be evaluated as follows:

(oi(t)oj(1))=(oi(t)oe(t—T)oc(t—T)Ty(1)) (pICOSl\/%. (34)
=(ai(t)oi(t— 1)) oj(D)oj(t— 7)) =A%(7).
In terms of the number of states, this translates to

Integrating over all possible genetic distances gives the av-

. . a a
erage pair correlation

<n<—. (35
T @

t
OdT”(T)AZ(T) Hence, the transition may or may not exist depending on the
— (31)  details of the model, which in this particular “clock” model
f drn(7) case is the number of states. As we have seen before, corre-
0 lations become less pronounced when the humber of ances-
tors increases. Indeed, the transition always exists in the limit
The factorn(7)/[tdmn(7) accounts for the multiplicity of (r)—1, while the transition is eliminated in the other ex-
pairs with genetic distance. Using A(t)=e"?" andn(r)  treme(r)— o. When the transition does occur, the following
=e"!, the average pair correlation is evaluated, critical mutation probability is found:

Gy(t)=

e(V—4y)t_ 1
Ga(t)=

=4y i1 32 (36)

For the star phylogeny the genetic distance is alwasgsd
thereforeG} (t)=e~*". Here the relevant parameter is the . .
normalized mutation rate = y/v. Again, there exists a criti- ndeed, Eq.(30) is reproduced in the two-state casé (
cal pointw.=1/4. For smaller than critical mutation rates, =7)- ThiS turns out to be the minimal critical poin
w<w,, correlations due to the tree morphology are not pro= (1= V1Kr))/2, reflecting the fact that the transitiom
nounced,G,(t)=G3 (t). On the other hand, whea>w,, — 7 provides the most effective mutation mechanism. In
strong correlations are generated aBs(k)~e " is expo- effect, increasing the number of state_s reduces_, the mutatlon
nentially larger tharG% (t). We conclude that the behavior rate, and this mechanism is responsible for eliminating the

AN . transition.
found for the deterministic case is robust. . o
Interestingly the transition is restored when both the mu-

tation and the duplication processes occur continuously in
time. In this continuous description, duplication occurs with

We now consider larger alphabets. Previously, the twgate » and the mutationr—e€'’o occurs with ratey. The
states satisfied?>=1. A natural generalization is to"=1,  autocorrelation A(t)=(c(0)o(t))=exg—n1l—e '%t] is
ie., the nth-order roots of unity o=e*""" with |  found from its time evolutionA(t)=—y(1—e )A(t). It
=0,1,... n—1. Previously, with probability the mutation  can be easily shown from the definition of the pair correla-
o— 1o occurred withr=¢'? and #= 7. We thus impose the  tjon (33) that A%(7) should be replaced witHA(7)|?
same transition but witl=2/n. This can be viewed as a = exg—2y(1—cosf)7] in the integral(31). Comparing with
clockwise rotation in the complex plane by an anglé&Since  the results of the preceding section, we see that the effective
the states are now complex, the definition of the pair corremuytation rate is nowy(1—cosf)/2. As a result, the location
lation is now of the critical point is increased by a factor 2/tos).

_ Using the normalized mutation rate= y/v, one finds
Ga(k)={(aig})), (33

V. MULTISTATE SEQUENCES

1

" 2(1—co¥) " (37)

with o the complex conjugate of. The real part ofo;o, we
gives the inner product of the two-dimensional vectors cor-

responding tar; and g, respectively. o S . .
. — - . . This critical point increases with the number of states, and it
Con3|de_rthe_averag(er304> in Fig. 1. Using ther vari- diverges according t@.= (n/27)? whenn— . This behav-
ables andrr=co=1 one has(os304)=(007173007174)  jor is intuitive as one expects that mutations between a large
=(1374)=(T3){13) = {7} 7)=|(7)|. All of our previous re- number of states diminish correlations and, consequently,
sults hold if one replaces the average with its magnitude phylogenetic effects.
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VI. TWO-SITE CORRELATIONS
pe=2[1- ()" (40)

When sequences are not of unit length, i.e., when ther henp< the phvlogeny plavs a sianificant role and the
are two or more sites per sequence, the results can be used 1o P=Pc, phylogeny piay 9 % while when

characterize a correlation measure quantifying the interactio%ariance is exponentially enhancellp~a
between sites. Assume there are t?/vo or m(?re sites per sB- Pe’ the variance is still statistical in natutkp=AA"p,
) P Wwith A>1. Hence, it is more likely to observe large values of

guence and that the sites evolve independently of each other.. g
Denote the state of positicmin sequencé aso?, and simi- p in the tree morphology than it is in the star morphology,
1

ey ) even when the sites evolve independently. Since correlations
larly denote the state of positidnin sequencé aSch. If the P y

! _and variances play opposite roles, they are influenced in dif-
sequences were not related by a phylogenetic tree, but iy ant ways by the phylogeny.

stead were independent samples drawn from a given distri-
bution, then the following quantity defined on a finite set of VII. SUMMARY

N=2X samples would specify a two-site correlation measure: ) ]
In summary, we have studied the influence of the phylog-

1 ap 1 a b eny on correlations between the tree’s nodes. In general, for
PN EI TigiT N2 Z O 2 gj - (38 sufficiently small mutation rates, the morphology plays a mi-
nor role. For sufficiently high mutation rates large correla-
Correlation between sitesandb is indicated by a nonzero tions that can be attributed to the phylogeny may occur. The
value of p. Related correlation measures, defined over alfransition between the two regimes of behavior is sharp and
sequences at a given generation, such as the mutual informig-marked by a critical mutation rate. Below this critical point
tion are used in analysis of biological sequences. all correlations are well described by the average, while
The quantityp is well defined also when the sequencesabove it, correlations decay much slower than the average.
are related by a phylogenetic tree. Due to the assumption d#nderlying this transition is the competition between the
independent positions, the mean @fover all realizations Multiplicity and the degree of correlations between geneti-
vanishes(p)=0. This behavior is independent of the tree cally close and distant leafs. This competition also leads to
morphology. To see the effects of the phylogeny, one needé@rger fluctuations in the correlation between different sites,

to consider fluctuations, i.e., the variankp=(p?), even when these evolve independently.
We have also seen that this behavior is robust and appears
1 abl? 1 71 b2 to be independent of many details of the model. While the
Ap={IN Z gioi ] J7VN Z i N EI i overall behavior generally holds, specific details such as the

location of the critical point and the decay rate in the regime

1 p>p. depend on a specific tree-dependent parameter: the
> <Uia(,?><aib0?>_ > <Ufg?>2 (cPoP) average number of children.
ij N™ ] kI The above results can be extended in several directions. It
will be interesting to see whether the recursive methods can
be generalized to stochastic tree morphologies and in par-
ticular to the continuous time case. This method should still
be applicable even when the mutation rates are time depen-
The first equality in the above equation was obtained bydent or disordered. In such cases it will be interesting to
rewriting Eq. (38) as p=p;—p, and noting that(p,p,)  determine which parameters determine the critical point, the
=(p3). The final expression can be simplified usingdecay constants, etc.

[
Z| -

2

N+§j <T>2du}_$

1
N2

N+, (7).
1]

Ei¢j<7->2di,j:N(N—l)Gz(az,k) with G,(a?,k) the pair Correlations can serve as useful measures of the diversity
correlation of Eq.(4), considered as a function af>. The  Of a system since small correlations indicate large diversity
following expression for the variance is obtained: and vice versa. If the diversity can be measured in an experi-
ment where the phylogeny is controlled, its time dependence
1 1 1 2 can be used to infer the mutation probability. Similarly, if the
Ap=|—+ 1——)G2(a2,k) —=+[1- =|Gy(a,k)] . mutation probability can be controlled, then the degree of
N N N N correlation/diversity can be used to infer characteristics of

(39 the phylogeny. Thus, our results may be useful for inferring

For the star morphology the leading order of the fluctua-Statistical properties of actual biological systems.

tions is independent of the mutation rate and it scales as the
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