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Genetic correlations in mutation processes
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Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 11 December 1998!

We study the role of phylogenetic trees on correlations in mutation processes. Generally, correlations decay
exponentially with the generation number. We find that two distinct regimes of behavior exist. For mutation
rates smaller than a critical rate, the underlying tree morphology is almost irrelevant, while mutation rates
higher than this critical rate lead to strong tree-dependent correlations. We show analytically that identical
critical behavior underlies all multiple point correlations. This behavior generally characterizes branching
processes undergoing mutation.@S1063-651X~99!01606-2#

PACS number~s!: 87.101e, 87.15.Cc, 02.50.2r, 87.23.Kg
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I. INTRODUCTION

Biological evolution is influenced by a number of pr
cesses including population growth, mutation, extinctio
and interaction with the environment, to name a few@1#.
Genetic sequences are strongly affected by such proce
and thus provide an important clue to their nature. The
going effort of reconstructing evolution histories given t
incomplete set of mapped sequences constitutes much o
current understanding of biological evolution.

However, this challenge is extraordinary as it involves
inverse problem with an enormous number of degrees
freedom. Statistical methods such as maximum likeliho
techniques coupled with simplifying assumptions on the
ture of the evolution process are typically used to infer
structure of the underlying evolutionary tree, i.e., the phylo
eny @2–5#.

Genetic sequences such as RNA/DNA or amino acid
quences can be seen as words with letters taken from
alphabet of 4 or 20 symbols, respectively. Generally, th
are nontrivial intrasequence correlations that influence
evolution of the entire sequence. Additionally, the struct
of the evolutionary tree plays a role in this process as
generally expects that the closer sequences are on this
the more correlated they are@6#. In this study, we are inter
ested in describing the influence of the latter aspect, nam
the phylogeny, on the evolution of sequences. Specifica
we examine correlations between sequences, the
complementing related studies on changes in fluctuations
entropy due to the phylogeny@7–9#. To this end, we conside
particularly simple sequences and focus on a model
mimics the competition between the fundamental proces
of mutation and duplication.

The rest of this paper is organized as follows. In Sec.
the model is introduced, and the main result is demonstra
using the pair correlations. Correlations of arbitrary order
obtained and analyzed asymptotically in Sec. III. To exam
the range of validity of the results, generalizations to s
chastic tree morphologies and sequences with larger al
bets are briefly discussed in Secs. IV and V. Section
discusses implications for multiple site correlations in
quences with independently evolving sites. We conclu
with a summary and a discussion in Sec. VII.
PRE 591063-651X/99/59~6!/7000~8!/$15.00
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II. PAIR CORRELATIONS

Let us formulate the model first. The sequences are ta
to be of unit length, i.e., single symbol, and the correspo
ing alphabet consists of two letters. The numeric valuess
561 are conveniently assigned to these letters. We w
focus on binary trees where the number of children equ
two. This structure is deterministic in that both the number
children and the generation lifetime are fixed. Neverthele
the results apply qualitatively to stochastic tree morpholog
as well. Finally, the mutation process is implemented as
lows: with probability 12p a child equals his predecess
while with probabilityp a mutation occurs, as illustrated i
Fig. 1. The mutation process is invariant under the trans
mations→2s and p→12p, and we restrict our attention
to the case 0<p<1/2 without loss of generality.

A natural question is how correlated are the vario
leaves~or nodes! of a tree in a given generation~or equiva-
lently, time!? ConsiderG2(k) the average correlation be
tween two nodes at thekth generation

G2~k!5Š^s is j&‹. ~1!

The first average should be taken over all realizations fo
fixed pair of nodesiÞ j , while the second average is take
over all different pairs belonging to the same generation. T

FIG. 1. The mutation process on a two-generation binary tr
The multiplicative variablet indicates whether a mutation oc
curred.
7000 ©1999 The American Physical Society
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PRE 59 7001GENETIC CORRELATIONS IN MUTATION PROCESSES
above average gives equal weights to all pairs and thu
corresponds to a uniformly chosen sample. For exam
consider this quantity at the second generation~see Fig. 1!,
G2(2)5@^s3s4&1^s3s5&1^s3s6&#/3. One index (i 53)
may be fixed since all nodes in a given generation
equivalent.

To evaluate averages, it is useful to assign a multiplica
random variablet i561 to every branch of the tree such th
s i5s jt i with j the predecessor ofi. One hast i51 (21)
with probability 12p (p), and consequently,

^t&[^t i&5122p. ~2!

Pair correlations are readily calculated using thet vari-
ables: writing s35s0t1t3 and similarly for s4 gives
^s3s4&5^s0t1t3s0t1t4&5^s0

2t1
2t3t4&. Since s i

25t i
251,

this correlation simplifies,̂ s3s4&5^t3t4&. Furthermore,
mutation processes on different branches are indepen
and consequently ^t it j&5^t i&^t j& when iÞ j . Thus,
^s3s4&5^t&2 and similarly ^s3s5&5^s3s6&5^t&4. The
overall picture becomes clear: when calculating two-po
correlations, the path to the tree root is traced for each n
As t251, doubly counted branches cancel. Only branc
that trace the path to the first common ancestor are relev
In other words,

^s is j&5^t&di , j ~3!

with di , j the ‘‘genetic distance’’ between two points, th
minimal number of branches that connect two nodes. Inde
at the second generationd3,452, d3,55d3,654, and conse-
quently G2(2)5(a212a4)/3 with the shorthand notation
a5^t&5122p. This generalizes into a geometric seri
G2(k)5(a212a41•••12k21a2k)/(2k21). Evaluating
this sum gives the pair correlation

G2~k!5
a2

2a221

~2a2!k21

2k21
. ~4!

Interestingly, pair correlations are not affected by the init
state, i.e., the value of the tree root.

For sufficiently large generation numbers, the leading
der of the pair correlation decays exponentially with the g
eration number. However, different constants characte
this decay, depending on the mutation probability

G2~k!.H a2

2a221
a2k, p,pc

a2

122a222k, p.pc.

~5!

As seen from Eq.~4!, the transition between the two differen
behaviors occurs when 2a251 or alternatively at the follow-
ing mutation probability:

pc5
1

2 S 12
1

A2
D . ~6!

Although in general correlations decay exponentiallyG2(k)
;b2k, the decay constantb exhibits two distinct behaviors
which depend on the mutation probabilityp. When the mu-
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tation probability is smaller than the critical onep,pc , then
b5a while in the complementary caseb51/A2.

As a reference, it is useful to consider the decay of
average node valueG1(k)5^s&. At the kth generation, the
path to each node involvesk branches and thusG1(k)
5G1(0)ak with G1(0)5^s0&. Writing G1(k);bk, thenb
5a for all mutation probabilities, in contrast with th
asymptotic behavior ofG2(k). Below the critical mutation
rate,G2(k)}@G1(k)/G1(0)#2, indicating that knowledge of
the one-point average suffices to characterize correlation

In fact, the above behavior can be attributed to the t
morphology. To see that, it is useful to consider a structu
less morphology where the only ancestor shared by
nodes is the tree root itself~see Fig. 2!. Using the notation
G* to denote correlations on this ‘‘star’’ morphology, we s
that the average remains unchangedG1(k)5G1* (k)
5G1* (0)ak. The star morphology is trivial in that all geneti
distances are equal:di , j52k when iÞ j . Thus, pair correla-
tions are immediately obtained from the averageG2* (k)
5@G1* (k)/G1* (0)#25a2k. As branches in the star morpho
ogy do not interact, no correlations develop.

In contrast, nontrivial phylogenies do induce correlatio
Indeed,G2(k).G2* (k) when p.0. Interestingly, whenp
,pc , merely the asymptotic prefactora2/(2a221).1 in
Eq. ~5! is enhanced andG2(k)}G2* (k). As the critical point
is approached, this constant diverges thereby signaling
transition into a second regime. Whenp.pc , the decay con-
stant itself is enhanced and the ratioG2(k)/G2* (k) grows
exponentially. The mutation probability affects only th
asymptotic prefactor, and the decay constantb51/A2 is de-
termined by the tree morphology. We conclude that the n
trivial phylogeny generates significant correlations for larg
than critical mutation probabilities.

This behavior can be understood and partially rederiv
using a heuristic argument. Genetically close nodes
highly correlated, while distant pairs are weakly correlat
as indicated by Eq.~3!. On the other hand, distant pairs a
more numerous. Both effects are magnified exponentially
large generation numbers, and their competition results
critical point. Different mechanisms dominate on differe
sides of this point. Specifically, the number of minimal g
netic distance pairs (d52) is 2k21, while the number of
maximal distance pairs (d52k) is 22(k21). The rule ~3!
gives the relative contributions of these two terms to

FIG. 2. The trivial ‘‘star’’ phylogeny. The path connecting tw
nodes always contains the tree root.
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7002 PRE 59E. BEN-NAIM AND A. S. LAPEDES
overall two-point correlation: 2k21a2 versus 22(k21)a2k.
These are simply the first and last terms in the geome
series that led to Eq.~4!. Comparing these two terms in th
limit k→` correctly reproduces the most relevant aspe
i.e., the location of the critical point~6! and the decay con
stants of Eq.~5!. We conclude that competition between t
multiplicity and the degree of correlation of close and dist
nodes underlies the transition.

III. HIGHER-ORDER CORRELATIONS

The above analysis gives useful intuition for the over
qualitative behavior. Yet it can be generalized into a m
complete treatment that addresses correlations of arbit
order. This set of quantities is helpful in determining t
extent to which this picture applies, and in particul
whether the transition is actually a phase transition.

Multiple point correlations obey a rule similar to Eq.~3!.
For example, consider the four-node average^s3s4s5s6&
in Fig. 1. Using the t variables, we rewrite
^s3s4s5s6&5^s0

4t1
2t2

2t3t4t5t6&, and since s25t251
we get ^s3s4s5s6&5^t3t4t5t6&5^t&4 or ^s3s4s5s6&
5^s3s4&^s5s6&. The four-point average equals a product
two-point averages with the indices chosen so as to minim
the total number of branches. This can also be seen by
ing the path of each node to the tree root and cance
doubly counted branches. Thus, Eq.~3! generalizes as fol-
lows:

^s is jsks l&5^t&di , j ,k,l, ~7!

with the four-point genetic distance

di , j ,k,l5min$di , j1dk,l ,di ,k1dj ,l ,di ,l1dj ,k%. ~8!

Similarly, the law for arbitrary order averages is^t& raised to
a power equal to then-point genetic distance. This distanc
is obtained by considering all possible decompositions i
pairs of nodes. The genetic distance is the minimal sum
the corresponding pair distances. Averages over an odd n
ber of nodes can be obtained by adding a ‘‘pseudo’’ node
the root of the tree and using the conventiondi ,root5k when
i belongs to thekth generation. The average^s0& is gener-
ated by the root and this factor multiplies all odd-order c
relation. Since even-order correlations are independent o
root value, and odd correlations are simply proportional
^s0&, we set̂ s0&51 in what follows without loss of gener
ality.

The averagen-point correlation is defined as follows:

Gn~k!5Š^s i 1
s i 2

•••s i n
&‹, ~9!

where the averages are taken over all realizations and
all possible choices ofn distinct nodes at thekth generation.
For the trivial star phylogeny, then-point genetic distance is
constant and equals a product of the correlation order and
generation number,d5nk. Consequently, all averages a
trivial as knowledge of the one-point average immediat
gives all higher-order averages,Gn* (k)5@G1* (k)#n, or ex-
plicitly

Gn* ~k!5ank. ~10!
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When the tree morphology is nontrivial, the minimal-su
rules ~7! and ~8! imply that such factorization no longe
holds. For binary trees, it is possible to obtain these corr
tions recursively. Let us assign the indices 1,2, . . . ,2k to the
kth generation nodes and order them as follows: 1< i 1, i 2
,•••, i n<2k. As the average over the realizations is pe
formed first, the average correlation requires a summa
over all possible choices of nodes,

Fn~k!5 (
1< i 1, i 2,•••, i n<2k

^s i 1
s i 2

•••s i n
&. ~11!

Proper normalization gives then-node correlation

Gn~k!5Fn~k!Y S 2k

n D . ~12!

Consider a group ofn nodes taken from thekth genera-
tion. They all share the tree root as a common ancestor.
two first generation nodes naturally divide this group in
two independently evolving subgroups. This partitioni
procedure allows a recursive calculation of the correlatio
Formally, a given choice of nodes 1< i 1, i 2,•••, i n<2k

is partitioned into two subgroups as follows: 1< i 1,•••

, i m<2k21 and 2k2111< i m11,•••, i n<2k2112k21.
These subgroups involve differentt variables, so their cor-
relations factorize

^s i 1
•••s i n

&}^s i 1
•••s i m

&^s i m11
•••s i n

&. ~13!

The proportionality constant depends upon the parity ofm
andn2m. Even correlations are independent of the tree ro
while odd correlations are proportional to the average va
of the tree root. This extends to subtrees as well, and s
s051, the average value of the root of both subtrees is^t&.
This factor accompanies all odd correlations. Substitut
Eq. ~13! into Eq.~11! shows that the summation factorizes
well. Using Fm(k21)5(1< i 1,•••, i m<2k21^s i 1

•••s i m
& re-

duces the problem to two subtrees that are one genera
shorter, and a recursion relation forFn(k) emerges,

Fn~k!5 (
m50

n

Fm~k21!BmFn2m~k21!Bn2m , ~14!

with the boundary conditionsFn(0)5dn,01dn,1 . The sum-
mation corresponds to then11 possible partitions of a group
of n nodes into two subgroups. The weight of the odd cor
lations is accounted for byBn ,

Bn5H 1, n52r

^t&, n52r 11.
~15!

Using the definition~11!, the sumsFn(k) vanish whenever
n.2k. This behavior emerges from the recursion relations
well. Additionally, one can check that the sums are prope

normalized in the no mutation case (a51),Fn(k)5(n
2k

)
whenn<2k.

For sufficiently smalln, it is possible to evaluate the sum
explicitly using Eqs.~14!. The average correlations are the
found using Eq.~12!,
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PRE 59 7003GENETIC CORRELATIONS IN MUTATION PROCESSES
G0~k!51,

G1~k!5ak,
~16!

G2~k!5
a2

2a221

~2a2!k21

2k21
,

G3~k!5
3ak12

2a221

~4a2!k2~4a2!

4a221
2~2k22!

~2k21!~2k22!
.

Indeed, these quantities agree with the previous results
n51,2 and equal unity whenp50. We see that correlation
involve a sum of exponentials. Furthermore, it appears
the condition 2a251 still separates two different regimes
behaviors. However, calculating higher correlations exp
itly is not feasible as the expressions are involved for largn.
Instead, we perform an asymptotic analysis that more cle
exposes the leading large generation number behavior.

Let us consider first the regimep,pc or equivalently
2a2.1. From Eq.~16!, we see that the leading largek be-
havior of the average correlation satisfiesGn(k);ank for n
50, 1, 2, and 3. We will show below that this behavi
extends to higher-order correlations, i.e.,

Gn~k!.gnank. ~17!

In other words, the following limita5 limk→`@Gn(k)#1/nk

exists and is independent ofn. As correlations are large
when the phylogeny is nontrivial, one expects thatGn(k)
>Gn* (k) or in terms of the prefactors,gn>gn* 51. Combin-
ing Eq. ~12! with the leading behavior of the combinatori

normalization constant (n
2k

);2nk/n! gives the asymptotic be
havior of the sums

Fn~k!5 f n~2a!nk with f n5
gn

n!
. ~18!

Substituting Eq.~18! into the recursion relation~14!
eliminates the dependence on the generation numberk, and a
recursion relation for coefficientsf n is found,

f n~2a!n5 (
m50

n

f mBmf n2mBn2m , ~19!

with Bn of Eq. ~15!. These recursion relations are consiste
with the conditionsf 05 f 151. The casen52 reproduces the
coefficient f 25a2/@(2a)222#. The divergence at 2a251
indicates that the ansatz~17! breaks down at the critica
point. To show that the ansatz holds in the entire rang
<p,pc , one has to show that the coefficientsf n are posi-
tive and finite for alln. Rewriting the recursion~19! explic-
itly, f n@(2a)n22Bn#5(m51

n21 f mBmf n2mBn2m , allows us to
prove this. Sincef 051.0, then to complete a proof by in
duction one needs to show that a positivef n21 implies a
positive f n . The right-hand side of the recursion is clear
positive and thus the positivity off n hinges on the positivity
of the term (2a)n22Bn . When 2a2.1, then a.1/A2
and certainly 2a.1. Combining this with the inequality
(2a)2.2.2Bn shows that (2a)n22Bn.0 when n>2.
or

at

-

ly

t

0

Hencef n is positive and finite for alln, which validates the
ansatz~17! in the regimep,pc .

In principle, the coefficients can be found by introducin
the generating functions

f ~z!5(
n

f nzn. ~20!

Multiplying Eq. ~19! by zn and summing overn yields the
following equation for the generating functions:

f ~2az!5F f ~z!1 f ~2z!

2
1a

f ~z!2 f ~2z!

2 G2

. ~21!

This equation reflects the structure of the recursion relatio
A factor a is generated by each odd-index coefficient and
a result, the odd part of the generating functions@ f (z)2 f
(2z)#/25 f 1z1 f 3z31••• is multiplied by a. Although a
general solution of this equation appears rather difficult, i
still possible to obtain results in the limiting cases. It is us
ful to check that whena51, the above equation read
f (2z)5 f 2(z) which together with the boundary condition
f 05 f 151 gives f (z)5exp(z) or f n51/n!. As gn→1, the
trivial correlations are recovered,Gn→Gn* , indicating that
the role played by the tree morphology diminishes in the
mutation limit.

In the limit p→pc
2 it is possible to extract the leadin

behavior of the asymptotic prefactors. Here, it is sufficient
keep only the highest powers of the diverging term 1/(2a2

21). The calculation in this case is identical to the one d
tailed below for the casep.pc and we simply quote the
results,

Gn~k!→H 2r !

r ! F a2

2~2a221!G
r

ank, n52r

~2r 11!!

r ! F a2

2~2a221!G
r

ank, n52r 11.

~22!

In this limit, the odd-order correlations simply follow from
their even counterparts and, for example,f 2r 115 f 2r .

In the complementary casep.pc , it proves useful to re-
write the recursion relations~19! for the even and odd cor
relations separately,

F2r~k!5(
s50

r

F2s~k21!F2r 22s~k21!

1a2(
s50

r 21

F2s11~k21!F2r 22s21~k21!,

~23!

F2r 11~k!52a(
s50

r

F2s~k21!F2r 22s11~k21!.

The leading asymptotic behavior of Eq.~16! implies F0(k)
5 f 0 , F1(k). f 0(2a)k, F2(k). f 22k, and F3(k)
. f 22k(2a)k with f 051 andf 25a2/@22(2a)2#. Let us as-
sume that this even-odd pattern is general,
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F2r~k!5 f 2r2
rk,

~24!
F2r 11~k!5 f 2r2

rk~2a!k.

Substituting this ansatz into Eq.~23! shows that the secon
summation in the recursion for the even correlations is n
ligible asymptotically. Both equations reduce to

f 2r2
r5(

s50

r

f 2sf 2r 22s , ~25!

and therefore the pattern~24! holds whenp.pc . It is seen
that odd correlators are enslaved to the even ones.

To obtain the coefficients, we introduce the generat
functions f (z)5( r f 2rz

2r , which satisfiesf (0)51, f 8(0)
50, and f 9(0)5 f 25a2/@2(122a2)#. The recursion rela-
tion translates into the following equation forf (z):

f ~A2z!5@ f ~z!#2. ~26!

Its solution is f (z)5exp@(az)2/2(122a2)#. Thus, f 2r
51/r ! @ f 2# r . From Eqs.~17! and~18!, the leading asymptotic
behavior in the regimepc,p,1/2 is found,

Gn~k!.H 2r !

r ! F a2

2~122a2!G
r

22kr, n52r

~2r 11!!

r ! F a2

2~122a2!G
r

ak22kr, n52r 11.

~27!

Using the Stirling formulan! .A2pnnne2n, it is seen that
the coefficients g2r have nontrivial r behavior as g2r

5g2r 11 /(2r 11).A2@2a2/(122a2)# r r r .
The even-order correlations have identical asymptotic

havior to the two-point correlation: limk→`@G2r(k)#1/2rk

51/A2 for all r. The odd-order correlations behave diffe
ently, however, as this limit depends on the correlation ord
limk→`@G2r 11(k)#1/(2r 11)k51/A2(A2a)1/2r 11. Thus, only
in the limit r→` do the even- and odd-order correlatio
agree. However, this conclusion is misleading since the
cay rate of the~properly normalized! odd-order correlations
G2r 11(k)/G1(k);G2r(k) is identical to that of the even
order correlations. We conclude that the decay rate of t
point correlations characterizes the decay of all higher-or
correlations.

From Eqs.~22! and ~27!, we see that the coefficients d
verge according to

f 2r5 f 2r 11;upc2pu2r ~28!

as the critical point is approached,p→pc . Since the corre-
lations must remain finite, this indicates that the purely
ponential behavior must be modified whenp5pc . Indeed,
evaluating Eq.~16! at p5pc yields F2(k). f 22k andF3(k)
5 f 223k/2 with f 25k/4, i.e., the even-odd pattern of Eq.~24!
is reproduced. Furthermore, the value off 2 shows that the
diverging quantity 1/u122a2u is simply replaced byk. This
implies that the coefficients become generation depend
f n→ f n(k). Assuming the pattern Eq.~24!, substituting it into
Eq. ~25!, and following the steps that led to Eq.~27! yields
the critical behavior
-

g

-

r:

e-

-
er

-

nt,

Gn~k!.H 2r !

r ! F k

4G r

22kr, n52r

~2r 11!!

r ! F k

4G r

22k(r 11/2), n52r 11.

~29!

Generally, the diverging quantity 1/u122a2u is replaced
with the finite ~but ever growing! quantity k. The algebraic
modification to the leading exponential behavior in Eq.~29!
is reminiscent of the logarithmic corrections that typica
characterize critical behavior in second-order phase tra
tions @10#.

IV. STOCHASTIC TREE MORPHOLOGIES

The following question arises: how general is the beh
ior described above? The binary tree considered was par
larly simple as it involved a fixed number of children and
fixed generation lifetime. Below we show that relaxing eith
of these conditions does not affect the nature of the resu

Let us first consider tree morphologies with a varyi
number of children, i.e., the trees are generated by a stoc
tic branching process where with probabilityPr there arer
children. This probability sums to unity( r Pr51, and the
average number of children is given by^r &5( r rPr . As a
result, the average number of nodes at thekth generation is
^r &k, indicating that the tree ‘‘survives’’ only if̂ r &.1, a
classical result of branching processes theory@11#. The rule
~3! is independent of the tree morphology, and, therefo
one can repeat the heuristic argument in Sec. II. The extr
contributions to the average pair correlations have the r
tive weights ^r &k21a2 and ^r &2(k21)a2k. Comparing these
two terms asymptotically shows that the critical point is
simple generalization of Eq.~6!,

pc5
1

2 S 12A 1

^r &
D . ~30!

The critical mutation rate varies from 0 to 1/2 as the avera
ancestry size varies between 1 and`. This indicates that
correlations are significant over a larger range of mutat
rates for smaller trees. The heuristic argument also gives
decay constantb, and the leading asymptotic behavior of E
~5! is generalized by simply replacing 2 witĥr &. A more
complete treatment of this problem is actually possible a
closely follows Eq.~4!. Again, the ancestry sizêr & replaces
the deterministic value 2. As both the results and the ove
behavior closely follow the deterministic case, we do n
detail them here.

A second possible generalization is to morphologies w
a varying generation lifetime. Such tree morphologies can
realized by considering a continuous time variable. Bran
ing is assumed to occur with a constant raten. For such tree
morphologies, the number of nodesn(t) obeys ṅ(t)
5nn(t), which gives an exponential growthn(t)5ent. Simi-
larly, the mutation process is assumed to occur with a c
stant rateg. A useful characteristic of this process is th
autocorrelationA(t)5^s(0)s(t)&. To evaluate its evolution
we note thatA(t1dt)5(12gdt)A(t)2gdtA(t) when dt
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→0. Therefore, Ȧ(t)522gA(t) and one finds A(t)
5e22gt. The quantitiesn(t) and A(t) allow calculation of
the average pair correlation.

Let us pick two nodes at timet and denote their values b
s i(t) and s j (t), and let the genetic distance between the
two nodes bet. Using their first common ancestorsc(t
2t)5s i(t2t)5s j (t2t) and the identitys251, their cor-
relation can be evaluated as follows:

^s i~ t !s j~ t !&5^s i~ t !sc~ t2t!sc~ t2t!s j~ t !&

5^s i~ t !s i~ t2t!&^s j~ t !s j~ t2t!&5A2~t!.
.

Integrating over all possible genetic distances gives the
erage pair correlation

G2~ t !5

E
0

t

dtn~t!A2~t!

E
0

t

dtn~t!

. ~31!

The factorn(t)/*0
t dtn(t) accounts for the multiplicity of

pairs with genetic distancet. Using A(t)5e22gt and n(t)
5ent, the average pair correlation is evaluated,

G2~ t !5
n

n24g

e(n24g)t21

ent21
. ~32!

For the star phylogeny the genetic distance is alwayst and
thereforeG2* (t)5e24gt. Here the relevant parameter is th
normalized mutation ratev5g/n. Again, there exists a criti-
cal point vc51/4. For smaller than critical mutation rate
v,vc , correlations due to the tree morphology are not p
nounced,G2(t)}G2* (t). On the other hand, whenv.vc ,
strong correlations are generated andG2(k);e2nt is expo-
nentially larger thanG2* (t). We conclude that the behavio
found for the deterministic case is robust.

V. MULTISTATE SEQUENCES

We now consider larger alphabets. Previously, the t
states satisfieds251. A natural generalization is tosn51,
i.e., the nth-order roots of unity s5ei2p l /n with l
50,1, . . . ,n21. Previously, with probabilityp the mutation
s→ts occurred witht5eiu andu5p. We thus impose the
same transition but withu52p/n. This can be viewed as
clockwise rotation in the complex plane by an angleu. Since
the states are now complex, the definition of the pair co
lation is now

G2~k!5Š^s̄ is j&‹, ~33!

with s̄ the complex conjugate ofs. The real part ofs̄ is j
gives the inner product of the two-dimensional vectors c
responding tos i ands j , respectively.

Consider the averagês̄3s4& in Fig. 1. Using thet vari-
ables andt̄t5s̄s51 one has^s̄3s4&5^s̄0t̄1t̄3s0t1t4&
5^t̄3t4&5^t̄3&^t3&5^t&̄^t&5u^t&u2. All of our previous re-
sults hold if one replaces the average^t& with its magnitude
e

v-

-

o

-

-

a5u^t&u5u12p(12eiu)u5A122p(12p)(12cosu). Fur-
thermore, it is sensible to consider arbitrary phase shift
,u,2p since the identitys̄s5 t̄t51 rather thansn5tn

51 was used to evaluate correlations.
The critical point is determined from the conditio

^r &a251. This equation has a physical solution only wh
2w,u,2(p2w) with the shorthand notation

w5cos21A 1

^r &
. ~34!

In terms of the number of states, this translates to

p

p2w
,n,

p

w
. ~35!

Hence, the transition may or may not exist depending on
details of the model, which in this particular ‘‘clock’’ mode
case is the number of states. As we have seen before, c
lations become less pronounced when the number of an
tors increases. Indeed, the transition always exists in the l
^r &→1, while the transition is eliminated in the other e
treme^r &→`. When the transition does occur, the followin
critical mutation probability is found:

pc5
1

2 F 12A12
sin2w

sin2
u

2
G . ~36!

Indeed, Eq.~30! is reproduced in the two-state caseu
5p). This turns out to be the minimal critical point,pc

>(12A1/̂ r &)/2, reflecting the fact that the transitions
→2s provides the most effective mutation mechanism.
effect, increasing the number of states reduces the muta
rate, and this mechanism is responsible for eliminating
transition.

Interestingly the transition is restored when both the m
tation and the duplication processes occur continuously
time. In this continuous description, duplication occurs w
rate n and the mutations→eius occurs with rateg. The
autocorrelation A(t)5^s(0)s̄(t)&5exp@2g(12e2iu)t# is
found from its time evolutionȦ(t)52g(12e2 iu)A(t). It
can be easily shown from the definition of the pair corre
tion ~33! that A2(t) should be replaced withuA(t)u2

5exp@22g(12cosu)t# in the integral~31!. Comparing with
the results of the preceding section, we see that the effec
mutation rate is nowg(12cosu)/2. As a result, the location
of the critical point is increased by a factor 2/(12cosu).
Using the normalized mutation ratev5g/n, one finds

vc5
1

2~12cosu!
. ~37!

This critical point increases with the number of states, an
diverges according tovc.(n/2p)2 whenn→`. This behav-
ior is intuitive as one expects that mutations between a la
number of states diminish correlations and, consequen
phylogenetic effects.
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VI. TWO-SITE CORRELATIONS

When sequences are not of unit length, i.e., when th
are two or more sites per sequence, the results can be us
characterize a correlation measure quantifying the interac
between sites. Assume there are two or more sites pe
quence and that the sites evolve independently of each o
Denote the state of positiona in sequencei ass i

a , and simi-
larly denote the state of positionb in sequencei ass i

b . If the
sequences were not related by a phylogenetic tree, bu
stead were independent samples drawn from a given di
bution, then the following quantity defined on a finite set
N52k samples would specify a two-site correlation measu

r5
1

N (
i

s i
as i

b2
1

N2 (
i

s i
a(

j
s j

b . ~38!

Correlation between sitesa andb is indicated by a nonzero
value of r. Related correlation measures, defined over
sequences at a given generation, such as the mutual info
tion are used in analysis of biological sequences.

The quantityr is well defined also when the sequenc
are related by a phylogenetic tree. Due to the assumptio
independent positions, the mean ofr over all realizations
vanishes^r&50. This behavior is independent of the tre
morphology. To see the effects of the phylogeny, one ne
to consider fluctuations, i.e., the varianceDr5^r2&,

Dr5K S 1

N (
i

s i
as i

bD 2L 2K S 1

N (
i

s i
aD 2S 1

N (
i

s i
bD 2L

5
1

N2 (
i j

^s i
as j

a&^s i
bs j

b&2
1

N4 (
i j

^s i
as j

a&(
kl

^sk
bs l

b&

5
1

N2 FN1(
iÞ j

^t&2di , j G2
1

N4 FN1(
iÞ j

^t&di , j G2

.

The first equality in the above equation was obtained
rewriting Eq. ~38! as r5r12r2 and noting that^r1r2&
5^r2

2&. The final expression can be simplified usin
( iÞ j^t&2di , j5N(N21)G2(a2,k) with G2(a2,k) the pair
correlation of Eq.~4!, considered as a function ofa2. The
following expression for the variance is obtained:

Dr5F 1

N
1S 12

1

NDG2~a2,k!G2F 1

N
1S 12

1

NDG2~a,k!G2

.

~39!

For the star morphology the leading order of the fluctu
tions is independent of the mutation rate and it scales as
familiar N21. For the binary tree morphology, there a
again two regimes, characterized byp.pc or p,pc , where
pc is now defined by 2a451, i.e.,
:

re
d to
n
e-
er.

in-
ri-
f
:

ll
a-

of

ds

y

-
he

pc5 1
2 @12~ 1

2 !1/4#. ~40!

Whenp,pc , the phylogeny plays a significant role and th
variance is exponentially enhanced,Dr;a4k, while when
p.pc , the variance is still statistical in nature,Dr.AD* r,
with A.1. Hence, it is more likely to observe large values
r in the tree morphology than it is in the star morpholog
even when the sites evolve independently. Since correlat
and variances play opposite roles, they are influenced in
ferent ways by the phylogeny.

VII. SUMMARY

In summary, we have studied the influence of the phylo
eny on correlations between the tree’s nodes. In general
sufficiently small mutation rates, the morphology plays a m
nor role. For sufficiently high mutation rates large corre
tions that can be attributed to the phylogeny may occur. T
transition between the two regimes of behavior is sharp
is marked by a critical mutation rate. Below this critical poi
all correlations are well described by the average, wh
above it, correlations decay much slower than the avera
Underlying this transition is the competition between t
multiplicity and the degree of correlations between gen
cally close and distant leafs. This competition also leads
larger fluctuations in the correlation between different sit
even when these evolve independently.

We have also seen that this behavior is robust and app
to be independent of many details of the model. While
overall behavior generally holds, specific details such as
location of the critical point and the decay rate in the regi
p.pc depend on a specific tree-dependent parameter:
average number of children.

The above results can be extended in several direction
will be interesting to see whether the recursive methods
be generalized to stochastic tree morphologies and in
ticular to the continuous time case. This method should s
be applicable even when the mutation rates are time de
dent or disordered. In such cases it will be interesting
determine which parameters determine the critical point,
decay constants, etc.

Correlations can serve as useful measures of the dive
of a system since small correlations indicate large diver
and vice versa. If the diversity can be measured in an exp
ment where the phylogeny is controlled, its time depende
can be used to infer the mutation probability. Similarly, if th
mutation probability can be controlled, then the degree
correlation/diversity can be used to infer characteristics
the phylogeny. Thus, our results may be useful for inferr
statistical properties of actual biological systems.
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