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The temporal evolution of reactive systems is studied by means of exact enumeration of all states
of the system for short times. An algorithm for the evaluation of the power series for basic quantities
of interest is presented. In addition, a consistent methd of estimating the asymptotic behavior of
the series is suggested. This approach is applied to two reaction schemes, ballistic annihilation and
diffusive-driven three species annihilation, where previous Monte Carlo simulations suggest power-
law decays for the concentration. In both cases, reasonable estimates for the decay exponents are
obtained.

I. INTRODUCTION

There has been considerable recent interest in under-
standing the kinetics of simple reaction models. Thus far,
there are relatively few theoretical methods available to
study these reactions and these approaches are usually
limited to specific situations. Typically, the transport
mechanism of the reactants is specified and the particles
interact upon contact. Hence, the use of the representa-
tion number formalism is natural and has the advantage
that a linear rate equation emerges [1,2]. From a theoret-
ical viewpoint, exact methods [3] as well as perturbative
methodsK [4] can be applied to this rate equation.

From a numerical viewpoint, the exact solution to any
reaction scheme can be evaluated for the first few time
steps. If this can be carried to a sufficiently high order,
then one might hope to extract useful information about
the long-time kinetic behavior of the reaction. There
have been two noteworthy studies which have followed
this general approach [5,6]. Dickman and Jensen applied
the series expansion formalism to nonequilibrium inter-
acting particle systems, while Song and Poland investi-
gated several generic reaction-diffusion processes. While
this latter approach appears to be promising, the series
calculation was carried out by hand. Furthermore, the
analysis methods used sometimes lacked internal consis-
tency, leading to an uncertain interpretation of the re-
sults.

In this study, we describe a systematic approach to
obtain time power series for general types of reaction
processes. This exact enumeration method holds in any
spatial dimension; however, it is hard to implement nu-
merically for dimensions higher than one. Therefore our
discussion will be restricted to the one-dimensional case
only. In section II, the theoretical description of reac-
tions in terms of creation and annihilation operators is
presented. We then discuss how to convert the theoreti-
cal formalism into a computational algorithm simply by
considering the time evolution of small clusters with pe-
riodic boundary conditions. In section III, we develop
a simple and relatively direct method to determine the
asymptotic behavior of basic physical quantities from the
results of the time series expansion. We first illustrate the

failure of the straightforward ratio method for analyzing
these types of series. This leads us to suggest a direct
application of Padé approximants as a method for deter-
mining the asymptotic behavior. We exploit the exactly
soluble case of single species annihilation to demonstrate
the relative utility of the various series analysis meth-
ods. In section IV, the time series expansion is applied
to ballistic annihilation and to three-species diffusive an-
nihilation. In both cases, analysis of the series provides
useful estimates for the asymptotic kinetic behavior.

II. THEORY AND IMPLEMENTATION

In this section we describe how the temporal evolution
of a reactive system can be determined in terms of the
action of an evolution operator on an initial state. This
approach is advantageous since it leads to a linear equa-
tion of motion. Thus a formal solution can be written for
the state of the system at any given time. The use of the
occupation number representation is natural in this for-
mulation and facilitates the numerical evaluation of the
coefficients of the exact time power series.

In general, a specific site i can be either empty or occu-
pied by one or more particles. For simplicity, we restrict
ourself to models with singly occupied sites, although a
generalization to multiple occupancy is possible. In ad-
dition, we are interested in situations where there are
only a few different species. The state of a single site
i will take the symbolic values |φi〉 = |oi〉, |ai〉, |bi〉 etc.,
to describe an empty site, an A-occupied site or a B-
occupied site, respectively. A typical configuration of
reactants can be constructed as a product of all the site
states |φi〉 =

∏
i |φi〉. The state of a system may now be

written as

|Ψ〉 =
∑
Φ

P (Φ, t)|φi〉, (1)

where P (Φ, t) = 〈Φ|Ψ(t)〉 is the probability that the sys-
tem is in configuration |φi〉 at time t.

The state function |Ψ〉 obeys a linear equation of mo-
tion

1



∂

∂t
|Ψ〉 = L|Ψ〉, (2)

where the operator L =
∑

ΦΦ′ LΦΦ′ |Φ〉〈Φ′| enumerates
all possible transitions between two configurations. Thus
LΦΦ′ is the rate of transition from Φ′ to Φ. This evolu-
tion operator can be represented in a compact form using
creation and annihilation operators. For example, the
creation operator for the A species at site i, A†i , is non-
zero only when applied to the empty state, A†i |oi〉 = |ai〉.
Similarly, the annihilation operator Ai at site i is non-
vanishing when applied to |ai〉 only, Ai|ai〉 = |oi〉.

With these elemental operators, it is now possible to
express the effect of the diffusion step and the reaction
step on an arbitrary configuration of particles. For ex-
ample, the situation where all the A particles hop to the
right can be represented in terms of the operator

LAO = D
∑
i

(1−A†iAi+1)AiA
†
i+1. (3)

The positive term accounts for hopping from site i to site
i + 1 with rate D, and the negative term corresponding
to the loss of probability from site i due to hopping to
the right. To be concrete, for the two site configuration
|ao〉, LAO|ao〉 = D(|oa〉 − |ao〉), while LAO yields zero
when applied to any other two-site configuration. The
operator that corresponds to the actual reaction can also
be represented in a similar fashion. For example, for the
case of mutual annihilation of two reactive species A and
B via the reaction A+B → 0, the rate operator for the
annihilation process is

LAB = 2D
∑
i

(1−A†iB
†
i+1)AiBi+1. (4)

The factor of two accounts for the fact that a hop of either
the A or the B in the correct direction leads to an anni-
hilation event. This operator gives a non-zero result only
when applied to |ab〉, that is LAB |ab〉 = 2D(|oo〉 − |ab〉).
In fact, if only nearest neighbors interact, L is just a lin-
ear combination of operators of the form LAO and LAB .
In other words, a reaction process is well defined by the
interaction of a particle with a neighboring empty site
and a neighboring particle .

Once the initial state of the system is specified, the
state of system at any later time is given by the follow-
ing formal solution of Eq. (2)

|Ψ(t)〉 = eLt|Ψ(0)〉. (5)

In most cases, an exact solution is hard to obtain, and
one is led to expand the state function as a power series
around t = 0. By defining |Ψj〉 = Lj |Ψ(0)〉/j!, the series
expansion to the state function takes the form

|Ψ(t)〉 =
∞∑
j=0

tj |Ψj〉. (6)

Typical quantities of interest, such as the concentration
of a given species or particle correlation functions, can be
obtained by evaluating expectation values of a suitably-
defined operator. For example, the concentration of the
A-species is given by

cA(t) =
1
N

∑
Φ

NA(Φ)〈Φ|Ψ(t)〉, (7)

where NA(Φ) is the number of A particles in configura-
tion |φi〉.

We now discuss how the aforementioned formalism can
be developed into a calculational procedure to provide a
numerical evaluation of the time series. The elements of
the time evolution operator typically represent interac-
tions between nearest neighbors only, and thus the suc-
cessive application of the operator j times connects sites
which are separated by a distance j. Hence, to obtain a
series to nth order, one can restrict attention to a ring of
size N = n+ 1 with periodic boundary conditions.

It is useful to note that in the case of nearest neighbors
interactions only, the rate operator is well defined by its
action on all possible pair configurations. Therefore, one
may consider the full evolution operator as a superposi-
tion of pair operators and then apply the pair operator
to all N pairs of a given configuration. Typically, a pair
operator is non-vanishing only for a few pairs and thus a
code written for computing series in one process can be
converted easily to evaluate the series for another pro-
cess.

In practice, the number of terms in |Ψj〉 increases ex-
ponentially in j and it is advantageous to classify the ini-
tial state and the rate operator in terms of symmetries
to optimize the computation. For spatially homogeneous
systems, the initial state as well as the rate operator
are invariant under discrete rotations, and it is therefore
useful to represent rotationally equivalent configurations
by only a single configuration. Moreover, processes may
obey a conjugation symmetry. For example, in the case of
diffusion-limited A+B → 0, only states with a majority
of A particles need be considered. By taking advantage
of these various symmetries, we are able to reach higher
order in the series enumeration.

As an example of the formalism, let us calculate the
first three terms in a ballistic annihilation process. Fur-
ther details of this model will be discussed in Sec. IV. In
this model one species (A) can hop to the right only, and
the other species (B) can hop to the left only. When-
ever a particle lands on any occupied site an annihilation
event occurs, i.e., mutual reaction as well as self-reaction
occur. The rate operator takes the form

L = LAO + LOB + LAB +
LAA

2
+
LBB

2
, (8)

with the definitions of Eqs. (3) and (4). Here LAA is ob-
tained from LAB by replacing B with A. Note, however,
that self-reaction occurs with half the rate of mutual re-
action since a hop of only one of the particles in a same
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species pair will lead to a reaction. Let us consider an
initial state in which each site has the same probability
of being occupied by an A or a B. Thus using rotational
invariance, the initial state can be written as

|ψ0〉 = (|aaa〉+ 3|aab〉+ 3|abb〉+ |bbb〉)/8. (9)

By applying the rate operator of Eq. (8) twice, one can
directly verify that the next two terms in the time series
expansion of the state function are,

|ψ1〉 = 3D(|aoo〉+ |boo〉 − 2|ψ0〉)/2
|ψ2〉 = 9D2(2|ψ0〉 − |aoo〉 − |boo〉)/4. (10)

Next, by applying Eq. (7), we obtain the concentration
to second order as,

cA(t) = cB(t) = 1/2−Dt+ 3(Dt)2/2 + · · · . (11)

Although this exercise is quite simple, the number of
terms in the |Ψj〉 grows rapidly in j and the computation
is best done systematically by a computer program.

III. ASYMPTOTIC ANALYSIS OF THE TIME
EXPANSION

We are now interested in extracting the asymptotic be-
havior from the short-time power series representation of
observables. In previous studies, this extrapolation pro-
cedure was accomplished by direct methods, as well as
by using various forms of Padé analysis. Unfortunately,
the accuracy and consistency of specific methods varies
widely from series to series. Thus many previous ap-
proaches incorporate some degree of subjectivity in the
analysis. This is a feature which one would hope to avoid
in the ideal situation. We will propose an extrapolation
approach which ameliorates subjective aspects to a large
extent.

We first consider the analysis of the series for the ex-
actly soluble process A+A→ 0 to illustrate a misuse of
the ratio method. We also demonstrate how direct ap-
plication of Padé approximants can serve as a simple yet
useful way to determine the asymptotic behavior. The
basic question that we shall address is to ascertain the
appropriate analysis method for estimating the exponent
α in the asymptotic form for the time dependent concen-
tration

c(t) ∼ t−α (12)

from the first n+ 1 terms in the series expansion

c(t) ≈ c0 + c1t+ · · ·+ cnt
n (13)

To test the utility of any analysis method, we expand
the exact solution for the single species annihilation pro-
cess to an arbitrarily large order and then analyze the
series as if the exact solution was not available. For sin-
gle species annihilation the rate operator takes the form

L = LAO + LOA + LAA . (14)

Using Eqs. (3) and (4) it is found that the quartic term
A†iAiAi+1A

†
i+1 vanishes, and an exact solution can be

obtained via a transformation to Fermion operators [3,7].
The exact expression for the concentration is

c(t) = I0(4Dt) exp(−4Dt), (15)

from which the asymptotic behavior is c(t) ∼ t−1/2.
Let us now attempt to determine the exponent α de-

fined in Eq. (12) by a direct ratio analysis. In this
method, one defines y = 1−c(t)/c(0), and using Eq. (12),
one obtains t(y) ∼ (1 − y)−1/α. Given the series expan-
sion for c(t), series inversion formulae yield the series
expansion for t(y), namely t =

∑n
i=1 biy

i. The latter
series is now compared to the expansion of (1 − y)−1/α

and an estimate for the exponent is expressed in terms of
the successive ratios bi/bi−1, αi = 1/

(
1− i(1− bi/bi−1)

)
[6]. Following this recipe we expand Eq. (15) to the 30th

order and get the following approximants for α

αi = 2, 1.2, .89, .73, .62, .55, .50, .46, .43, .40,
.38, .36, .35, .34, .33, .33, .32, .32, .32, .33, (16)
.34, .35, .37, .40, .45, .54, .74, 1.40, −6.4, −.72

which do not converge to the exact value α = 1/2. A
possible source of the non-convergence may be that the
transformation from infinite time to y = 1 introduced sin-
gularities that “interfere” with the asymptotic behavior.
Similar results occurred for various related processes and
in all the 1D processes considered by Song and Poland.

We now suggest an alternative and simple method
which appears to be better suited for asymptotic analysis
than the ratio method. The analysis can be summarized
by the following steps:

• Representing the original function by different Padé
approximants.

• Considering the two approximants which agree over
the longest temporal range.

• Fitting the aforementioned approximants to a
power-law function and thereby determining the
decay exponent.

For the purpose of asymptotic analysis, it is useful to
return to a more basic question and consider the best way
to approximate the concentration, given the Taylor series
of Eq. (13). We again consider single-species annihilation
and limit ourself to the first 25 series terms, since this is
a typical upper limit of what we can attain by the series
computation with current resources. A plot of the trun-
cated series for the concentration vs. the exact solution
given Eq. (15) shows that the Taylor series converges to
the exact solution only up to t ∼= 1 (see Fig. 1(a)). If
we define a cut-off point τ0 as the earliest time when the
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discrepancy between two functions exceeds ε = 0.001, we
obtain τ0 = 1.1. Since we are interested in determining
the behavior of the concentration in the long-time limit,
we see that näıve use of the Taylor series is of limited
practical utility in representing the concentration.

A significant improvement can be achieved by applying
the Padé approximation directly to the time expansion
of c(t). That is, we form the rational function

P[n,m](t) =
a0 + a1t+ · · ·+ ant

n

b0 + b1t+ · · ·+ bmtm
, (17)

where b0 = 1 and the rest of the n + m + 1 coefficients
are chosen such that the expansions of P[n,m](t) and of
c(t) are identical up to the n +mth order. Examination
of the temporal range where the various Padé approx-
imants converge to the exact solution reveals the utility
of this approximation. For the so-called “diagonal ap-
proximants” P[n,n], one finds that the approximant and
the exact solution agree to within 0.001 up to τ0 = 3.1,
3.8, 4.5, 5.3 for n = 9, 10, 11, 12, respectively (Fig. 1(a)).
Moreover, at t = 10 the [11, 11] and [12, 12] approximants
shown in Fig. 1(a) agree with the exact function up to
10%, while for t>∼1.1 the 25-term Taylor series diverges
badly.

Unlike the example above, the original function is usu-
ally unknown. However, Fig. 1(a) clearly shows that the
exact solution can be well approximated over a substan-
tial temporal range by Padé approximants. A crite-
rion for the time regime over which two different Padé
approximants accurately represent a function can be
developed by defining a cut-off time t0

(
[n,m], [n′,m′]

)
where the [n,m] and [n′,m′] approximants first differ by
ε = 0.001. We consider the two Padé approximants
which give the largest value of tmax = max {t0} as the
best approximations to the original function. Typically,
this analysis extends the convergence of the series well
into the asymptotic region, and thus enables one to draw
conclusions about the long time nature of the decay. Al-
though in the example discussed above, the approximants
exhibit a monotonic improvement in convergence as the
order is increased, one should be cautious since mono-
tonic convergence does not always occur. Increasing the
order of the approximant eventually improves the out-
come, but the existence of spurious singularities close to
the physical pole in specific Padé approximants may lead
to a transitory decrease in the quality of the results.

In our application of the Padé method, we have
adopted the following procedure to estimate the expo-
nent governing the long-time decay. We define a quality
of fit function g(α) by

g(α) =
〈t−α|P[n,m](t)〉(

〈t−α|t−α〉〈P[n,m](t)|P[n,m](t)〉
)1/2

, (18)

with the inner product 〈f1|f2〉 ≡
∫ t2
t1
f1(t)f2(t)dt. This

inner product measures how “close” a given Padé ap-
proximant P[n,m](t) is to t−α in the time interval [t1, t2],

and for a perfect fit one has g(α) = 1. The optimal ex-
ponent αopt is given by the value that maximizes g(α).
There are several constraints concerning the integration
interval [t1, t2]. First, the short-time regime has to be
excluded since the concentration does not follow a power
law. Second, the cutoff t2 should be as large as possible
in order to minimize the effects of the short-time correc-
tions to the asymptotic decay, but small enough so that
the Padé approximant is still accurate. Hence, we use
t2 = trmmax with the definition given above and define
t1 = trmmax − 1 in order to get a uniform integration
length. Finally, the two approximants corresponding to
the largest value of tmax will yield two different exponents
and we average these two values to quote the estimated
exponent αest. An averaging procedure is chosen here
since it is not possible to determine a priori which ap-
proximant is closer to the original function.

We now illustrate this fitting procedure by applying
it to the known series for the reaction A + A → 0.
By comparing all possible pairs of approximants given
the 25-term time series expansion we find that P[11,11]

and P[12,12] yield the largest value of tmax = 4.3. Since
the resulting values of g(α) are very close to unity, and
weakly varying on α, it is useful to locate the minimum
of f ≡ 1 − g vs. α (see Fig. 1(b)). Following this pro-
cedure, we find αopt = 0.512 and αopt = 0.508 for the
[11,11] and [12,12] approximants, respectively, with the
integration range [3.3, 4.3]. Thus, we quote the estimated
value αest = 0.51 for the decay exponent. This differs by
2% from the exact value α = 1/2.

The dependence of the estimated exponents on the fit-
ting procedure can be examined by varying the parame-
ters used. The tolerance parameter ε was varied by 10%
and the above analysis showed a 0.01% change in the
resulting αest, due to a corresponding change in the inte-
gration limits. Moreover, the length of the integration in-
terval was varied by 10%, with the upper limit kept fixed,
and in this case the estimated exponent agreed with the
original estimate to within 0.02%. These tests demon-
strate the weak dependence of the analysis outcome on
the fitting parameters.

To demonstrate the rate by which the estimated ex-
ponents approach the ultimate value, we performed the
aforementioned analysis with a varying order of the time
series expansion. The resulting estimated exponents were
αest = 0.517, 0.507 and 0.505 for a Taylor series of the
20, 30 and 40 order, respectively. We conclude that con-
vergence to limiting value does indeed occur, although
the rate of convergence is quite slow.

IV. APPLICATION TO REACTION MODELS

In this section we apply the power series expansion
method to two reaction processes where only Monte
Carlo simulation results and scaling arguments for the
asymptotic behavior are presently available. The first is
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a ballistic annihilation process with asynchronous par-
ticle motion, and the second is a diffusive three species
annihilation process.

A. Asynchronous Ballistic Annihilation

Consider a ballistic annihilation process in one dimen-
sion in which each particle moves ballistically with ve-
locity v0 or −v0 with equal probabilities. Either from
the exact solution [8] or from a qualitative random-walk
argument, the concentration decays asymptotically as
c ∼ t−1/2. However, if particles move one at a time, i.e.,
asynchronous dynamics, there is diffusion in addition to
the primary ballistic motion. This diffusive transport
component permits two particles with the same velocity
to annihilate. We now examine the asymptotic behavior
of this reaction process by the series expansion approach.

For this asynchronous ballistic reaction process, the
rate operator can be written as

L = LAO + LOB + LAB +
LAA

2
+
LBB

2
, (19)

where the last two terms account for the self-reaction of
particles with the same velocity. We consider an initial
state where each particle can assume a velocity ±v0 with
equal probability. The initial state function then equals
the sum of all N -particle configurations of velocities di-
vided by 2N (see Sec. II). With our method, we obtain
series for the concentration to 16th order (see Table). The
two Padé approximants that agree over the largest tem-
poral range are [7, 7] and [7, 8] and the upper cutoff time
is tmax = 2.5 (Fig. 2). We do not consider the next diag-
onal approximant [8, 8] since this approximant leads to
a reduced temporal range of internal consistency. Thus,
we perform the integration over the interval [1.5,2.5]. By
maximizing g(α), the values of the optimal exponents
are found to be αopt = 0.716 and 0.717 respectively. We
conclude an estimated value of αest = 0.72, which yields
a 4% deviation when compared with the value α = 3/4
suggested by scaling arguments and by Monte-Carlo sim-
ulations.

For reference, we outline the scaling argument which
suggests that the decay exponent α should equal 3/4
[9]. In the asynchronous ballistic reaction, particles with
velocity +v0 perform a random walk with the bias in
the +x direction and similarly for particles with velocity
−v0. Hence, diffusion is introduced in addition to the
ballistic motion. We denote the diffusion coefficient by
D. This representation is useful since exact solutions are
known for the two limiting cases, D = 0 and v0 = 0, and
these can be incorporated to produce the general case
result. We first write an ansatz for the concentration for
D, v0 6= 0 and match it to the known limiting solutions
at the appropriate crossover times. The concentration in
the general case must have the form

c(t) = cβ0

(
1
v0t

)γ ( 1√
Dt

)δ
, (20)

that is, c(t) is a geometric average of the fundamen-
tal concentrations c0, 1/v0t and 1/

√
Dt. To ensure the

proper dimensions of c(t), the exponents β, γ and δ
must obey the constraint β + γ + δ = 1. In the case
of a small drift [3], the exact asymptotic form of the
concentration for v0 = 0, cD(t) ∼ (Dt)−1/2 holds for√
Dt > v0t and matches Eq. (20) at the crossover time

t1 = D/v2. Imposing cD(t1) = c(t1) and equating
corresponding powers of the various coefficients yields
equation γ + δ = 1. In the same way, the exact drift-
limited solution [8] cv(t) ∼ (c0/v0t)1/2 should coincide
with Eq. (20) at t2 = 1/Dc20. This condition leads to
γ = 1/2. Consequently, c(t) has the general form

c(t) ∼
(

1
Dv2

0t
3

)1/4

. (21)

This suggested asymptotic decay was confirmed by sim-
ulation studies. Interestingly, the decay of the concen-
tration in the general case is faster than that of the two
limiting cases of v0 = 0 and D = 0. Moreover, although
one can claim that the diffusive nature of the particles
does not play a role for sufficiently large times, this scal-
ing argument suggests that this is not the case. It is
seen that the series expansion does give useful informa-
tion about the long time behavior, despite the relatively
short time domain where the concentration function is
obtained.

B. Three species annihilation

In the n−species annihilation process, n distinct
species move diffusively and whenever two different
species land on the same site an annihilation event occurs
[10]. In one dimension the concentration was predicted
to obey a power law decay c ∼ t−α(n) with the value
α(n) = (2n − 3)/4(n − 1). This prediction appears to
be confirmed by simulation studies. In the limiting case
n → ∞, one recovers the known α = 1/2 decay, since
this case corresponds to single species annihilation.

To develop a series expansion for this model we again
define the rate operator and an appropriate initial state.
We consider the initial state of all possible N particle
configurations divided by 3N . The rate operator now in-
cludes diffusion for each species and reaction for each pair
of non-identical species,

L = LAO + LOA + LBO + LOB + LCO + LOC +
LAB + LAC + LBC (22)

with the definitions of Eqs. (3) and (4). In this case we
obtain the concentration to 13th order as listed in the
table. Since the expansion is obtained to a relatively
small order, we have relaxed the tolerance ε to 0.005, so

5



that the integration interval will exclude the range t < 1.
The “best” approximants here are [6, 6] and [6, 7] and
the corresponding cut-off time is tmax = 2.2 (see Fig. 3).
The optimal exponents are found by maximizing the fit
function g(α) to be αopt = 0.372 and 0.380 respectively.
Hence, we estimate the exponent by the average value
αest = 0.376. This estimate is surprisingly close to the
suggested 3/8 value and has a 2% deviation when com-
pared with the MC simulation result of 0.37 [10]. Note
that the reduction of ε increases the discrepancy between
the two optimal exponents.

C. Conclusions

We have presented a method for calculating a power
series expansion in time of basic physical quantities, such
as the concentration, in simple chemical reaction models.
The series expansion approach has the advantage of be-
ing exact and being applicable to general classes of non-
equilibrium models. A particular reaction process can be
defined by a rate operator, and for simple reaction pro-
cesses, this operator is specified by its action on only a
small number of nearest neighbor pair configurations.

We have also suggested an analysis technique, based
on a direct application of the Padé method to obtain
the concentration over an extended temporal range. The
asymptotic behavior of the series is determined by match-
ing the power series to the two “closest” Padé approx-
imants. We have illustrated our general approach with
two specific reaction models in section IV. Reasonable es-
timates for the asymptotic behavior were extracted from
the time expansion.

On the other hand, our analysis method was not en-
tirely robust. For some processes, the exponent estimates
converged slowly towards their long time limiting be-
havior. For example, a restricted asynchronous ballistic
annihilation model, where self annihilation is excluded,
yields poor estimates for the expected decay exponent
given the 16th order expansion. Therefore, we conclude
that series expansion is not guaranteed to be helpful.
Theoretically, if one obtains enough terms the long time
behavior will eventually emerge, but this may be beyond
the reach of available computing resources.

Although we applied the series expansion to spatially
homogeneous systems, the method can be easily applied
to study heterogeneous problems, such as the probabil-
ity distribution of diffusing particles in the vicinity of a
trap, and the nature of the reaction front in models of
epidemic spread and biological waves, for example.

We thank S. Redner for numerous useful discussions
and for careful reading of the manuscript. We gratefully
acknowledge ARO grant #DAAH04-93-G-0021 for par-
tial support of this research. Acknowledgement is also
made to the Donors of The Petroleum Research Fund,

administered by the American Chemical Society, for par-
tial support of this research.

[1] M. Doi, J. Phys. A 9, 1465; 1479 (1976).
[2] P. Grassberger and M. Scheunert, Fortschr. Phys. 28,

547 (1980).
[3] A. A. Lushnikov, Sov. Phys. JETP 64 811 (1986).
[4] B. Friedman, G. Levine and B. O’Shaughnessy, Phys.

Rev. A 46, 7343 (1992).
[5] R. Dickman and I. Jensen, Phys. Rev. Lett. 67, 2391

(1991); I. Jensen and R. Dickman, J. Stat. Phys. 71, 89
(1993).

[6] S. Song and D. Poland, J. Phys. A 25 3913 (1992).
[7] J. L. Spouge Phys. Rev. Lett. 60 871 (1988).
[8] Y. Elskens and H. L. Frisch, Phys. Rev. A 31, 3812

(1985).
[9] E. Ben-Naim, S. Redner and F. Leyvraz Phys. Rev. Lett.

70, 1890 (1993).
[10] D. Ben-Avraham and S. Redner, Phys. Rev. A 34, 501

(1986).

TABLE CAPTION

Table 1 Expansion coefficients in the time power series
for the concentration for the two representative reaction
processes discussed in the text: (a) Ballistic two-species
annihilation with self-reaction and (b) Three-species dif-
fusive annihilation A+B → 0, A+C → 0 and B+c→ 0.

Ballistic Three Species
n cn cn
0 0.500000000000000 0.333333333333333
1 −1.000000000000000 −0.888888888888888
2 1.500000000000000 2.074074074074074
3 −1.666666666666667 −3.621399176954732
4 1.416666666666667 4.949245541838134
5 −0.935416666666667 −5.462094192958391
6 0.468402777777778 4.928191840674693
7 −0.152715773809524 −3.595704294012478
8 −0.001765581044385 2.000766523547165
9 0.048626063154228 −0.657130132013536

10 −0.045346447200260 −0.157411205671068
11 0.028467120232814 0.434194697238727
12 −0.013827197289845 −0.337141906840114
13 0.005071234556065 0.074818523203021
14 −0.001031397263083
15 −0.003347397123149
16 0.000536792117891

FIGURE CAPTION

Fig.1 Approximating the time dependence of the con-
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centration from its power series in the case of single
species annihilation. (a) Shown are the exact solution
(solid), the 25-term Taylor series (dashed) and the [11, 11]
(dotted) and [12, 12] (dashed) Padé approximants. (b)
The fit function 1−g(α) for the [11, 11] (solid) and [12, 12]
(dashed) approximants.

Fig.2 (a) Time dependence of the concentration for the
ballistic annihilation model. Shown are the [7, 7] (solid),

[7, 8] (dotted) and [8, 8] (dashed) Padé approximants. (b)
The fit function 1 − g(α) for the [7, 7] (solid) and [7, 8]
(dashed) approximants.

Fig.3 (a) Time dependence of the concentration in the
case of three-species annihilation model. Shown are the
[6, 6] (solid) and [6, 7] (dashed) Padé approximants. (b)
The fit function 1− g(α) for the [6, 6] and [6, 7] approxi-
mants.
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