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Velocity probability distribution functions (PDF) of sheared hard-sphere suspensions can show pro-
nounced deviations from a Maxwell-Boltzmann distribution. We investigate particle-laden flows
between two sheared plates by means of Stokes flow simulations and a single-particle theory. We
demonstrate that the PDF is symmetric around zero velocity and shows a Gaussian core and an
exponential tail over more than six orders of magnitude of probability. Following the excellent
agreement of our theory and simulation data, we show that the PDFs scale with shear rate γ̇ as well
as particle volume concentration φ, and kinematic viscosity ν.

PACS numbers: 82.70.-y, 47.11.-j, 47.57.Qk, 77.84.Nh

Probability distribution functions (PDF) are used to
describe the statistics of complex systems. These PDFs
have been found to be of non-Gaussian shape in numer-
ous fields of physics, including suspensions [1–3], granular
media [4–6], astrophysics [7], flow in porous media [8], or
turbulence [9]. However, the underlying processes are
often not understood. In this letter, we focus on partic-
ularly important systems showing non-Gaussian velocity
PDFs, namely sedimenting hard-sphere suspensions con-
fined between sheared walls (see Fig. 1). They appear in
river beds, blood examinations, industrial food produc-
tion, the application of paint, and many more situations.
Detailed experiments have been performed for more than
a hundred years, but questions about the micro structure
or structural relaxations of the sediment are still not well
understood. It has been found by numerous authors that
the PDF of particle velocities P (v) is not of similar shape
as for an ideal gas, i.e., like a Maxwellian. Instead, P (v)
can show a pronounced non-equilibrium shape, where the
probability of high velocities is substantially larger [1, 2].
In this letter we present a single-particle theory and sim-
ulations to show that such non-equilibrium distributions
can be described as a consequence of an irreversible driv-
ing process, where particles on average gain energy by one
mechanism, but loose energy by another one. Here, en-
ergy is gained from the shear or gravitational forces caus-
ing particles to collide. Contrarily, energy is dissipated
due to viscous damping. This causes P (v) to consist of a
Gaussian core and exponential tails. Even though we fo-
cus on a well defined system here, the processes described
are of general nature and can be applicable to ostensi-
bly different setups. Experimentally, Rouyer et al. [10]
studied quasi 2D hard-sphere suspensions and found a
stretched exponential P (v) with concentration dependent
exponents between 1 and 2 corresponding to exponential
distributions for high concentrations and Gaussians for
small particle counts. These results contradict theoreti-
cal predictions of a transition from exponential to Gaus-
sian with increasing volume concentration [1, 2]. How-
ever, both experimental and theoretical studies do not

present sufficient statistics over more than 2-4 decades.
If one does not have enough data for high quality PDFs,
final answers on the nature of the function cannot be
given. Indeed, we find that even stretched exponentials
can fit PDFs with purely exponential tails and Gaussian
centers if only 2-4 decades of probability are covered. But
as soon as more data is added, the exponential nature of
the tails becomes distinct and it is impossible to fit the
whole PDF with a single function. Here, we overcome
such limitations by presenting PDFs consisting of up to
1010 particle displacements each – allowing a statistics
superior to any previous work. Our data does not show
deviations from purely exponential tails over 6-8 decades
of probability. We show that P (vz) scales linearly with
the shear rate, volume concentration and viscosity.
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FIG. 1: (Color online) Sketch of the simulation setup.

The simulated system is a 3 dimensional setup as
shown in Fig. 1. Top and bottom walls are at dis-
tance Nz and sheared with shear rate γ̇ = 2vshear/Nz.
All other boundaries are periodic. A body force f act-
ing on the otherwise neutrally-buoyant particles can be
added to mimic gravity. We consider 384 to 1728 initially
randomly placed suspended particles of equal radius a
corresponding to a particle volume concentration φ be-
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tween 6.8% and 30.7%. The particle Reynolds number
Re = γ̇2a/ν is kept between 0.012 and 0.07.

The simulation method is composed of a lattice Boltz-
mann solver (LB) for the fluid and a molecular dynamics
(MD) algorithm for the motion of particles. This ap-
proach and recent improvements were originally intro-
duced by Ladd and coworkers [11–14] and are well es-
tablished in the literature [11–16]. Thus, we only shortly
describe it here. The LB approach allows to calculate
long-range hydrodynamic interactions between particles,
by utilizing a discretized version of Boltzmann’s equa-
tion. Here, positions x are discretized on a 3D lattice
with 19 discrete velocities ci pointing from a site to its
neighbors. Every ci is related to a single particle distri-
bution function fi(x) which is streamed to neighboring
sites at every time step. After streaming, a collision takes
place where the individual fi(x) relax towards an equilib-
rium distribution f eq

i . The movement of suspended par-
ticles is modeled by Newton’s equation of motion and ap-
propriate boundary conditions are imposed at solid/fluid
interfaces to exchange momentum. We find a particle
radius of a=1.25 lattice sites sufficient since for larger
radii P (vz) does not change significantly anymore, while
the computational effort increases substantially. Also,
in low density simulations long-range hydrodynamic in-
teractions dominate which are correctly reproduced even
by small particles. For dense systems, exact lubrication
forces between particle pairs and between particles and
walls are applied [11–13]. If many particles come close
to each other (less than 0.1 lattice spacings), a cluster
implicit method is used for updating forces in the MD
algorithm [13]. The simulation volume is 64a × 8a ×
48a and γ̇ is varied between 2.3 · 10−4 and 1 · 10−3 (in
lattice units). The fluid density is kept constant and the
kinematic viscosity is set to ν = 0.05 if not specified oth-
erwise. A single simulation runs for 6.25 million LB steps,
where during the last 5 million steps the z component of
the velocity of every particle is gathered in a histogram to
obtain P (vz). All distributions are normalized such that
∫

dvzP (vz) = 1 and
∫

dvzv
2
zP (vz) = 1 with the RMS

velocity vRMS
z =

√

〈v2
z〉 = 1.

Our theoretical model is based on the balance between
viscous dissipation and shear forcing in steady state. The
shear and the resulting particle collisions are modeled by
random, diffusive forcing. Due to this forcing, the veloc-

ity vj of the jth particle changes as
dvj

dt
= ξj where ξj is a

white noise, 〈ξj〉 = 0 and 〈ξi(t)ξj(t
′)〉 = 2Dδijδ(t−t′). In

parallel, particles slow down because of the viscous fluid.
In accordance with the traditional drag law, the velocity
decreases according to dv/dt = −βv, resulting in the ex-
ponentially decay v(t) = v(0)e−βt in the absence of forc-
ing. We model this viscous damping by reducing each
time unit ∆t the velocity by a factor η = e−β∆t accord-
ing to v → ηv. In a sheared fluid, there is a well defined
time scale for re-encounters with the boundary, setting
the time scale for the damping process. This damping
process was used by van Zon et al. as a model for forced
granular media [17, 18]. The velocity distribution obeys

the linear but non-local equation

∂P (v)

∂t
= D

∂2P (v)

∂2v
+

1

η
P

(

v

η

)

− P (v). (1)

The first term on the right hand side represents changes
due to diffusive forcing and the next two terms represent
changes due to viscous damping. In our theory, interac-
tion between particles are represented through the ran-
dom forcing process reflecting that a particle undergoes
diffusion as influenced by all other particles. In steady
state, the left hand side of Eq. 1 vanishes. We note that
the shape of P (v) is independent of the diffusion con-
stant D. Indeed, by making the scaling transformation
v → v/

√
D we can eliminate D and assume without loss

of generality that D = 1. The shape of the distribution
depends on the dissipation parameter η alone. The mo-
ments Mn =

∫

dv vnP (v) satisfy the recursion relation
Mn = n(n − 1)(1−ηn)−1Mn−2. Since the distribution is
symmetric, P (v) = P (−v), the odd moments vanish and
starting with M0 = 1, the even moments are

M2n = (2n)!

n
∏

k=1

1

1 − η2k
. (2)

Of particular interest is the normalized 4th moment

κ = M4/M
2
2 = 6/(1 + η2). (3)

The distribution is close to exponential for strong drag,
κ → 6 as η → 0 and close to Gaussian for very weak
drag, κ → 3 as η → 1. This is confirmed by the limiting
behaviors of all moments

M2n →
{

(2n)! η → 0,
(2n − 1)!!(1 − η)−n η → 1.

(4)

The leading large-velocity behavior can be derived by us-
ing a heuristic argument. For sufficiently large velocities,
the term η−1P

(

vη−1
)

is negligible and hence,

d2

dv2
P (v) = P (v). (5)

Thus, P (v) has an exponential tail, P (v) ∼ exp
(

− |v|
)

.
The prefactor can be obtained from the Fourier transform
F (k) that equals an infinite series

F (k) =

∫

∞

0

dveikvP (v) =
∞
∏

m=0

[1 + k2η2m]−1. (6)

This expression follows from the steady-state analog
of (1), (1 + k2)F (k) = F (ηk). The simple poles at ±i
closest to the origin imply an exponential decay, i.e.,
P (v) ' A(η) exp(−|v|), when |v| → ∞. Re-summation
yields the residue to this pole, and in turn, the pref-

actor A(η) = 1
2

exp
(

∑

∞

n=1
1
n

η2n

1−η2n

)

. The exponential

behavior is robust in the limit v → ∞. However, in
the weak drag limit, η → 1, the exponential behavior
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holds only for extremely large velocities. When η → 1,
(η = 1 − ε, ε → 0) we expand the denominator in A(η).
Keeping only the dominant terms simplifies the sum to
∑

∞

n=1
1

2εn2 = π2

12ε
and to leading order, the prefactor is

A ∝ 1
2

exp
[

π2/12ε
]

. Therefore, under weak damping,
there is a cross-over between a Maxwellian behavior as
follows from (4) and an exponential one,

P (v) ∼







exp
(

− εv2

2

)

v¿ ε−1,

exp
(

π2

12ε
− |v|

)

vÀ ε−1.
(7)

The two expressions match P (v) ∼ exp
(

− ε−1
)

at the

crossover velocity v ≈ ε−1. Interestingly, the crossover to
a non-Maxwellian does not affect the leading behavior of
the moments. In summary, the theory predicts the non-
equilibrium shape of the PDF as an interplay between
energy being injected by a diffusive thermostat and dissi-
pation due to the fluid drag. In general, the high-velocity
tail is exponential. The theoretical results shown later in
this letter are given by a Monte Carlo solution of the
steady state case of Eq. 1. In these simulations, N par-
ticles are characterized by a velocity vi. The velocities
change through two independent processes: damping and
random forcing. In the damping process, the velocity is
reduced by a fixed factor vi → ηvi. In the forcing pro-
cess, the particle velocity changes by a random increment
vi → vi + ξ where ξ has zero mean and a unit variance.
The steady-state distributions were obtained using over
1010 points from simulations with 108 particles.
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FIG. 2: (Color online) P (vz) for f = 0.72·10−4 corresponding
to a Stokes velocity of vs=1.4·10−3, φ = 13.6% and shear rates
3.3 ·10−4, 6.7 ·10−4, and 1 ·10−3 (Re=0.017, 0.034, 0.05). The
solid line is the steady state solution of Eq. 1 (η = 0.73). The
lower inset shows the unscaled data, where higher γ̇ relate to
wider P (vz). The upper inset shows a linear fit with slope
0.21 of vRMS

z
(γ̇) for the PDFs presented in the main figure as

well as 4 additional sets (symbols).

First, we consider suspensions with constant φ and var-
ious shear rates under the influence of a body force f .
The dependence of P (vz) on γ̇ for three representative
values is depicted in Fig. 2. Deducting the shear velocity
from the distribution in shear direction allows us to re-
move the shear induced anisotropy. Then, distributions

in different directions are essentially identical and are
therefore not shown. P (vz) is symmetric and 〈vz〉 = 0
for all cases considered in this letter. As shown in the
lower inset, the not normalized P (vz) widen for higher γ̇.
However, a very good scaling is observed: all normalized
curves collapse onto a single one. In the upper inset we
show the influence of γ̇ on vRMS

z : as expected from the
theory, γ̇ only sets a scale for the velocity corresponding
to a linear relation between γ̇ and vRMS

z . To obtain an in-
sight into the properties of P (vz), we compute the cumu-
lant κ and find that for all simulation parameters studied
in this letter it varies between 3.8 and 4.6. Knowing κ,
we can compute η =

√

6/κ − 1. Due to the large number
of data points in our histograms, we calculate κ for pe-
riods of 1 million time steps each and use the arithmetic
average of the last 5 million time steps of a simulation
run. We find that κ varies by up to 10% within a single
simulation which is of the same order as the difference
of the individual PDFs in Fig. 2. Thus, we average the
different curves as well in order to obtain a value for the
cumulant to be utilized for the Monte Carlo solution of
the steady state case of Eq. 1. For the collapse in Fig. 2
we get η = 0.73. As depicted here, the solid line given
by the theory and the simulation data excellently agree
over the full range of 6 decades of probability.

Next, we consider neutrally-buoyant suspended hard
spheres under shear. The shear rate is kept fixed and
the particle concentration is varied between φ = 6.8%
and 30.7%. Due to hydrodynamic interactions, the par-
ticles tend to move to the center of the system, i.e., to
an area where the shear is low creating a depleted region
close to the walls. However, this effect does not change
the general shape of P (v). The corresponding normal-
ized P (vz) are presented in Fig. 3a. As depicted in the
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FIG. 3: (Color online) P (vz) for f = 0, γ̇ = 6.7 · 10−4 and
φ = 6.8%, 13.6%, 20.5%, 23.9%, and 27.3%, Re = 0.034 (a).
In Fig. b), φ is kept at 13.6% and the kinematic viscosity is
set to ν = 0.017, 0.05, and 0.1 (Re = 0.099, 0.034, 0.067). In
both figures, all data sets collapse onto a single curve and the
lines are given by the theory with η = 0.69.

figure, all PDFs except for the lowest particle concentra-
tion φ = 6.8% (circles) collapse onto a single curve. At
very low φ, the tails of P (vz) are still not fully converged
due to the limited number of particle-particle interactions



4

taking place within the simulation time frame. Again,
the solid line in Fig. 3a is given by the steady state so-
lution of Eq. 1 with η = 0.69 being obtained from the
4th moment of P (vz). As before, simulation and theory
agree very well. The full circles in Fig. 4 depict the de-
pendence of vRMS

z on φ. For concentrations of at least
φ = 13.6%, vRMS

z (φ) can be fitted by a line with slope
1.8 · 10−4. The disagreement of the linear fit for low φ is
consistent with the not fully converged PDFs as shown in
Fig. 3a. By keeping all parameters except the kinematic
viscosity ν constant, the dependence of ν on P (vz) can
be studied. As demonstrated by the squares depicting
the dependence of vRMS

z on ν in Fig. 4, vRMS
z and thus

P (vz) is independent of the viscosity. Thus, the steady
state curve obtained for different volume concentrations
is identical to the one for different ν as shown in Fig. 3b.
It would be interesting to study the influence of the body
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FIG. 4: (Color online) vRMS
z

in dependence of φ (circles) and ν

(squares). Data corresponds to P (vz) as in Fig. 3, but covers
a wider range of φ and ν. Note the different x-axes.

force f on the shape of the PDF. However, f and the
shear forces are in a subtle interplay since the height of
the steady state sediment depends on both parameters
and thus influences the local concentration. To investi-
gate this behavior is beyond the scope of this letter.

In conclusion, the non-equilibrium PDFs reported in

this letter are a consequence of the irreversible nature
of the driving process. On average, particles gain en-
ergy by external forces causing particle-particle collisions
but lose energy by viscous damping. Unlike in an ideal
gas, these two mechanisms are not interchangeable. In
other words, one cannot reverse the arrow of time and
observe the same behavior. Our theoretical model cap-
tures this irreversibility through the competition between
two non-equivalent driving mechanisms: energy dissipa-
tion through a multiplicative process and energy injec-
tion through an ordinary additive diffusive thermostat.
The theory describes all aspects of the distribution as
demonstrated by an excellent agreement with our coupled
LB/MD simulations of sheared suspensions: the velocity
distribution functions P (vz) exhibit Gaussian cores and
exponential tails over at least 6 orders of magnitude of
probability. We also note that the complete shape of the
distribution can be characterized by a single parameter,
the normalized 4th moment that has a one to one cor-
respondence with the theoretical dissipation parameter.
Further, we confirmed that P (vz) scales linearly with the
particle volume concentration as well as the shear rate
and is independent on the solvent’s viscosity. While var-
ious authors report on transitions between Gaussian and
(stretched) exponential tails [1, 2, 10], we have shown
that there is no such transition and that such findings
are due to insufficient statistics.
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