Stochastic Aggregation: Scaling Properties,

E. Ben-Naim and P.L. Krapivsky

We study scaling properties of stochastic aggregation processes in one dimension. Numerical simulations for both diffusive and ballistic transport show that the mass distribution is characterized by two independent nontrivial exponents corresponding to the survival probability of particles and monomers. The overall behavior agrees qualitatively with the mean-field theory. This theory also provides a useful approximation for the decay exponents, as well as the limiting mass distribution.


src, ps, pdf