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Abstract. We study the scaling properties of stochastic aggregation processes in one dimension.
Numerical simulations for both diffusive and ballistic transport show that the mass distribution is
characterized by two independent non-trivial exponents corresponding to the survival probability
of particles and monomers. The overall behaviour agrees qualitatively with the mean-field theory.
This theory also provides a useful approximation for the decay exponents, as well as the limiting
mass distribution.

1. Introduction

In the preceding study, we introduced a stochastic aggregation process involving both active
and passive clusters [1]. We generalized the Smoluchowski rate equations and obtained exact
results for several kernels. In this paper, we apply stochastic aggregation to reaction–diffusion,
coarsening and ballistic agglomeration problems. Our goal is to examine the range of validity
of the mean-field results, and to determine whether the overall scaling behaviour extends to
low-dimensional systems.

The rate equations approach is mean field in nature, i.e. it is valid only when spatial
correlations are absent. Formally, it is applicable only in an infinite spatial dimension, or
in the presence of an effective mixing mechanism. This mean-field theory should also be
asymptotically exact when the spatial dimension is sufficiently high. In low spatial dimensions,
however, significant spatial correlations eventually develop, and the rate-equation approach
does not apply in the long-time limit. We therefore focus on one-dimensional systems where
the spatial correlations are most pronounced.

We have performed numerical simulations of stochastic aggregation processes with both
diffusive and ballistic particle transport. The simulations show that the scaling behaviour
suggested by the mean-field theory is indeed generic, as it extends to one-dimensional systems.
We find that two non-trivial model-dependent exponents characterize the survival probabilities
of the particles and monomers, respectively. The Smoluchowski theory provides reasonable
estimates for these exponents.

Additionally, we have studied the limiting mass distribution of passive clusters.
Surprisingly, over a substantial mass range, this distribution depends only weakly on the
underlying transport mechanism. Furthermore, mean-field theory provides an excellent
approximation for the limiting mass distribution.

The rest of this paper is organized as follows. The general scaling behaviour is
outlined in section 2. Predictions of the mean-field theory are summarized in section 3.
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Numerical simulations of stochastic aggregation processes with diffusive and ballistic transport
mechanisms are described in sections 4 and 5, respectively. A discussion of the results is
presented in section 6.

2. Scaling properties

Stochastic aggregation involves two types of clusters: active and passive [1]. Initially, the
system consists of active monomers only. When two active clusters merge, the newly born
aggregate remains active with probability p, or becomes passive (i.e. it never aggregates again)
with probability q = 1−p. Eventually, all active clusters are depleted and the system consists
only of passive clusters. This process can be viewed as an aggregation–annihilation process
since it interpolates between aggregation (p = 1) and annihilation (p = 0)†.

Quantities of interest include Ak(t) and Pk(t), the distributions of active and passive
clusters at time t , as well as the final distribution of passive clusters, Pk(∞). As shown in the
preceding paper, two conservation laws underlie this system. The first is mass conservation:∑

k[Ak(t) + Pk(t)] = constant. The second conservation law reflects the fact that changes in
the overall densities are coupled: qA(t)+ (1 +q)P (t) = constant, where A(t) = ∑

Ak(t) and
P(t) = ∑

Pk(t) are the number densities of active and passive clusters, respectively.
Therefore, it is sufficient to study the time evolution of the number density and the mass

density of the active clusters, A(t) and M(t) = ∑
kAk(t), respectively. The latter quantity is

the survival probability of an active particle, i.e. the probability that it still belongs to an active
cluster at time t . The Smoluchowski theory suggests that both quantities decay algebraically
in the long-time limit

A(t) ∼ t−ν M(t) ∼ t−νψ . (1)

As will be shown, this, as well as other scaling properties suggested by this theory, holds
qualitatively even for low-dimensional stochastic aggregation processes. While the decay
exponent ν is typically robust in that it depends only on the major characteristics of the process
such as the spatial dimension or the transport mechanism, the exponent ψ ≡ ψ(p) is non-
universal as it depends on the details of the model, i.e. on the probabilityp. In turn, this implies
a non-universal growth law for the average mass of an active cluster 〈k〉 = M/A ∼ tν(1−ψ).

For the system to follow a scaling behaviour, the average mass must be the only
relevant scale in the long-time limit, and, conversely, any scale characterizing the initial mass
distribution must eventually be ‘erased’. In other words, the mass distribution is characterized
by a single rescaled variable

Ak(t) ∼ tν(ψ−2)F
(
ktν(ψ−1)

)
(2)

with the time-dependent prefactor fixed by the decay laws (1).
This scaling behaviour is similar to that found for deterministic aggregation–annihilation

processes [2–4] and for aggregation–annihilation of domains in coarsening processes [5–7].
These studies suggest that another independent exponent describes the decay of small clusters.
Specifically, the monomer density decays according to

A1(t) ∼ t−νδ (3)

with a model-dependent exponent δ ≡ δ(p). The monomer density decay reflects the small-
argument behaviour of the scaling function F(ξ) ∼ ξσ with δ − 1 = (1 − ψ)(1 + σ). One
of our main results is that the mass distribution of active clusters is described by a set of

† Somewhat similar deterministic aggregation–annihilation processes have been investigated in [2–4]
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non-trivial exponents (ψ, δ). These exponents can be viewed as persistence exponents [8, 9]
as they characterize the survival probability of an active particle, and an active monomer [10].

Several properties of the scaling exponents are general. For instance, the inequalities
ψ � 1 � δ hold since A1 �

∑
Ak �

∑
kAk . The two exponents are equal, ψ = δ = 1, in

the annihilation case (p = 0), since Ak(t) = A(t)δk,1. In the aggregation limit (p = 1) the
mass density of active clusters is conserved and therefore ψ = 0.

We now turn to the mass distribution of passive clusters. The Smoluchowski theory
suggests that the same scaling form underlies both mass distributions

Pk(t) ∼ tν(ψ−2)G
(
ktν(ψ−1)

)
. (4)

In contrast to the active-cluster distribution, the passive-cluster distribution approaches a non-
trivial final distribution Pk(∞). Such a time-independent final distribution is consistent with
the above scaling form only when the scaling function diverges, F(ξ) ∼ ξ−γ in the limit
ξ → 0, with γ = (2 −ψ)/(1 −ψ). As a result, the final mass distribution of passive clusters
decays algebraically in the large-mass limit

Pk(∞) ∼ k−γ with γ = 2 − ψ

1 − ψ
. (5)

At a given time t , this decay is realized for clusters whose mass k does not exceed the
characteristic mass k∗ ∼ tν(1−ψ). Note also that 0 < ψ < 1 implies 2 < γ < ∞. Generally,
the mass conservation restricts the large-mass decay exponent to γ > 2. Since the ψ exponent
varies between 0 and 1, we see that the entire range of acceptable exponents is realized by
tuning the probability p.

3. Mean-field theory

It is well established that spatial correlations can be safely neglected only in spatial dimensions
larger than an upper critical dimension, d > dc [11]. For example, for irreversible aggregation
with mass-independent diffusion and reaction rates, one has dc = 2; for a general aggregation
process, however, the upper critical dimension may be arbitrarily large [12]. Below the upper
critical dimension, substantial spatial correlations develop, and the most important features,
including the scaling exponents and the scaling functions, are changed. Generally, the lower
the spatial dimension, the larger the difference from the mean-field predictions.

Although the Smoluchowski-rate-equations approach does not apply in low spatial
dimensions, it can still serve as a useful approximation after an appropriate modification. This
can be accomplished by replacing the overall reaction rate with an effective density-dependent
reaction rate r ≡ r(A)

dAk

dt
= r

(
1
2p

∑
i+j=k

AiAj − AkA

)

dPk

dt
= r

(
1
2q

∑
i+j=k

AiAj

)
.

(6)

We are primarily interested in situations where aggregation is independent of mass, and
therefore we use a mass-independent rate kernel. The reaction rate r(A) is model dependent.
In reaction–diffusion processes, the reaction rate decays algebraically with the density (see,
for example, [13, 14]). Assuming r(A) ∼ Aα yields dA

dt ∼ −Aα+2, then the density decay
exponent is found to be

ν = 1

1 + α
. (7)
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In general, a reduction in the reaction rate, i.e. α > 0, leads to a slowing down in the density
decay rate, ν < 1. Apart from the change in ν, all other aspects of this approximation
are identical to the Smoluchowski theory with a constant-rate kernel. Indeed, the above
rate equations reduce to the Smoluchowski rate equations with a redefined time variable,
t → τ = ∫ t

0 dt ′ r(t ′). In particular, the scaling exponents ψ and δ are independent of α:

ψ = 2
1 − p

2 − p
δ = 2

2 − p
. (8)

One can verify the expected limiting behavioursψ(1) = 0 andψ(0) = δ(0) = 1. Furthermore,
the scaling functions are as in the constant-kernel solution [1], and for example, F(ξ) is purely
exponential. The corresponding small-argument exponents γ = 2/p and σ = 0 follow from
ψ and δ using the aforementioned scaling relations. The final mass distribution of passive
clusters is independent of the reaction rate r [1]:

Pk(∞) = q

p

�(1 + 2/p) �(k)

�(k + 2/p)
. (9)

We now compare these mean-field predictions with simulation results for one-dimensional
stochastic aggregation where the spatial correlations are most pronounced. We also examine
the role of the aggregates’ transport mechanism by considering both diffusive and ballistic
transport.

4. Diffusive transport

In diffusive stochastic aggregation, identical particles are placed onto a d-dimensional lattice.
All particles perform independent random walks, i.e. they hop to a randomly chosen nearest-
neighbour site with a constant rate. If this site is occupied, the two particles coalesce
irreversibly, and with probability p the resulting aggregate remains active, while with
probability q = 1 − p it becomes passive. Effectively, passive particles are removed from the
system.

In the case of single-species reaction–diffusion processes, the effective reaction rate can
be obtained from dimensional analysis. Equation (6) implies [r] = [L]d [T ]−1, and since
the reaction rate can only be a function of the diffusion coefficient [D] = [L]2[T ]−1 and the
density [A] = [L]−d , one finds r ∝ DA(2−d)/d . Hence, α = (2 − d)/d and equation (7) yield
the correct decay exponents ν = d/2 [11] below the upper critical dimension dc = 2.

To examine the above scaling picture we performed numerical simulations of diffusive
stochastic aggregation processes in one dimension. Unless noted otherwise, the data were
obtained from an average over 10 independent realizations in a system of size L = 107 with
periodic boundary conditions. Initially, all sites were occupied. First, we verified that the
number density, the mass density and the monomer density indeed decay algebraically in
the long-time limit, in accordance with equations (1) and (3). The case p = 1

2 is shown in
figure 1, and the corresponding decay exponents were found: ν = 0.500(1), ψ = 0.6193(3)
and δ = 1.460(2). Mean-field theory correctly predicts ν = 1

2 . Furthermore, the predictions
ψ = 2

3 and δ = 4
3 provide a reasonable approximation. One can compare with the case

of disordered (Sinai) diffusion where a real-space decimation procedure [15] was used to
determine the exact values of these exponents [7]. Remarkably, the disorder case exponent
ψ = 0.619 37 is in excellent agreement with the simulation value. There is a small discrepancy
with the second exponent δ = 1.470 41. In addition, we verified that the densities of active and
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Figure 1. The number density, mass density and monomer density versus time for p = 1
2 .

Figure 2. Scaling of the active and passive mass distributions. Shown are the scaling functions
F(ξ) ≡ tν(2−ψ)Ak(t) and G(ξ) ≡ tν(2−ψ)Pk(t), versus the scaling variable ξ = ktν(1−ψ) at three
different times t = 104, 105 and 106. Different scales correspond to F(ξ) and G(ξ) in the main
figure since the latter diverges at the origin. The data represent an average over 103 independent
realizations in a system of size L = 106 for the case p = 1

2 . The exponent value ψ = 0.619 was
used. The tail of the distribution is shown in the inset.

passive clusters follow the scaling forms of equations (2) and (4), respectively (see figure 2).
In agreement with the mean-field theory, the scaling functions decay exponentially for large
masses.
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Figure 3. The exponent ψ versus p. Monte Carlo simulation results for the pure diffusion case
are compared with the mean-field theory (8) and the exact value for the disordered case. The latter
is obtained from U(−2/(2 −p), 2ψ, 2) = 0 [7], where U(a, b, z) is the confluent hypergeometric
function.

Figure 4. The exponent δ versus p. Monte Carlo simulation results for the pure diffusion case are
compared with the mean-field theory (8) and the exact value for the disordered case obtained from
U(−2(1 − p)/(2 − p), 2δ, 2) = 0 [7].

We also analysed how the exponents vary with the probability p, as shown in figures 3 and
4. The exact exponents for the disordered case found by Le Doussal and Monthus [7] provide
an excellent approximation (within 0.1%) forψ . In the case of δ, a different behaviour emerges
in the aggregation limit, p → 1, where the exact value is δ = 3 [16], and the disagreement
with both mean-field theory and the disordered case are most pronounced.
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Figure 5. The distribution Pk(t) versus k for three different times t = 104, 105 and 106. The
typical mass at these three times is proportional to k∗ ≡ tν(1−ψ) ∝ 6, 10 and 16, respectively.
Hence, the distribution is fully developed only over a short range of masses. The data represent an
average over 103 realizations in a system of size L = 106 with p = 1

2 .

The above scaling arguments suggest that the limiting mass distribution of passive clusters
decays algebraically with the exponent γ = (2−ψ)/(1−ψ). Forp = 1

2 , one therefore expects
γ ∼= 3.627 (compare with γ = 3.627 22 and γ = 4, predicted by the disordered case and
the mean-field theory). This corresponds to a very strong suppression of large masses, and
it is therefore much more difficult to confirm this behaviour numerically. Nevertheless, our
simulations (figure 5) are consistent with a power-law decay with an exponent γ ∼= 3.6.

In one dimension, the diffusion-controlled stochastic aggregation is equivalent to the
Potts model with zero-temperature Glauber dynamics [17]. For the Q-state Potts model with
spatially uncorrelated initial conditions, aggregation of domain walls occurs with probability
p = (Q − 2)/(Q − 1), and annihilation occurs with probability q = 1/(Q − 1). Therefore,
the above can be reformulated in terms of domain walls rather than aggregates. In the
coarsening context, the domain wall mass (or number) distribution is dual to domain number
distribution [5–7].

5. Ballistic transport

The situation in which particles move ballistically involves a number of complications. Firstly,
while the annihilation limit is uniquely defined [18–23], the aggregation limit has various
realizations. In traffic flows the velocity of a newly born cluster is the smaller of the two
velocities [24], whereas in application to astrophysics and granular gases the velocity follows
from momentum conservation [25, 26]. Secondly, the numerical results for the annihilation
case [19] and analytical results for the traffic case [24] show that the initial conditions are
‘remembered’ forever, in contrast to the diffusive case. Specifically, the small-velocity
characteristics of the initial velocity distribution influence the long-time asymptotic behaviour,
including the scaling exponents.



5484 E Ben-Naim and P L Krapivsky

We consider the momentum-conserving case, also known as ‘ballistic aggregation’ or
‘sticky gas’ [27–33]. The initial velocities are assigned according to the distribution P0(v).
The mass (momentum) of a newly born cluster is equal to the sum of masses (momenta) of
the two colliding clusters. After an agglomeration event, the newborn particle remains active
with probability p, or becomes passive with probability q = 1 − p.

To apply the Smoluchowski-rate-equations approach, we again use dimensional analysis to
calculate the decay exponent ν. The collision rate is r ∼ vad−1, where v is the typical velocity
and a is the typical radius of an aggregate. A particle of radius a contains of the order ad

monomers whose initial momenta are uncorrelated. Momentum conservation therefore implies
v ∼ a−d/2. Using ad ∼ M/A ∼ Aψ−1 gives the collision rate r ∼ a(d−2)/2 ∼ A(d−2)(ψ−1)/2d .
From equation (7) one finds

ν = 2d

d + 2 + ψ(d − 2)
(10)

with ψ given by equation (8). Apart from the exponent ν, features such as the exponential
mass distribution and the exponents ψ and δ are given by the mean-field theory outlined
above. In two dimensions, the collision rate does not depend on ψ and hence the asymptotic
behaviour A ∼ t−1 agrees with that found for deterministic ballistic agglomeration [27]. For
d �= 2, stochastic and deterministic asymptotics differ: stochasticity enhances the decay of the
number density A for d < 2 and weakens it for d > 2. A more detailed mean-field theory can
be carried. It yields a factorizing joint mass-velocity distribution, with an exponential mass
distribution, and a Gaussian velocity distribution [28, 31].

In the aggregation case, ψ = 0 and therefore the correct scaling exponent ν = 2d/(d + 2)
[27] is recovered from equation (10). For the annihilation case, however, initial conditions are
‘remembered’ forever and therefore the above dimensional arguments no longer hold. The
predicted exponent in the annihilation case is always mean-field ν = 1, while one-dimensional
numerical simulations yield an exponent continuously varying from 0 to 1 depending on the
initial velocity distribution P0(v), e.g., ν ≈ 0.8 for uniform initial distributions [19, 22].

We have simulated the stochastic aggregation process on a one-dimensional ring with
106 particles. The initial velocity distribution was uniform in [−1, 1]. We measured the
scaling exponent ψ via the scaling relation M ∼ Aψ rather than directly versus time, since
the exponent ν(p) is not known analytically. We have found that the mean-field prediction,
ψ = (2 − 2p)/(2 −p), provides a reasonable approximation for the exponent ψ , as shown in
figure 6. Furthermore, this approximation should improve in higher dimensions.

We compared the mean-field prediction for the mass distribution of passive clusters,
equation (9), with the numerically obtained distributions in both ballistic and diffusive cases.
Interestingly, the rate equations provide an excellent approximation for small and moderate
masses (see figure 7). Given that the discrepancy in ψ is maximal for the case p = 1

2 , one
may expect an even better approximation for other values of p. Noting the strong decay
of this distribution, the contribution of very large masses is extremely small; for example,
P100(∞) ≈ 2.4 × 10−7 for p = 1

2 . Hence, the most pronounced part of the distribution
is well approximated by the rate-equations theory. Surprisingly, the transport mechanism
does not play an important role as far as the final mass distribution of passive clusters is
concerned.

6. Discussion

We have investigated diffusion- and ballistic-controlled stochastic aggregation in one
dimension. We have seen that the rate-equations approach captures the overall scaling
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Figure 6. The scaling exponent ψ(p) versus p for ballistic aggregation compared with the mean-
field value of equation (8).

Figure 7. The final distribution of passive clusters for the p = 1
2 stochastic aggregation

with diffusive and ballistic transport. Also shown is the mean-field distribution Pk(∞) =
24/[k(k + 1)(k + 2)(k + 3)].

behaviour and additionally it provides reasonable estimates for the decay exponents. In general,
the mass distribution is characterized by two non-trivial model-dependent decay exponents.

In the diffusion-controlled case, the exponent ψ underlying the survival probability of a
particle is in excellent agreement with the exact results from the disordered case. In fact, one
cannot dismiss the possibility that the disordered and the pure values are identical, based on
numerics alone. However, there is an evident discrepancy in the exponent δ as the disordered
case exponent diverges logarithmically in the aggregation limit. Stochastic aggregation is
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equivalent to domain coarsening in the zero-temperature Potts–Glauber model. The above
exponents (ψ, δ) characterize the domain-wall number distribution in analogy with (ψD, δD)

for the domain number distribution [5]. In the latter case as well, the exact values calculated for
the disordered case provide an excellent approximation for the domain exponents. In general,
the particle survival probability exponent ψ is robust, while the monomer survival probability
exponent δ is very sensitive to the details of the process.

In the ballistic-controlled case, we have shown that even in the absence of a consistent
mean-field theory, some characteristics such as the exponent ψ are well approximated by the
rate equations. Understanding of reaction processes with an underlying ballistic transport
remains largely incomplete. The asymptotic behaviour is highly sensitive to the initial
conditions, and the critical dimension is apparently infinite. In fact, exact analytical results
are available mainly in the aggregation limit [24, 32, 33].

The most intriguing property of the stochastic aggregation is the profound lack of
universality. Indeed, the weak dependence on the transport mechanism is in contrast to the
strong dependence on the parameter p. For example, our numerical results show that the final
distribution of passive clusters is very close in diffusion- and ballistic-controlled situations.
Another very impressive manifestation of this is the excellent agreement between the values
of the exponent ψ(p) in the disordered and pure cases.
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