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We introduce and solve analytically a model for the development of disparate social classes in
a competitive population. Individuals advance their fitness by competing against those in lower
classes, and in parallel, individuals decline due to inactivity. We find a phase transition from a
homogeneous, single-class society to a hierarchical, multi-class society. In the former case, the
population is uniformly poor. In the latter case, a finite-fraction condensate that consists of a static
lower class remains. The rest of the population consists of an upwardly-mobile middle class, on top
of which lies a tiny upper class in the form of a thin boundary layer.
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There are many connections between social dynamics
and physical processes. For example, in urban dynamics
[1], migration-driven population development has analo-
gies with coarsening [2]. Rumor propagation and forma-
tion of social networks are closely related to percolation
[3]. An appealing route for modeling social phenomena is
to identify individuals in a society as particles in a phys-
ical system, i.e., an agent-based description [4, 5]. This
interdisciplinary approach has helped identify underlying
mechanisms for fundamental social phenomena and has
led to quantitative predictions [6–10].

In this spirit, we seek to understand the formation of
the social hierarchies that are ubiquitously observed in
animal populations [11, 12] and in human societies [13].
We introduce a minimalist agent-based model in which
competition is the underlying mechanism for social differ-
entiation. Using concepts and methods from statistical
and nonlinear physics, such as scaling and asymptotic
analysis, we find a rich phenomenology for social diver-
sity. As a function of the competition rate, the popula-
tion undergoes a phase transition from a homogeneous,
single-class society to a hierarchical, multi-class society.
In the latter phase, the lower class remains destitute and
static and has the character of a condensate, while the
middle class is dynamic and has a continuous upward
mobility.

Our work is based on an earlier model of Bonabeau
[14], in which each individual is endowed with a fitness-
like variable that evolves by two opposing processes. The
first is competition: when two agents interact, one in-
dividual becomes more fit (gains status) and the other
becomes less fit, with the initially fitter individual being
more likely to win. Counterbalancing this competition,
the winning probability for the fitter agent decreases as
the time from the last competition increases. This model
was found to exhibit a transition to a heterogeneous so-
ciety as the relative influence of competition is increased
[14, 15].

In our model, we account for the interplay between ad-
vancement by competition and decline by inactivity via a
single parameter. Each agent is endowed with an integer

fitness value k ≥ 0 that can change due to two processes:
(i) advancement by competition and (ii) decline by inac-
tivity. In the competition step, when two agents interact,
their fitnesses change according to

(k, j) → (k + 1, j), (1)

for k ≥ j. When two equally fit agents compete, both
advance [16]. Without loss of generality, the rate of this
process is set to one. We also consider the mean-field
limit where any pair of agents is equally likely to inter-
act. The rationale behind this “rich gets richer” dynam-
ics is obvious: fitter individuals are better suited for, and
hence benefit from, competition. When decline occurs,
individual fitness decreases as

k → k − 1 (2)

with a rate r. This process reflects the natural tendency
for social status to decrease in the absence of interactions.
The lower limit for the fitness is k = 0; once an individ-
ual reaches zero fitness, there is no further decline. The
model is characterized by a single parameter, the rate of
decline r.

Let fk(t) be the fraction of agents with fitness k at time
t. This distribution obeys the nonlinear master equation

dfk

dt
= r(fk+1 − fk) + fk−1Fk−1 − fkFk (3)

for k > 0, and df0/dt = rf1 − f2
0 for k = 0. The quantity

Fk =
∑k

j=0 fj is the cumulative distribution. We take
the initial condition to be fk(0) = δk,0. In Eq. (3), the
first two terms account for decline, while the last two
terms account for advancement [17].

To understand the behavior of this system, we focus on
the cumulative distribution Fk, from which the individual
densities are fk = Fk − Fk−1. From the master equation
(3), the cumulative distribution satisfies

dFk

dt
= r(Fk+1 − Fk) + Fk(Fk−1 − Fk), (4)
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FIG. 1: The middle class. The scaled cumulative distribution
Φ(x) versus x for r = 1/2 at t = 250 (dotted), 1000 (dashed),
4000 (dot-dashed). The solid line is the theoretical predic-
tion (8). The inset shows the qualitative behavior for r = 0
(dashed), r ≈ 1/2 (solid), and r ≈ 1 (dotted).

for k ≥ 0. The boundary condition is F−1 = 0 so that
dF0/dt = r(F1 − F0) − F 2

0 , and the initial condition is
Fk(0) = 1.

Homogeneous vs. Hierarchical Societies. Our so-
cial diversity model undergoes a phase transition from
a homogeneous to a hierarchical society. This transition
follows from the continuum limit of the master equation
(4) for the cumulative distribution

∂F

∂t
= (r − F )

∂F

∂k
. (5)

For finite fitness, the cumulative distribution approaches
a steady state in the long-time limit. Then either F = r
or ∂F/∂k = 0. Invoking the bound F ≤ 1, we conclude
that either F = r or F = 1. Therefore, L, the frac-
tion of the population with finite fitness exhibits a phase
transition

L =

{

r r < 1;

1 r ≥ 1.
(6)

When competition is weak, the entire population has a
finite fitness, while for strong competition, only a fraction
L < 1 of the population has a finite fitness.

We shall see that the quantity L is the size of the lower
class, while the complementary fraction 1 − L is the size
of the middle class, whose fitness increases indefinitely.
Thus for r ≥ 1, the society is homogeneous and consists
of a single lower class. However for r < 1, there is a
hierarchical society that contains a distinct lower class,
and a distinct a middle class. When r = 0, the lower
class disappears entirely.

Middle Class Dynamics. The picture presented above
is confirmed by analyzing the dynamics of the middle
class. Applying dimensional analysis to the governing
Eq. (4) suggests that the characteristic fitness of the mid-
dle class increases linearly with time, k ∼ t. Thus, we
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FIG. 2: The lower, middle, and upper classes. The fitness
distribution fk versus k for r = 1/2 at t = 4000 (solid line),
showing the lower (k <

∼ 60), middle, and upper (k >
∼ 2000)

classes. Also shown for reference is the plateau fk = 1/t
(dashed line). The distribution varies as 1/k2 in the lower

class up to the diffusive scale klower ∼ (2rt)1/2. The distri-
bution is constant in the middle class up to a ballistic scale
kupper = (1 − r)t, beyond which there is an upper class that
has a Gaussian decay.

posit the scaling form

Fk ' Φ(k/t) (7)

with the boundary condition Φ(∞) = 1. Substi-
tuting Eq. (7) into (5), the scaling function satisfies
x dΦ/dx = (Φ − r) dΦ/dx where x = k/t. The solution
is either Φ(x) = r + x or dΦ/dx = 0. As a result (Fig. 1)

Φ(x) =

{

r + x x < 1 − r;

1 x ≥ 1 − r.
(8)

Remarkably, the scaling function for the cumulative dis-
tribution is piecewise linear and thus non-analytic. The
analysis above implicitly assumes continuity of the scal-
ing function and indeed, the cumulative distribution is
expected to be continuous.

The scaling function (8) has a number of basic impli-
cations. First, the quantity Φ(0) = r is the fraction of
the population that belongs to the lower class, confirming
the prediction of Eq. (6). This behavior is reminiscent of
a physical condensate, where a finite fraction of the pop-
ulation occupies the zero fitness (in scaled units) ground
state. In this sense, the entire lower class is destitute.
When competition only occurs (r = 0), the society con-
sists of a continuously-improving middle class.

We can alternatively write the fitness distribution in
the scaling form fk ' t−1φ(k/t). The corresponding scal-
ing function is φ(x) = dΦ/dx = rδ(x) + 1 for x ≤ 1 − r
and φ(x) = 0 otherwise. The middle class thus has a
constant fitness distribution

fk ' t−1, (9)

for k < kupper = (1 − r)t. The lot of the middle class is
constantly improving, as the fitness extends over a grow-
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FIG. 3: The lower class. The cumulative distribution, nor-
malized by the rate r, Fk/r is plotted versus k. Shown are
simulation results for r = 1/4 (circles), r = 1/2 (squares),
r = 3/4 (diamonds) at time t = 104.

ing range and the average fitness increases linearly with
time.

Numerical integration of the master equation confirms
these predictions (Figs. 1 and 2). We used a fourth-order
Adams-Bashforth method [18] with accuracy to 10−10 in
the distribution Fk. Our numerical data was obtained by
integrating Fk for 0 ≤ k < 20000.

Lower Class Dynamics. The fitness of the lower class
is finite; in other words, the fitness distribution is in a
steady state. This distribution can be determined by
setting the time derivative in the rate equation to zero.
Writing Fk = L(1 − Gk), so that the deviation Gk van-
ishes at large k, Eq. (4) gives

r
Gk+1 −Gk

Gk −Gk−1

= L(1 −Gk). (10)

The fitness distribution is fundamentally different in
the two phases. In the homogeneous society phase (r ≥ 1
and L = 1), the deviation Gk decays rapidly at large
fitness. Replacing the right-hand side of Eq. (10) by 1
for large k, the solution is simply Gk ∼ r−k. Therefore

fk ∼ r−k. (11)

The fitness distribution decays exponentially, so that the
lower class is confined to a small range of fitness values.
The characteristic fitness 1/ ln r diverges as the transition
is approached. The society is homogeneous with a single
class, the lower class, that does not evolve with time.

In the hierarchical society phase, (where r < 1 and
L = r), the fitness distribution is universal, as
the recursion relation (10) becomes r-independent,
(Gk+1 −Gk)/(Gk −Gk−1) = 1 −Gk. This shows that
Fk/r is a universal, r-independent distribution (Fig. 3).
We start by treating k as a continuous variable, because
the fitness range becomes large as r ↓ 1. We thus ex-
pand the differences in Eq. (10) to second order. Since
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FIG. 4: The upper class. Shown is the normalized tail of the
fitness distribution: tfk versus z2, with the scaling variable
z = (k− vt)/

√
Dt, for r = 1/2 at times t = 4000 (circles) and

t = 8000 (squares).

G′′ ¿ G′, where prime denotes differentiation with re-
spect to k, we find G′′ +GG′ = 0. Integrating once and
invoking G→ 0 as k → ∞, gives G′ + 1

2
G2 = 0. Asymp-

totically, G ' 2k−1, and using fk = Fk − Fk−1, we find

fk ' 2r k−2. (12)

The lower class has a power-law fitness distribution with
mean fitness that diverges logarithmically in the upper
limit. While the lower class is still static, it is not as
destitute as in the homogeneous society phase.

The transition between the lower and middle class oc-
curs when 2r/k2 ≈ 1/t, i.e., where the power-law distri-
bution (12) matches the uniform distribution (9). Conse-
quently, the lower class is confined to a diffusive boundary
layer of thickness

klower ∼ (2rt)1/2. (13)

Beyond this diffusive scale, lies the middle class
whose constant density (9) extends over the range
klower < k < kupper. In the hierarchical society phase, the
fitness distribution consists of the stationary component
(12) that defines the lower class and the evolving compo-
nent (7) that defines the middle class. The extent of the
stationary region indefinitely grows with time.

We thus conclude that the lower class is always static,
being in a steady-state independent of the rate of de-
cline r. In a homogeneous society, the lower class has
an exponentially decaying fitness distribution that lies
within a narrow fitness range. In a hierarchical society,
the lower class fitness distribution decays algebraically
and its range grows diffusively with time.

Upper Class Dynamics. The upper class is de-
fined by the subpopulation whose fitness lies beyond
kupper = (1 − r)t. We probe the tail of this fitness dis-
tribution by again considering the deviation Gk, defined
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by Fk = 1 −Gk. It obeys the Fokker-Planck equation

∂Gk

∂t
+ v

∂Gk

∂k
= D

∂2Gk

∂k2
(14)

with upward drift velocity v = (1 − r) and diffusion
coefficient D = (1 + r)/2. The boundary condition
G(k = vt) ∝ t−1 is set by matching the density at
the top of the middle class with that at the bottom of
the upper class. Consequently, the fitness distribution,
f = −∂G/∂k, follows the scaling form (Fig. 4)

fk(t) ' t−1ψ

(

k − vt√
Dt

)

. (15)

The scaling function has the Gaussian tail
ψ(z) ∼ exp(−z2/2), as z → ∞, characteristic of a
convection-diffusion equation. The upper class is thus
confined to a diffusive boundary layer that grows as√
Dt. From Eq. (15), the upper class contains a fraction

∝ 1/
√
t of the total population.

For completeness, we note that for the special case of
r = 0, the rate equation dFk/dt = Fk(Fk−1 −Fk) admits
an exact solution. We make the transformation

Fk =
Pk−1

Pk
, (16)

with the initial condition Pk(0) = 1 and the boundary
condition P−1 = P0 = 1. Remarkably, this transforma-
tion reduces the non-linear rate equations to the set of
linear equations dPk/dt = Pk−1 for k ≥ 1. Solving these

recursively, we obtain Pk =
∑k

j=0 t
j/j!. Therefore,

Fk(t) =
1 + t+

1

2!
t2 · · · + 1

k!
tk

1 + t+
1

2!
t2 · · · + 1

(k + 1)!
tk+1

. (17)

It is possible to show that this exact solution adheres to
the scaling form (7) with Φ(x) as in (8). Asymptotic
analysis yields the exact shape of Fk in the boundary
layer, 1−Fk '

√

2/πt exp[−(k−t)2/2t]/erfc[(k−t)/
√

2t].
In summary, we introduced a minimal model of social

diversity in which the two driving mechanisms are ad-
vancement by competition and decline by inactivity. An
idealized but plausible social structure emerges: either a
homogeneous society with a single lower class, or a hier-
archical society with multiple classes. The lower class is
always static, while the middle class and the tiny upper
classes are upwardly mobile. In a hierarchical society, the
lower and the upper classes are confined to boundary lay-
ers that are much smaller than the dominant scale that
characterizes the fitness of the middle class. It is striking
that a deceptively simple master equation exhibits such
a rich structure, with a stationary component, followed
by two transient components, as well as a non-analytic
scaling function for the asymptotic fitness distribution.

There are numerous interesting questions suggested by
this work. For example, what is the time history of an
individual? How rigid is the social hierarchy and how
does it depend on the population size? What happens if
each individual is also endowed with an intrinsic fitness?
Last, does non-trivial spatial organization emerge when
agents move locally in space?
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