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We investigate the kinetics of nonlinear collision-induced fragmentation. We obtain the fragment
mass distribution analytically by utilizing its travelling wave behavior. The system undergoes a
shattering transition in which a finite fraction of the mass is lost to infinitesimal fragments (dust).
The nature of the shattering transition depends on the fragmentation process. When the larger of
the two colliding fragments splits, the transition is discontinuous and the entire mass is transformed
into dust at the transition point. When the smaller fragment splits, the transition is continuous with
the dust gaining mass steadily on the account of the fragments. At the transition point, the fragment
mass distribution diverges algebraically for small masses, c(m) ∼ m−α, with α = 1.20191 . . .
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I. INTRODUCTION

Fragmentation occurs in numerous physical phenom-
ena and industrial processes [1–5]. Examples include
breakup of liquid droplets [6] and atomic nuclei [7], poly-
mer degradation [8], shattering of solid objects [9, 10],
meteor impacts, and mineral grinding. Idealized models
of such physical phenomena are also useful conceptual
tools for describing complex systems such as fluid turbu-
lence, spin glasses [11], genetic populations [12, 13], and
random Boolean networks [14, 15].
In some cases, for example in polymer degradation, the

evolution of a fragment depends only on its size. There-
fore, fragments do not interact and such processes are
inherently linear. In other cases including grinding pro-
cesses, explosions in an enclosed volume, and breakup of
eddies in a turbulent flow [16], interactions between frag-
ments are essential. Such fragmentation processes are in-
trinsically nonlinear [17–20]. In this study, we show that
the nature of the mass distribution changes qualitatively
due to nonlinearities.
We investigate a basic class of nonlinear fragmentation

processes where binary collisions are the cause of break-
age. We show that such processes exhibit a shattering
transition where infinitesimal fragments (dust) carry a
finite fraction of the mass in the system. We consider the
simplest realization where one of the two colliding frag-
ments breaks into two pieces. Generically, the number of
fragments diverges in a finite time, indicating shattering
into dust.
The nature of the shattering transition depends sensi-

tively upon the details of the fragmentation process, in
particular, which of the two colliding particles splits. We
investigate three possibilities: (A) either, (B) the larger,
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and (C) the smaller of the two particles breaks into two
fragments upon collision. In the first two models, as the
transition occurs the entire mass is instantly transformed
into dust. In the third model, the dust mass gradually
increases once the shattering transition occurred.

In contrast with linear fragmentation processes, ex-
plicit solutions of the nonlinear and non-local rate equa-
tions are generally not possible. Nevertheless, the most
important physical characteristics can still be obtained
analytically. Interestingly, the fragment mass distribu-
tion attains a travelling wave form as the transition is
approached. Of the spectrum of possible propagation ve-
locities, the extremal one is selected and it characterizes
typical and extremal behaviors of the mass distribution.
In the case of model C, at the shattering transition, the
mass distribution is algebraic for small masses, with a
transcendental exponent. Past the transition, the frag-
ment mass distribution approaches a universal form.

We first consider the number density that manifests
the shattering transition (section II). Then, we analyze
the fragment mass distribution using rate equations for
a deterministic version (section III) and a stochastic ver-
sion (section IV) of the fragmentation process. Finally,
we summarize our results and outline a few suggestions
for future work (section V).

II. THE NUMBER DENSITY

Consider a fragmentation process where at each (bi-
nary) collision event, one particle splits into two pieces
while the second particle remains intact. We restrict our
attention to situations where the splitting rate is inde-
pendent of the fragment size and without loss of gener-
ality, the collision rate is set to unity. Analogous to the
kinetic theory description of collisions in molecular gases,
we assume perfect mixing, namely, absence of spatial cor-
relations between fragments. The total fragment density,
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N(t), evolves according to the rate equation

d

dt
N(t) = N2(t). (1)

Without loss of generality, the initial density is set to
unity, N(0) = 1, and therefore, the total density is

N(t) =
1

1− t
. (2)

In a finite time, the number of fragments diverges and
the average fragment mass vanishes. This divergence in-
dicates that the system undergoes a shattering transition
at tc = 1.
Let τ =

∫ t

0
dt′ N(t′) be the average number of collisions

experienced by a fragment up to time t. This quantity
diverges logarithmically

τ = lnN(t) = ln
1

1− t
. (3)

This “collision counter” provides a convenient alternative
measure of time.

III. DETERMINISTIC FRAGMENTATION

To complete the model definition we have to specify
which of the fragments splits, and how it splits. Follow-
ing Cheng and Redner [18], we consider three possibili-
ties: (A) a randomly chosen, (B) the larger, and (C) the
smaller fragment splits upon collision. In this section,
we consider a deterministic rule where fragments split
into two equal pieces. In the next section, we show that
stochastic rules result in qualitatively similar behaviors.

A. Random particle splits

We start with the case where a randomly selected par-
ticle splits upon collision (this is equivalent to having
both particles split). For simplicity, we focus on monodis-
perse initial conditions where all particles have unit mass,
m = 1. Then, a fragment produced by n collision events
has mass m = 2−n. Let cn(t) be the density of such
fragments at time t. This density evolves according to

d

dt
cn(t) = N(t) [ 2cn−1(t)− cn(t) ] , (4)

with the total density N(t) =
∑∞

j=0 cj(t). Summing up

Eqs. (4) we indeed recover Eq. (1). Also, the total mass,
M(t) =

∑∞
j=0 2

−j cj(t), is conserved, M(t) = 1.
In terms of the collision counter, the process is linear,

d
dτ cn = 2cn−1 − cn, and subject to the monodisperse
initial conditions cn(0) = δn,0, the exact solution is the
Poissonian density [18]

cn(τ) = e−τ (2τ)
n

n!
. (5)

At the shattering time tc = 1 (corresponding to τ =∞),
the densities vanish: cn(t = 1) = 0 for all n. There-
fore, the fragment mass density undergoes a first-order
(discontinuous) transition, M(t) = Θ(tc − t) with Θ the
Heaviside step function. In other words, the entire mass
is shattered into dust and there are no particles with pos-
itive mass [8, 18, 21].
Near the shattering transition, i.e., as τ → ∞, the

mass distribution approaches

cn(τ)→
N√
vτ

G

(

n− vτ√
vτ

)

, (6)

where v = 2 and G(x) = (2π)−1/2 exp
(

−x2/2
)

is the
Gaussian distribution. Since n = log2(1/m), the mass
distribution becomes log-normal, a behavior typical to
fragmentation and cascade processes [2, 8, 18, 21].

B. Larger particle splits

Now in a collision the larger particle splits into two
equal pieces. If the colliding particles have the same
mass, a randomly chosen particle splits. The fragment
mass density, cn ≡ cn(t), satisfies the rate equation

d

dt
cn = 4cn−1An − 2cnAn+1 + 2c

2
n−1 − c2n , (7)

where An is the cumulative density of fragments of mass
2−n and smaller, An(t) =

∑∞
j=n cj(t). The initial condi-

tions are cn(0) = δn,0. One can verify that the mass is
conserved, M(t) = 1, and that the total density is given
by Eq. (2).
The density c0(t) of unit mass particles satisfies the

Bernoulli equation, d
dt c0 = c20−2c0N . Using Eq. (2) and

the initial condition c0(0) = 1 gives

c0(t) =
3(1− t)2

2 + (1− t)3
. (8)

For sufficiently small n, one can obtain the leading
asymptotic behavior near the shattering transition. Since
An → N as t → 1 and the last two terms on the right-
hand side of Eq. (7) are asymptotically negligible, the
rate equations simplify to d

dt cn = 2N(2cn−1 − cn) which
are identical (up to the factor 2) to Eqs. (4). Therefore,

cn(τ) ∝ e−2τ (4τ)
n

n!
. (9)

Apart from logarithmic corrections, the densities vanish
quadratically: cn(t) ∝ (1 − t)2. We conclude that the
shattering transition remains discontinuous (see Fig. 1).
Figure 1 suggests studying the normalized distribution
N−1cn(t). Below, we show that as a function of τ , the
normalized fragment mass distribution follows a universal
behavior in the large-n limit.



3

0 0.2 0.4 0.6 0.8 1
t

0

0.2

0.4

0.6

0.8

1

(1
−

t)
 c

n(
t)

FIG. 1: The normalized fragment size distribution. Shown is
N−1cn(t) versus t for n = 0, 1, 2, 4, and 6. The numerical
results reported in this study were obtained from integration
of the rate equations using the Adams-Bashford method with
an adaptive time step yielding a relative accuracy of 10−9 in
the densities.

The rate equations (7) simplify in terms of the cumu-
lative densities:

d

dt
An = 2A

2
n−1 −A2

n . (10)

This equation holds for A0 = N if we set A−1 ≡ A0.
The initial conditions are An(0) = δn,0. We characterize
time by the collision counter (3) and normalize the size
density by the total number density, Fn(τ) = N−1An(t).
These transformations yield

d

dτ
Fn = 2F

2
n−1 − F 2

n − Fn . (11)

Asymptotically, this equation admits a travelling wave
solution Fn(τ)→ f(n−vτ) as shown in Fig. 2. The wave
form f(x) satisfies the difference-differential equation

v
d

dx
f(x) = f(x) + f2(x)− 2f2(x− 1) , (12)

and is subject to the boundary conditions f(−∞) = 1
and f(∞) = 0. Remarkably, the velocity v can be deter-
mined without solving the nonlinear and non-local dif-
ferential equation (12) exactly. It follows from the expo-
nential behavior attained by f(x) far behind the front:
1 − f(x) ∼ eλx as x → −∞. Together with Eq. (12) it
yields a “dispersion” relation between the velocity v and
the decay coefficient λ,

v =
3− 4e−λ

λ
. (13)

Out of the spectra of possible velocities v ∈ (−∞, vmax],
the maximal value is selected. At the maximum, we
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FIG. 2: The travelling wave. Shown are numerical solutions
of Eq. (11) for n = 2, 4, 6, and 8.

have 3eλ = 4(1 + λ), from which λ ∼= 0.961279 and
v ∼= 1.52961. Alternatively, the velocity is the smaller
root of v ln(4e/v) = 3.
Velocity selection underlies numerous situations, yet it

has been rigorously established only for a few non-linear
parabolic partial differential equations, typically occur-
ring in reaction-diffusion problems [22–27]. Recently, ve-
locity selection has been also applied to a host of differ-
ence and difference-differential equations [28–32] includ-
ing a linear fragmentation process [30]. Typically, the se-
lected velocity gives key physical characteristics such as
the growth velocity of a surface in deposition processes
[28] or the extremal heights of random trees [32].
The typical behavior of the fragment mass density fol-

lows from the travelling wave form

cn(τ)→ N g(n− vτ) , (14)

with g(x) = f(x) − f(x + 1). The front location n∗ ≈
vτ characterizes typical fragments and the typical mass
m∗ = 2

−n∗ shrinks as

m∗ ∼ (1− t)σ (15)

with σ = v ln 2 ∼= 1.06024 as t→ 1. The typical mass de-
cays slower than in model A where σ = 2 ln 2 ∼= 1.38629.
Another difference between models A and B is manifested
by the width: In contrast with the diffusive broadening
in model A the width saturates at a finite value in model
B. Yet, fundamentally the shattering transitions are the
same in both models — the entire system is instantly
transformed into dust at the transition point.
The extremal behavior of the fragment mass density

follows from the tails of f(x). The behavior far ahead
of the wave front (x → ∞) is a sharp double exponen-
tial decay, as implied by the leading terms in Eq. (12),
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v d
dxf(x) = −2f

2(x − 1). In summary, the extremal be-
haviors are

f(x) ∼
{

1− C1 eλx x→ −∞,
2x exp(−C2 2

x) x→ +∞.
(16)

We now re-express the mass distribution in terms of the
ordinary mass variable m = 2−n. The two distributions
are related via c(m)dm = cndn (note that large masses
correspond to small indices and vice versa). Near the
shattering transition, the mass distribution attains the

scaling form c(m)→ N
m∗

F
(

m
m∗

)

. Equation (16) leads to

the following extremal behaviors of the scaling function:

F(z) ∼
{

z−α z À 1,
z−2 exp

(

−C2 z−1
)

z ¿ 1; (17)

with α = 1 + λ/ ln 2 ∼= 2.38683. Hence, large masses
(relative to the typical mass) are suppressed algebraically,
while small masses are suppressed exponentially.
Generally, in fragmentation processes the mass distri-

bution has a scaling form and this is indeed the case for
collision-induced fragmentation. However, the nonlinear
nature of the process results in qualitative changes to the
scaling behavior. The similarity solutions have two scales
characterizing the front location and fluctuations around
it in the linear case (model A). In contrast, only a single
scale underlies similarity solutions in the nonlinear case
(model B).

C. Smaller particle splits

When the smaller particle splits upon collision the frag-
ment size densities satisfy the rate equations

d

dt
cn = 4cn−1Bn−1 − 2cnBn + 2c

2
n−1 − c2n , (18)

where Bn =
∑n−1

j=0 cj is the cumulative density of parti-

cles with mass larger than 2−n.
The density of unit mass particles is readily found by

solving ċ0 = −c20. The next density can be found as well

c0(t) =
1

1 + t
, (19)

c1(t) =
2

1 + t

(1 + t)3 − 1
2(1 + t)3 + 1

.

These explicit results already demonstrate that densities
are positive at all times. Hence, the total mass density
M(t) also remains positive after the shattering transition.
The kinetics just below and at the shattering transition

can be determined using the travelling wave behavior.
The cumulative distribution obeys d

dt Bn = 2B
2
n−1 −B2

n

which is identical to Eq. (10); the initial conditions, how-
ever, are different: Bn(0) = 1 − δn,0. The transformed
distribution Fn(τ) = N−1Bn again evolves according to
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FIG. 3: The mass distribution at the shattering time. Nu-
merical integration of the rate equations (18) are compared
with the theoretical prediction (23).

Eq. (11). Asymptotically, it admits a travelling wave so-
lution, Fn(τ)→ f(n− vτ), with the wave form f(x) sat-
isfying Eq. (12). However, the boundary conditions are
reversed, F (−∞) = 0 and F (∞) = 1, leading to different
quantitative and qualitative results.
Both extremal behaviors are now exponential

f(x) ∼
{

ex/v x→ −∞,
1− e−λx x→ +∞.

(20)

The behavior far ahead of the front is used to determine
the velocity. The dispersion relation is

v =
4eλ − 3

λ
, (21)

and the extremum selection principle gives λ ∼= 0.58013
and v ∼= 7.14509. Numerically, we confirmed this velocity
to within 0.01%. Interestingly, v is the larger root of the
same (as in model B) equation v ln(4e/v) = 3. We note
that the velocities satisfy vB < vA < vC .
The fragment size distribution follows the travelling

wave form (14) with g(x) = f(x+1)− f(x). The typical
mass shrinks according to (15) with σ = v ln 2 ∼= 4.9526
near the shattering point. The exponential tails of the
wave form imply algebraic tails for the scaling function
underlying the mass distribution

F(z) ∼
{

z−α z À 1,
z−β z ¿ 1; (22)

with α = 1 + (v ln 2)−1 ∼= 1.20191 and β = 1− λ/ ln 2 ∼=
0.163049.
Our major result is that the mass distribution diverges

algebraically at the transition time [33]:

c(m, 1) ∼ m−α, (23)
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FIG. 4: Fragment versus dust mass. Shown are the fragment
mass M(t) (solid line) and the dust mass µ(t) (dashed line)
versus time t.

form→ 0 with the transcendental exponent α = 1.20191
(Fig. 3). This behavior can be obtained from the large-z
behavior of F(z). Although in general the travelling wave
form implies time-dependent densities, when z →∞, the
mass densities become stationary.
Model C exhibits a rich post-transition behavior. The

explicit solutions (19) suggest that cn ' γn t−1 when t→
∞. Indeed, this behavior is compatible with Eqs. (18)
and the cumulative amplitudes Γn =

∑n
j=0 γj satisfy the

recursion relation Γ2
n − Γn = 2Γ2

n−1 with Γ0 = 1. The

amplitudes grow exponentially, γn ∼ Γn ∼ 2n/2. Sum-
ming over densities, the total fragment mass decays as

M(t) ' C t−1 as t→∞, (24)

with C =
∑∞

n=0 2
−nγn ∼= 2.66084. Thus, the total

fragment mass remains positive at all times. The dust
mass, µ(t) = 1 −M(t), vanishes at the shattering time,
µ(1) = 0, and it gradually increases for t > 1 (Fig. 4).
Only in the long time limit it accounts for the entire
mass in the system. We conclude that in model C, the
shattering transition is continuous.
Numerically, we observe that for sufficiently large n,

the densities follow a universal behavior (Fig. 5)

cn(t)→ 2n/2 u(t). (25)

While this ansatz is asymptotic with respect to n, it holds
for all times. The function u(t) vanishes below the shat-
tering time and grows linearly afterwords, u(t) ∼ (t− 1)
for t − 1 → 0. Hence, this function plays the role of an
order parameter. Note also that u(t) ∼ t−1 as t→∞.
The order parameter and the total dust mass are inti-

mately related. Consider the total mass density of frag-

ments of mass 2−k or larger: M (k)(t) =
∑k

n=0 2
−n cn(t).
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FIG. 5: The asymptotic behavior of the size density. Shown
is 2−n/2cn(t) versus t for n = 6, 10, 20, and 30. The inset
shows the behavior in the vicinity of t = 1 for n = 30 (axis
labels are as in the main figure).

From the rate equations (18), this mass density decreases
according to

d

dt
M (k)(t) = −2−kck (2Bk + ck) . (26)

The flux of mass from fragments into dust is simply
d
dt µ = − limk→∞

d
dt M

(k). Using Eq. (25), the right-hand

side of Eq. (26) approaches
(

3 + 2
√
2
)

u2(t) in the limit
k →∞ and therefore,

d

dt
µ(t) =

(

3 + 2
√
2
)

u2(t) . (27)

This in turn shows that the dust mass grows according
to µ(t) ∼ (t− 1)3 past the transition.

IV. STOCHASTIC FRAGMENTATION

We now briefly describe a generalized collision-induced
fragmentation process where splitting is stochastic.
Specifically, a particle of mass m splits into two frag-
ments of mass m′ and m −m′ with m′ chosen stochas-
tically from the interval 0 < m′ < m according to some
fixed distribution. We focus on the simplest case of uni-
form splitting, i.e., m′ is chosen uniformly in [0,m].

A. Model A

When a randomly selected particle splits, the mass
density c(m, τ) satisfies

∂

∂τ
c(m, τ) = −c(m, τ) + 2

∫ ∞

m

dm′

m′
c(m′, τ) . (28)
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The kernel 1/m′ reflects the uniform splitting probabil-
ity and the collision rate N is absorbed by the colli-
sion counter τ . This equation is solved using the Mellin
transform and for the monodisperse initial condition,
c(m, 0) = δ(m− 1), one finds [34]

c(m, τ) = e−τδ(m−1) + e−τ

√

2τ

ln 1
m

I1

[

√

8τ ln
1

m

]

with I1 the modified Bessel function. The first term on
the right-hand side simply describes the density of par-
ticles that have yet to collide. The second term simpli-
fies asymptotically. Making the transformation m = e−n

leads to a normal distribution as in (6) with the propa-
gation velocity v = 32

9 .

B. Model B

When the larger of the two fragments splits, the rate
equations for the mass density c(m) ≡ c(m, τ) are

∂

∂t
c(m) = 4

∫ ∞

m

dm′

m′
c(m′)A(m′)− 2c(m)A(m) , (29)

with the cumulative density A(m) =
∫m

0
dm′c(m′). We

employ the same transformations used in the determin-
istic case. Characterizing the mass m by “index” n via
m = e−n, the fragment size density, c(n), evolves accord-
ing to

∂

∂t
c(n) = 4

∫ n

0

dn′en
′−nc(n′)A(n′)− 2c(n)A(n) (30)

with A(n) =
∫∞

n
dn′c(n′). This cumulative distribution

satisfies

∂

∂t
A(n) = A2(n)− 2

∫ n

0

dn′ en
′−n ∂

∂n′
A2(n′) . (31)

Expressing time in units of the collision counter and nor-
malizing by the total density, F (n, τ) = N−1A(n), we
transform Eq. (31) into

∂

∂τ
F (n) = F 2(n)− F (n)− 2

∫ n

0

dn′ en
′−n ∂

∂n′
F 2(n′) .

Seeking a travelling wave solution F (n, τ) → f(n − vτ)
yields the non-linear integro-differential equation

v
d

dx
f(x) = f(x)− f2(x)+2

∫ x

−∞

dy ey−x d

dy
f2(y) , (32)

subject to the boundary conditions f(−∞) = 0 and
f(∞) = 1. The exponential decay 1− f(x) ∼ exp(λx) as
x→∞ gives the dispersion relation v = 4(1+λ)−1−λ−1

and the extremum selection principle yields λ = v = 1.
Close to the shattering transition, the typical mass is pro-
portional to the average mass, m∗ ∼ (1 − t) [35]. The
mass densities behave as in the deterministic case and
the extremal behaviors (17) are recovered with α = 2.
The nature of the transition is discontinuous, as in the
deterministic case.

C. Model C

When the smaller particle splits upon collision, the rate
equations for the mass density are

∂

∂t
c(m) = 4

∫ ∞

m

dm′

m′
c(m′)B(m′)− 2c(m′)B(m′) (33)

with B(m, t) =
∫∞

m
dm′ c(m′, t). In terms of the index

n, the cumulative density B(n, t) =
∫ n

0
dn′c(n′) obeys

Eq. (31). The normalized cumulative density again ad-
mits the travelling wave form. The velocity and de-
cay rate are v = 9 and λ = 1

3 . At the shattering
time, the (finite) mass distribution diverges algebraically:
c(m, 1) ∼ m−α with α = 10/9. Past the shattering
transition, the asymptotic ansatz c(m, t) → m−3/2 u(t)
holds for small masses and the dust mass is related to
the order parameter via d

dt µ = 2u
2. We conclude that

qualitatively, the shattering transition is similar to the
deterministic case.

V. DISCUSSION

We investigated kinetic properties of collision-induced
fragmentation processes. Generally, the mass is trans-
ferred from finite fragments into infinitesimal dust in a
finite time. The nature of the shattering transition de-
pends on the fragmentation process. When the larger of
the colliding particles splits or when a randomly selected
one splits, the transition is discontinuous and the entire
mass is transformed into dust instantaneously. When
the smaller particle splits, the transition is continuous,
with the dust accumulating gradually past the shatter-
ing transition. In this case, finite fragments always carry
a non-zero fraction of the mass.
Model A is essentially linear and thus solvable. For

models B and C the nonlinear and non-local governing
equations can not be solved in a closed form. Neverthe-
less, in the vicinity of the shattering transition we were
able to obtain the most important characteristics analyt-
ically by utilizing the traveling wave form of the fragment
mass density. The mass distribution follows a scaling be-
havior with a single characteristic scale, in contrast with
the two scales found for linear processes.
For model C, the post-shattering behavior is nontriv-

ial. At the transition point, the mass distribution decays
algebraically, c(m) ∼ m−α, with a transcendental expo-
nent α = 1.20191 . . . in deterministic fragmentation and
a rational exponent α = 10/9 in stochastic fragmenta-
tion. We have also demonstrated that the mass densities
exhibit universal asymptotic behavior (25) in the post-
shattering region.
A challenging open problem is the complete post-

shattering behavior in model C, for example, the time de-
pendent dust mass. This is largely a mathematical prob-
lem since physically, the breakage of sufficiently small
fragments is impossible. For instance, micro-cracks on
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the surface of the fragment are often precursors for break-
age. The number of such surface defects is proportional
to the surface area, so sufficiently small fragments are
effectively unbreakable.
We focused on the leading asymptotic behavior. There

are however corrections to the linear front propagation
[24–27]. The traveling wave solution is actually a func-
tion of x = n−X(τ) with the position of the front X(τ)
given by X(τ) = vτ ± 3

2λ ln τ +O(1). The plus and mi-
nus signs correspond to model B and C, respectively.
This translates to a logarithmic correction to the typi-
cal mass (15).
We treated the problem using a mean-field rate equa-

tion approach. Thus we ignored correlations between the
colliding particles. In principle, spatial correlations may
be important up to some critical dimension beyond which
they can indeed be ignored. The analysis of this possibil-
ity requires a more complete description of the process.
Particularly, one must specify the transport mechanism.
Collision-induced fragmentation arises most naturally

in processes where particles moves ballistically between
collisions. Using dimensional analysis we argue that the

shattering transition always occur in ballistic fragmenta-
tion. The typical mean free time T , velocity v, particle
cross section s, and number density N are related via
NvTs ∼ 1. Mass conservation implies m ∼ N−1 (here
m is the typical mass), while energy conservation gives
v ∼ 1. Finally m ∼ sd/(d−1) yields s ∼ N−1+1/d. In
particular, T ∼ N−1/d. The particle density evolves ac-
cording to d

dt N = N/T , or d
dt N ∼ N1+1/d from which

N ∼ (tc − t)−d. Based on this heuristic argument, we
speculate that in ballistic fragmentation, the shattering
transition occurs in arbitrary dimension d. Using effec-
tive d-dimensional collision rates (∝ N 1/d) one can con-
vert the “one-dimensional” results in this study into a
general mean-field theory.
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