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Integer sequences where each element is determined by a previous randomly chosen element are
investigated analytically. In particular, the random geometric series xn = 2xp with 0 ≤ p ≤ n− 1
is studied. At large n, the moments grow algebraically, 〈xsn〉 ∼ nβ(s) with β(s) = 2s − 1, while the
typical behavior is xn ∼ nln 2. The probability distribution is obtained explicitly in terms of the
Stirling numbers of the first kind and it approaches a log-normal distribution asymptotically.
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I. INTRODUCTION

Integer sequences are ubiquitous in pure and applied
mathematics, physics, and computer science [1]. While
traditional integer sequences are deterministic, there is a
growing interest in stochastic counterparts of fundamen-
tal sequences and their relevance to disordered or random
systems. For example, the random Fibonacci sequence
xn = xn−1 ± xn−2 [2–4] has links with various topics in
condensed matter physics, dynamical systems, products
of random matrices, etc. (see e.g. [5–10]).

Random integer sequences are conceptually simple, yet
they exhibit a complex phenomenology resulting from
the memory generated by the stochastic recursion law.
For the random Fibonacci sequence, the typical behav-
ior is xn ∼ eλn with the intriguing Lyapunov exponent
λ = 0.12397559; furthermore, the distribution of the ra-
tio xn/xn−1 has singularities at every rational value [3, 4]
and the model exhibits a remarkably intricate spectrum
[10]. Also, the typical growth is different than the aver-
age growth as characterized by the moments 〈xsn〉.

Another form of randomness in which an element in the
series depends on two previous elements, at least one of
which is chosen randomly, was introduced recently [11].
For example, the stochastic Fibonacci-like series defined
recursively by the rule xn = xn−1 + xp with p randomly
chosen between 0 and n− 1, exhibits the typical growth
xn ∼ exp(λ

√
n) with the (numerically calculated) Lya-

punov exponent λ = 1.889. The moments exhibit multi-
scaling [11, 12] and the probability distribution becomes
log-normal asymptotically. Small variations in the recur-
rence rule can lead to substantial changes in the sequence
characteristics — the growth law may be algebraic, log-
normal, or exponential and the distribution may or may
not exhibit multiscaling of the moments. In this article,
we show that much of this phenomenology is captured by
even simpler stochastic series, for which a more detailed
analytical treatment is feasible.

II. RANDOM MULTIPLICATIVE SERIES

We consider recursively defined series where an element
is determined by a single previously chosen element. A
natural starting point is the random geometric series

xn = 2xp, (1)

when n ≥ 1 and x0 = 1. The index p is chosen randomly
between 0 and n − 1 at each step. The first element is
x0 = 1. For example, for n ≤ 2, there are two, equally
probable sequences: xn = 1, 2, 2 or 1, 2, 4. The series may
not necessarily be monotonic.

A. The Moments

The moments 〈xsn〉 can be obtained analytically. They
obey the recursion relation

〈xsn〉 =
2s

n

n−1
∑

p=0

〈xsp〉 (2)

for n ≥ 1, with 〈xs0〉 = 1. This recursion is solved using
the generating function M(s, z) =

∑∞
n=0〈xsn〉 zn. The

recursion relation (2) leads to the ordinary differential

equation dM
dz =

2s

1−zM subject to the boundary condition

M(s, 0) = 1. Expanding the solution

M(s, z) = (1− z)−2
s

(3)

in powers of z gives the moments

〈xsn〉 =
Γ(n+ 2s)

Γ(2s) Γ(n+ 1)
. (4)

The first and the second moment are given by simple
polynomials

〈xn〉 = n+ 1, 〈x2n〉 =
(n+ 1)(n+ 2)(n+ 3)

6
. (5)
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Generally, there is a series of special values of s for which
the moments are polynomial in n. For 2s = k with k
being an integer, the moments are

〈xln k/ ln 2n 〉 = (n+ 1)(n+ 2) · · · (n+ k − 1)
(k − 1)! . (6)

Asymptotically, all moments grow algebraically

〈xsn〉 ' A(s)nβ(s) (7)

with β(s) = 2s − 1 and A(s) = 1/Γ(2s). Therefore, the
moments exhibit a multiscaling behavior characterized
by the nonlinear spectrum of exponents β(s).

B. The Probability Distribution

The probability distribution of the random variable xn
and its typical behavior are obtained by considering a
closely related random sequence. Since the spectrum of
possible values for xn is 2

m with integer m ≥ 0, we study
the variable mn = log2 xn. The corresponding random
additive series obeys the recursion relation

mn = mp + 1 (8)

with m0 = 0 and a randomly chosen 0 ≤ p ≤ n − 1.
Generally, 1 ≤ mn ≤ n for n ≥ 1. The probability
distribution Pn,m = Prob(xn = 2

m) satisfies

Pn,m =
1

n

n−1
∑

l=0

Pl,m−1 (9)

for n ≥ 1 and P0,m = δm,0. From this recursion, one read-
ily obtains nPn,m − (n− 1)Pn−1,m = Pn−1,m−1, thereby
recasting (9) into

Pn,m =
n− 1
n

Pn−1,m +
1

n
Pn−1,m−1 . (10)

To tackle this recursion it is convenient to eliminate the
denominator. The modified distribution Gn,m = n!Pn,m
satisfies the recursion

Gn,m = (n− 1)Gn−1,m +Gn−1,m−1 (11)

with G0,m = δm,0. The very same recurrence generates
[

n
m

]

, the Stirling numbers of the first kind [13]. These
numbers are closely related to the binomial coefficients
and appear in numerous applications [14–16].
Thus Gn,m =

[

n
m

]

, and the probability distribution is
expressed in terms of these special numbers as follows:

Pn,m =
1

n!

[

n

m

]

. (12)

Moments of the variablemn are obtained from the gen-
erating function [17] satisfied by the Stirling numbers of
the first kind [13]

Sn(w) =

n
∑

m=0

[

n

m

]

wm = w(w + 1) . . . (w + n− 1). (13)

Taking the logarithmic derivative gives the average

〈mn〉 =
d

dw
lnSn(w)|w=1 = Hn (14)

in terms of the harmonic numbers Hn =
∑n

j=1
1
j . Using

the large n asymptotics of the harmonic numbers [13],
we conclude that the average grows logarithmically

〈mn〉 = lnn+ γ +
1

2n
+ · · · . (15)

The second derivative d2

dw2 lnSn(w)|w=1 similarly gives
〈mn(mn−1)〉. The variance, w2n = 〈m2

n〉−〈mn〉2, follows

w2n = Hn −H(2)
n . (16)

Here, H
(2)
n =

∑n
j=1

1
j2 are the second-order harmonic

numbers. Asymptotically, the variance grows logarith-
mically

w2n = lnn+ γ − π2

6
+
3

2n
+ · · · . (17)

The leading asymptotic behavior of the distribution
can be evaluated as well. Using properties of the Stirling
numbers, the distribution for small m reads

Pn,1 =
1

n
,

Pn,2 =
1

n
Hn−1, (18)

Pn,3 =
1

2n

[

H2
n−1 −H

(2)
n−1

]

.

These exact results reflect that the distribution is Pois-
sonian for sufficiently small m:

Pn,m '
1

n

(lnn)m−1

(m− 1)! . (19)

The Poissonian form corresponds to the small-m tail
of the distribution. To obtain the distribution for typi-
cal, rather than extremal, values of m, we consider the
continuum limit of the recursion relation (10) where the
distribution satisfies

n
∂P

∂n
+

∂P

∂m
=
1

2

∂2P

∂m2
. (20)

The change of variables n → t =
∫ n

1
dn′/n′ trans-

forms (20) into the standard diffusion-convection equa-
tion whose solution admits a Gaussian form

Pn,m →
1

√

2πw2n
exp

[

− (mn − 〈mn〉)2
2w2n

]

. (21)

As mn = lnxn/ ln 2, the distribution of xn is therefore
log-normal. Moreover, the variance of the random vari-
able lnxn is simply (ln 2)

2 lnn.
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Both the Poissonian and the Gaussian behaviors follow
from the more general asymptotic form of Pn,m

Pn,m '
1

Γ(m/ lnn)

(lnn)m

n ·m! (22)

that holds when m → ∞ and n → ∞ with the ratio
m/ lnn being finite. Indeed, using the asymptotic rela-
tion Γ(x) → x−1 as x → 0 one recovers (19); the peak
of the distribution (22) is at m = lnn and expansion
in the vicinity of this peak recovers (21). We term the
distribution (22) the modified Poissonian distribution.
To derive (22), we use (12)–(13) and the Cauchy the-

orem to express Pn,m as an integral

Pn,m =
1

2πi

∮

dw

wm+1

w(w + 1) . . . (w + n− 1)
n!

(23)

over an arbitrary simple closed contour enclosing the ori-
gin in the complex w plane. When n → ∞, the contour
integral is easily computed by applying the steepest de-
scent method. The saddle point is determined from

m

w∗
=

n
∑

j=1

1

w∗ + j
. (24)

Asymptotically, w∗ ' m/ lnn. We now deform the inte-
gration contour to the contour of steepest descent that
runs through the saddle point along the imaginary axis
(in the complex w plane). Writing w = w∗(1 + iy) and
taking into account that the dominant contribution is
gathered near y = 0, we obtain

Pn,m '
w∗

2π

(w∗ + 1) . . . (w∗ + n− 1)
wm
∗ · n!

∫ ∞

−∞

dy e−my
2/2

=
1√
2πm

Γ(w∗ + l)

wm
∗ Γ(n+ 1)Γ(w∗)

' 1√
2πm

nw∗−1

wm
∗ Γ(w∗)

where we used two properties of the gamma function
— the difference equation Γ(x + 1) = xΓ(x) and the

asymptotic relation Γ(x+a)
Γ(x) → xa as x → ∞. Inserting

w∗ ' m/ lnn and using the Stirling formula leads to (22).

C. The Typical Behavior

The asymptotic distribution (21) and the growth law
(15) lead to the typical behavior

xn ' C nln 2 (25)

with C = 2γ ∼= 1.491967 and γ ∼= 0.577215 the Eu-
ler’s constant. Since asymptotically, lnxn → 〈lnxn〉, the
typical behavior (25) emerges from the s → 0 limit of
the properly modified moments 〈xsn〉1/s in Eq. (7). In
other words, the Lyapunov exponent λ = ln 2, defined
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FIG. 1: A single realization of the random geometric series
(bullets) versus the typical behavior (25), shown using a line.
For clarity, only a small fraction of the series elements are
displayed.

via xn ∼ exp(λ lnn) is obtained from the moment spec-
trum using λ = lims→0 s

−1β(s). However, the typical
behavior (25) and the asymptotic distribution (21) do
not yield the moments as they imply the quadratic mo-
ment spectrum s ln 2 + 1

2 (s ln 2)
2, equal to the first two

terms in the Taylor expansion of β(s).
There are large fluctuations between successive ele-

ments in a given series and large series-to-series varia-
tions. The typical behavior is eventually approached but
very slowly, as illustrated in Fig. 1.
Let us compare random geometric series with random

Fibonacci-like series. Overall, the behavior is in line
with the behavior found for the series xn = xn−1 + xp
with 0 ≤ p ≤ n − 1. In both cases, the distribution
of xn is log-normal and the moments exhibit multiscal-
ing [11]. In the present case, it is possible to find the
Lyapunov exponent. However, the behavior is unlike the
one found for the random sequence xn = xp + xq with
0 ≤ p, q ≤ n− 1 despite the fact that in both cases the
average is 〈xn〉 = n + 1. The average characterizes all
the moments and the distribution approaches an ordi-
nary scaling form Pn(x)→ n−1Φ(xn−1) [11].

D. Extremal Statistics

The span of the additive random sequence, i.e. the
set of all possible values of m, provides an additional
statistical characterization. In every realization, this set
contains no gaps, so the span is equivalent to the largest
sequence element Mn. Thus, the span is directly related
to extremal characteristics of the sequence. To find how
Mn grow with n, it is necessary to consider the large m
tail of the probability distribution outside the Gaussian
region. The modified Poissonian distribution (22) sug-
gests that Mn ∼ lnn.
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FIG. 2: The maximal element in the series. The average
〈Mn〉, obtained from 100 independent realizations of the ran-
dom additive series (bullets) is compared with the heuristic
estimate (28), shown using a line of slope e.

We obtain the growth of the maximal element in the
series heuristically using the extreme value criterion

n
∑

n′=Mn

n′
∑

m′=Mn

Pn′,m′ ∼ 1. (26)

Since the distribution Pn,m quickly diminishes with m in
the tail region, this extreme statistics criterion becomes
∑n

n′=Mn
Pn′,Mn

∼ 1, and as Mn ¿ n, one has

nPn,Mn
∼ 1. (27)

Combining this criterion with the distribution (22) and
using the Stirling formula, we arrive at the following
asymptotic growth of the maximal value

Mn ' e lnn. (28)

Numerical simulations are in good agreement with this
estimate (Fig. 2). A more rigorous derivation including
the leading correction is given in Appendix A.
This growth is ultimately connected with the frequency

by which the largest element in the sequence occurs. At
the nth step, the maximal valueMn is augmented by one
with probability h/n with h the frequency by which the

largest element occurs. Thus, 〈Mn〉 = 〈Mn−1〉+ 〈h〉
n . This

leads to the growth law 〈Mn〉 ' 〈h〉 lnn . The frequency
h is a random variable that in principle depends on n yet
it has a stationary distribution p(h) in the large n limit.
The growth law (28) implies 〈h〉 =

∑

hp(h) = e.

III. GENERALIZATIONS

There are a number of natural generalizations of the
stochastic sequences (1) and (8). Below, we briefly de-
scribe two examples. In both cases we consider the vari-
able mn directly.

A. Random Random Walk

In the random geometric series, the previous element is
chosen randomly while the recursive rule is deterministic.
We thus consider the stochastic recursion relation

mn = mp ± 1 (29)

with m0 = 0 and a randomly chosen 0 ≤ p ≤ n−1 on the
nth step. We assume that both signs in (29) are taken
with equal probability. We term the sequence generated
by (29) the random random walk.
The moments can be obtained recursively, as in the

random geometric series and we merely quote the results.
The first moment vanishes, 〈mn〉 = 0, and the variance
is given by the harmonic numbers

w2n = Hn. (30)

The asymptotic behavior is therefore w2n ' lnn.
The probability Pn,m that the walk is at position m at

the nth step obeys

Pn,m =
n− 1
2n

Pn−1,m +
1

2n
[Pn−1,m−1 + Pn−1,m−1] .

(31)
Taking the continuum limit, we find that the distribution

satisfies n ∂P
∂n =

∂2P
∂m2 . This diffusion equation shows that

the distribution is Gaussian

Pn,m '
1

√

2πw2n
exp

[

− m2

2w2n

]

. (32)

Therefore, all moments are characterized by the variance:
〈m2k

n 〉 ' (2k − 1)!!(lnn)k. The random random walk
spreads very slowly with the typical spread

m ∼
√
lnn. (33)

Hence, the first passage time, the time to reach a site of
distance m from the origin grows as exp(m2). What re-
mains an open question is whether the distribution Pn,m
can be obtained in a closed form from the generating
function

∑

n,m znwmPn,m = (1 − z)−w(w+1). In terms
of the variable xn = 2

mn , the growth is slower than any
power law, xn ∼ exp(ln 2

√
lnn).

B. Two Dimensions

Thus far, we considered only one-dimensional se-
quences. In physical systems, it is generally believed that
disorder, no matter how small, is always relevant in two-
dimensions [6, 7]. However, disordered two-dimensional
systems are typically untreatable analytically.
We consider a natural generalization of (8) to a two-

dimensional square lattice. Starting from m0 = 1, where
0 = (0, 0) is the site at the origin, the values at further
sites are determined recursively according to

mn = mp + 1 (34)
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Here p = (p1, p2) is chosen equiprobably among lattice
sites that are closer to the origin than n, i.e. |p| < |n|;.
We choose the “manhattan distance” from the origin
|n| = |n1|+ |n2| as the measure of distance.
The probability distribution depends only on the norm

n = |n|, so we keep the notation Pn,m. For the norm
n = |n| = |n1|+|n2|, there are 4n lattice sites a distance n
from the origin, 1+4+. . .+4(n−1) = 1+2n(n−1) lattice
sites which are a distance ≤ n − 1 from the origin. The
probability distribution satisfies the recursion relation

Pn,m =

[

1− 4(n− 1)
1 + 2n(n− 1)

]

Pn−1,m (35)

+
4(n− 1)

1 + 2n(n− 1) Pn−1,m−1

for n ≥ 2 with P0,m = δm,0 and P1,m = δm,1.
In analogy with the one-dimensional case, we write the

distribution in the form

Pn,m =
1

Πn
G(2)
n,m (36)

with Πn =
∏n
j=1[1 + 2j(j − 1)] and G

(2)
n,m the two-

dimensional analogs of the Stirling numbers of the first
kind. These non-negative integer numbers obey the fun-
damental recursion relation

G
(2)
n+1,m = [1 + 2n(n− 1)]G(2)

n,m + 4nG
(2)
n,m−1 (37)

for n ≥ 2 and G
(2)
0,m = δm,0, G

(2)
1,m = δm,1. The corre-

sponding generating function is

n
∑

m=0

G(2)
n,m wm = w

n
∏

j=1

[1 + 2(j − 1)(j − 2 + 2w)] (38)

for n ≥ 1. Using this generating function, the average
and the variance are

〈mn〉 = 1 +
n
∑

j=1

4(j − 1)
1 + 2j(j − 1) , (39)

w2n =
n
∑

j=1

4(j − 1)
1 + 2j(j − 1) −

n
∑

j=1

[

4(j − 1)
1 + 2j(j − 1)

]2

.

The leading asymptotic behaviors are 〈mn〉 ' 2 lnn and
w2n ' 2 lnn. In the continuum limit, the distribution
obeys the diffusion-convection equation that now has the

form n ∂P
∂n + 2

∂P
∂m = ∂2P

∂m2 . Asymptotically, the distribu-
tion is Gaussian as in the one-dimensional case (21) with
the average and the variance merely modified by the fac-
tor 2. One can also show, by generalizing the moment
recursion relation (2), that the spectrum is also modified
by the same factor: β(s) = 2(2s − 1).

IV. SUMMARY

In summary, we considered random sequences where an
element depends on a previous randomly chosen element

and have shown that they exhibit a similar phenomenol-
ogy as sequences that involve dependence on a few pre-
vious elements. The typical behavior and the moment
behavior provide a statistical characterization of the se-
quence. The growth laws depend sensitively on details of
the recurrence relations.

We obtained a number of exact and asymptotically ex-
act results for the probability distribution and its mo-
ments. For the random geometric series, the sequence
growth is algebraic. The moments exhibit multi-scaling
asymptotic behavior and also contain information regard-
ing the typical behavior. Asymptotically, the probabil-
ity distribution becomes log-normal but it does not fully
characterize the actual moment behavior.

There are additional interesting questions that can be
asked for this family of random series including the like-
lihood of monotonically increasing sequences, growth of
correlations between two different elements in the same
sequence, and statistics of the number of distinct ele-
ments in a given sequence.
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APPENDIX A: DERIVATION OF EQ. (28)

Substituting (22) into the criterion
∑n

n′=Mn
Pn′,Mn

∼ 1 and replacing the summation
by integration yields

n
∑

n′=Mn

Pn′,Mn
' 1

(Mn)!

∫ n dn′

n′
(lnn′)Mn

Γ(Mn/ lnn′)

∼ (lnn)Mn+1

(Mn + 1)!
∼ 1. (A1)

Taking the logarithm of (A1) and using the Stirling for-
mula, we obtain an implicit relation for the maximal el-
ement

Mn −Mn ln

(

Mn

lnn

)

=
3

2
lnMn − ln lnn. (A2)

This yields the leading correction to Eq. (28)

Mn → e lnn− 1
2
ln lnn+ . . . . (A3)

Mn is of course a random variable and (A3) represents
its average 〈Mn〉. We anticipate that fluctuations in Mn

remain finite as n→∞.
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