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Slow relaxation in granular compaction
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Abstract

Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a
higher density final steady state. The relaxation towards the final density follows an inverse logarithmic law. As the system
approaches its final state, a growing number of beads have to be rearranged to enable a local density increase. A free volume
argument shows that this number grows asN = ρ/(1−ρ). The time scale associated with such events increases exponentially
∼ eN , and as a result a logarithmically slow approach to the final state is foundρ∞ − ρ(t) ∼ 1/ ln t . Furthermore, a one-
dimensional toy model that captures this relaxation dynamics as well as the observed density fluctuations is discussed.
Copyright © 1998 Published by Elsevier Science B.V.

PACS:05.40.+j; 81.20.Ev; 82.65.My
Keywords:Granular materials; Vibration; Relaxation; Hard spheres; Adsorption

Systems consisting of many macroscopic particles
such as sand and powders exhibit complex behavior
despite their apparent simplicity [1]. Vibrated sand
may result in size segregation, rich pattern forma-
tion [2], solitary waves [3] or convection rolls [4].
Despite a growing interest, a comprehensive under-
standing of the basic principles underlying granular
materials is lacking. Although individual grains are
solid, it is inappropriate to classify their collective
properties as entirely solid-like or liquid-like. Conven-
tional thermodynamic theory is not applicable to sand
as thermal fluctuations are negligible, i.e.,kBT ≡ 0.

A simple, yet fundamental property of granular
materials is their densification under applied vibra-
tions. Granular compaction is relevant to production,
packing, and transportation of a wide array of prod-
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ucts such as food, grains, chemicals, and drugs. Gran-
ular compaction can be viewed as a model system
for non-thermal relaxation in a disordered medium. A
granular assembly provides us with a practically uni-
form system where upon vibration, the well-defined
bulk density evolves from a loosely packed mechan-
ically stable initial state into a denser final state.
The system explores available microscopic configu-
rations, and slowly eliminates low-density metastable
configurations.

In a series of recent compaction experiments,
monodisperse glass beads were confined to a long
tube and were tapped vertically [5–7]. The waiting
time between successive taps was large enough to
allow the beads to come to a rest before the next tap.
Due to the vibration, the volume fraction increased
from a loosely packed initial value ofρ0 ∼= 0.58 to
a final densityρ∞ close to the random close packed
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limit ρ∞ ∼= 0.64. A large number of taps (> 105)
were necessary to reach the final density. Moreover,
the time dependence of the density was most consis-
tent with an inverse logarithmic four parameter fit,
ρ(t) = ρf − 1ρ∞/[1 + B ln(1 + t/τ )]. The param-
etersρf , 1ρ∞, B, and τ depend only the tapping
strength or the accelerationΓ .

Several mechanisms were proposed to explain the
temporal relaxation of the density of vibrated gran-
ular material [8–14]. However, these studies did not
address the relevant excluded volume interaction be-
tween the particles. As the compaction progresses, in-
dividual particles move slowly, and when a void of the
size of a particle is created, it is quickly filled by a new
particle. Particles cannot move into the space occupied
by other particles. In other words, they interact with
their neighbors via a hard core interaction. When the
packing fraction is large, voids the size of a particle are
rare and a large number of particles must be rearranged
to accommodate an additional particle and a local den-
sity increase. Following this line of reasoning, we pro-
pose a simple heuristic picture based on free volume
counting to explain the observed relaxation. We com-
plement this picture with an analytically tractable one-
dimensional model, where the heuristic picture turns
out to be exact. This model also proves very useful for
studying density fluctuations around the steady state.

Consider an ensemble of identical rigid spherical
particles of volumeV with average densityρ (see
Fig. 1). Denoting byV0 the pore volume per particle,
we haveρ = V/(V + V0), or alternatively,

V0 = V
1 − ρ

ρ
. (1)

Fig. 1. A rearrangement of a growing number of particles is
necessary to enable a local density increase.

Let us draw an imaginary box of size much larger than
a particle diameter. Several particles have to move in a
cooperative way to increase the number of the particles
in the box by one. This number can be estimated by
simply counting the amount of free volume. Assuming
that theN particles are rearranged in such a way that
they contribute their entire free volume to create a void
large enough to accommodate a particle,NV0 = V , or

N = ρ

1 − ρ
. (2)

Indeed, as the density vanishes no rearrangements are
necessary, and when the density approaches its maxi-
mal value the number of rearrangements diverges. We
further assume that the motion of particles is not cor-
related and therefore, the time associated with such a
rearrangement should increase exponentially withN ,
T ∼ eN . Consequently, at large times the density in-
creases according to the following rate equation,

dρ

dt
∝ (1 − ρ)

1

T
= (1 − ρ)e−ρ/(1−ρ). (3)

The rate at which the density increases is proportional
to the void volume and inversely proportional to the
rearrangement time. The latter exponential factor ef-
fectively reduces the density increase rate and it dom-
inates asρ → 1. The solution of this equation is given
asymptotically by

ρ(t) ∼= ρ∞ − 1

ln t
, (4)

with ρ∞ = 1.
This heuristic argument ignores the structure of the

granular assembly and the fact that the density cannot
exceed the close-packed value. In the physical case of
three dimensions, the available free volume for rear-
rangements should vanish as the density approaches
the close packing limiting value, thereby suggesting
a more realistic form forV0 such asV (ρmax − ρ)/ρ.
Despite the simplifying assumptions, this heuristic
picture is useful as it highlights the basic mechanism
underlying granular compaction, i.e., the diverging
number of rearrangements needed for the density
to increase. In one dimension, no geometrical com-
plications occur and the exponential rate reduction
factor is in fact exact. In the following, we present



382 E. Ben-Naim et al. / Physica D 123 (1998) 380–385

Fig. 2. The adsorption–desorption process.

an analytically tractable model and discuss its rele-
vance to density relaxation and steady state density
fluctuations.

Consider a stochastic adsorption–desorption pro-
cess on a continuous one-dimensional substrate. Iden-
tical particles of unit diameter adsorb uniformly from
the bulk to a substrate with ratek+ and desorb with
rate k−. In other words,k+ adsorption attempts are
made per unit time per unit length, and similarly, the
probability that an adsorbed particle desorbs in an in-
finitesimal time interval(t, t + dt) is k− dt . While
the desorption process is unrestricted, the adsorption
process is subject to excluded volume constraints, i.e.,
particles cannot adsorb on top of previously adsorbed
particles. The attempted adsorption event in Fig. 2 is
thus rejected. This “car-parking” process was previ-
ously studied in the context of chemisorption [15] and
protein binding [16].

Let us considerP(x), the distribution of voids of
size equal tox between particles. This distribution sat-
isfies two normalization conditions :ρ = ∫

dxP (x)

and 1= ∫
dx(x + 1)P (x). The first condition states

that there are as many voids as particles, while the sec-
ond reflects conservation of the total length. Ignoring
correlations between neighboring voids, this distribu-
tion evolves according to

∂P (x)

∂t
= 2k+

∫
x+1

dyP (y) − 2k−P(x)

+ θ(x − 1)

[
k−
ρ(t)

x−1∫
0

dyP (y)P (x − 1 − y)

− k+(x − 1)P (x)

]
. (5)

The first term represents gain due to adsorption and
the second loss due to desorption. The last two terms
apply only for voids larger than a particle. The above
process satisfies detailed balance, and consequently,
the system approaches its equilibrium state after wait-
ing sufficiently long time. In this state, neighboring
voids are uncorrelated and the above master equation
holds. The equilibrium void distribution is exponen-
tial [17]

P∞(x) = ρ2∞
(1 − ρ∞)

exp

[
− ρ∞

1 − ρ∞
x

]
. (6)

Using this equilibrium distribution, one can obtain
the exact equilibrium density. Furthermore using a
quasistatic (near-equilibrium) approximation time-
dependent properties can be studied as well. The den-
sity evolves according to the following rate equation

dρ

dt
= −k−ρ + k+(1 − ρ)e−ρ/(1−ρ). (7)

Since desorption is unrestricted, the loss term is linear
in the density. The second term is obtained by evalu-
ating the total adsorption rate

∫ ∞
1 dx(x −1)P (x) and

substituting forP(x) the equilibrium distribution of
Eq. (6). Only voids larger than a particle contribute
to adsorption, and there is a correction factor(x − 1)

that vanishes at the minimal gap. This quasistatic ap-
proximation assumes that the system evolves slowly
and thus is close to equilibrium. The total adsorption
rate can be understood as follows: the factor(1 − ρ)

accounts for the total void density, while the factor
s(ρ) = e−ρ/(1−ρ) is the sticking probability, i.e., the
probability that an adsorption event is successful. This
factor is roughly unity in the dilute limit, and vanishes
exponentially asρ → 1. The excluded volume inter-
action effectively reduces the adsorption rate,k+ →
k+(ρ) = k+s(ρ). Interestingly, the sticking probabil-
ity is identical to the one of Eq. (3), and therefore the
heuristic picture is shown to be exact in one dimen-
sion. We also note that the density increases with rate
proportional to the density of voids the size of a par-
ticle, and it is quite possible that this holds in higher
dimensions as well.

Using Eq. (7), theexactequilibrium density is ob-
tained from the following transcendental equation,
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αeα = k, with k ≡ k+/k− andα = ρ∞/(1 − ρ∞).
The ratio of adsorption to desorption determines the
equilibrium density in the model. Using Eq. (7), the
equilibrium density is found. The leading behavior in
the two limiting cases is

ρ∞(k) ∼=
{

k, k � 1,

1 − (ln k)−1, k � 1.
(8)

While the behavior in the dilute limit is linear, the
approach to the close packed state is very slow. The
effect of the volume exclusion constraint is striking,
a huge adsorption to desorption rate ratio,k ∼= 109,
is necessary to achieve a 0.95 steady-state occupancy.
One can associate the parameterk in the model with
the vibration intensity in experiments, where a mono-
tonic correspondence between the steady-state density
and the accelerationΓ exists [6].

We now focus on the relaxation properties of the
system. The granular compaction process corresponds
to the high density limit, and we thus focus on the
desorption-controlled case,k � 1. Hence, we fix
k+ = 1 and consider the limitk− → 0 of Eq. (7).
The early time behavior is dominated by adsorption
and can be obtained by neglecting the desorption term.
The system approaches complete coverage according
to Eq. (4). This behavior was confirmed by numeri-
cal simulations [17,18]. It also occurs in a situation
where diffusion plays the role of desorption [19]. Use
of Eq. (7) is justified a posteriori since the system
evolves slowly and has enough time to equilibrate. The
inverse logarithmic behavior is simply a reflection of
the exponentially suppressed adsorption in the dense
limit.

Eq. (4) holds indefinitely only for the truly irre-
versible limit of the parking process, i.e., fork = ∞.
For large but finite rate ratios, the final density is given
by Eq. (8). As the density approaches this steady state
value, the loss term becomes significant and should
be taken into account. The crossover time between
the two different relaxation regimes,t0, can be conve-
niently estimated by equating the time dependent den-
sity of Eq. (4) with the equilibrium density of Eq. (8)
1 − 1/ ln t0 = 1 − 1/ ln k, and as a resultt0 ∼= 1/k−.
For t � t0, the loss term is no longer negligible. By
computing how a small perturbation from the steady

state decays with time, an exponential relaxation
towards the steady state is found|ρ∞ −ρ(t)| ∝ e−t/τ

for t � t0. The relaxation time is related tot0, how-
ever, and an additional logarithmic correction occurs,
τ = t0(1 − ρ∞)2 ' t0/(ln k)2. In summary, the early
time behavior of the system follows the irreversible
limit of k− = 0. Once the system is sufficiently close
to the steady-state, the density relaxes exponentially
to its final value.

The experimentally observed relaxation curves
which correspond to large compaction are indistin-
guishable over the observed time range [5]. Also,
steady state is achieved in a finite time< 106 taps.
Both features are consistent with our theory. The
inverse logarithmic relaxation can be viewed as a
sum of many exponential functions with growing
decay times. In a finite system, however, a maximal
relaxation scale should eventually dominate and the
relaxation law of Eq. (4) should apply only up to this
time scale.

The parking process can be used to study density
fluctuations in the steady state in finite systems. In a
finite system, after the system relaxed to the steady
state, the observed density can deviate from its aver-
age expected value. Since the equilibrium properties
of the parking model are understood, the distribution
of these deviations can be calculated. A useful quan-
tity is G(x1, x2 . . . , xn), the probability of findingn
consecutive voids of sizesx1, x2, etc. In equilibrium,
voids are uncorrelated and this distribution is given by

G∞(x1, x2, . . . , xn)

= ρ1−n
∞ P∞(x1)P∞(x2) · · ·P∞(xn)

= ρ∞
(

ρ∞
1 − ρ∞

)n

exp

[
− ρ∞

1 − ρ∞
V

]
, (9)

whereV = ∑
xi is the total void space of that con-

figuration. The conditional probabilitiesρ−1∞ P∞(x2)

etc. has to be used to ensure proper normalization∫
dx1 · · · ∫ dxnG∞(x1, x2 . . . , xn) = ρ∞ (the nor-

malization
∫

dxP (x) = ρ∞ is used here). The mul-
tiple void distribution depends exponentially on the
total void spaceV , and a factor ofρ∞/(1 − ρ∞) is
generated by each void.
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To calculateP(ρ), the probability that the observed
density in a system of sizeL is ρ we note that the total
void length in such a case isV = (1 − ρ)L and the
total number of cars isn = ρL. Every configuration
with n voidsx1,. . ., xn, andV = ∑

xi contributes to
this probability and therefore,

P(ρ) =
n∑

i=1

∫
dxiG∞(x1, x2 . . . , xn). (10)

Evaluating the multiple integral using the steepest de-
cent method, we find a Gaussian density distribution

P(ρ) = 1√
2πσ 2

exp

[
− (ρ − ρ∞)2

2σ 2

]
, (11)

with the varianceσ 2 = ρ∞(1 − ρ∞)2/L. Of course,
in the limits of infinite systems, the variance vanishes.
The fluctuation width,σ , and the relaxation time scale,
τ , are related viaLσ 2 = k−ρ∞τ , an analog of the
fluctuation dissipation theorem.

Surprisingly, this prediction is in agreement with
the experimental observations. Most of the observed
distributions of the density fluctuations are Gaussian.
There are exceptions, however, especially near the bot-
tom of the column, where a high density configuration
is slightly preferred and the positive tail of the distri-
bution is enhanced. This suggests that the system gets
locked in a long lived high density metastable state. It
is possible that averaging over longer time records will
restore the Gaussian nature. The experimental variance
also decreases with increasing density, as is the case
for the theoretical variance that vanishes asρ∞ → 1.
Additionally, one can study the spectrum of the steady
state density fluctuations. It is remarkable that despite
the fact that the model is one-dimensional, its density
fluctuation power spectrum is very similar to the ex-
perimental curves [6].

In a realistic granular material, an individual parti-
cle cannot penetrate its neighbors, and it is in contact
with several other particles. Our model properly ac-
counts for the hard core repulsion, but it ignores me-
chanical stability. We argue that in the long time limit
mechanical stability cannot play a significant role in
determining the motion of individual grains during
the compaction process. Instead, the motion is lim-
ited primarily by the presence of other beads. The

tradeoff, however, is that such a simple theory cannot
make predictions about the final density. Nevertheless,
it does elucidate the leading mechanism in granular
compaction. It also motivates studying the form of the
void distribution and specifically its large volume tail
in higher dimensions .

In conclusion, we have studied theoretically den-
sity relaxation towards steady state in granular com-
paction using heuristic arguments and amicroscopic
model in one dimension. Due to volume exclusion,
exponentially growing time scales are associated with
cooperative motion of grains. As a result the approach
towards the steady state is an inverse logarithmic one.
Since the argument leading to the logarithmic relax-
ation is quite general, the results should hold in a large
class of physical situations such as horizontal shaking,
aspherical particles, or even polydisperse distribution.
Additionally, our toy model exhibits density fluctua-
tions that agree remarkably well with the experiment.
This provides an additional confirmation for the va-
lidity of this model.

We thank L.P. Kadanoff, P.L. Krapivsky, A. Mehta,
and T.A. Witten for useful discussions.
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