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The kinetics of random sequential adsorption of k-mers on a one-dimensional lattice, occupied
initially by point impurities with a random distribution, is solved exactly. The solution of the process
on a continuum substrate is also derived from the discrete case.

A number of processes in physics, chemistry and biol-
ogy may be modelled by random sequential adsorption
(RSA) on a lattice [1]. In this model, particles arrive
randomly and adsorb irreversibly unless they are in the
exclusion zone of previously adsorbed particles. In an ar-
bitrary dimension, RSA processes reach a jamming con-
figuration, where further adsorption events are impossi-
ble. The final coverage as well as the temporal approach
to the jammed state are of interest. Exact analytical re-
sults have been obtained mainly in one dimension, where
the problem is also known as the parking problem [1-3],
and for the Bethe lattice [4,5]. In these studies, the sub-
strate is usually assumed to be initially empty. In a very
recent paper [6], the kinetics of RSA of k-mers on the
one-dimensional lattice, occupied initially by point im-
purities with a Poissonian distribution, has been investi-
gated numerically (mostly for dimers). In this comment
we aim to to point out that for the dimer case the model
has been solved exactly for the dual process A + A → 0
with immobile reactants [7,8]. Moreover, we point out
discrepancies between the exact solution and the simula-
tion results. We also present an exact analytical solution
for the k-mer case with arbitrary k and exploit this so-
lution to obtain the solution to the same process on a
line.

In the RSA process, k-mers land uniformly on a lattice
with a constant rate, to be taken as unity without loss
of generality. An adsorption event is successful if all k
sites are empty. Let Pm(t) denote the probability that m
consecutive lattice sites are empty. The rate equations
for these probabilities are

dPm(t)
dt

= −(m− k + 1)Pm(t)− 2
k−1∑
j=1

Pj+m(t) (1)

for m ≥ k. The first term in the right-hand side de-
scribes adsorption events inside the original m-site se-
quence. The next terms describe desorption events in-
volving sites outside the original sequence.

Since the initial density of point impurities is ρ0 and
the distribution of impurities is random, Pm(0) = (1 −
ρ0)m. Solving Eq. (1) subject to these initial conditions
yield

Pm(t) = (1− ρ0)m exp
[
−(m− k + 1)t− 2

k−1∑
j=1

1− e−jt′

j
(1− ρ0)j

]
.

(2)

For an initially empty lattice, ρ0 = 0, the solution of
Eq. (2) agrees with the well-known exact solution [3].

Similarly, one can write rate equations and solve them
exactly for the probabilities Pm(t) with m < k. The most
interesting quantity, P1(t), satisfies the equation

dP1(t)
dt

= −kPk(t), (3)

which involves only Pk(t). Integrating Eq. (3) we find
the coverage ρ(t), ρ(t) = 1− P1(t),

ρ(t) = ρ0 + k(1− ρ0)k
∫ t

0

dt′ exp
[
−t′ − 2

k−1∑
j=1

1− e−jt′

j
(1− ρ0)j

]
(4)

FIG. 1. ng coverage versus the initial impurity density. The
exact solution of equation (4) is plotted for the cases of k = 2,
k = 3 and k = 4.

The jamming coverage, ρjam ≡ limt→∞ ρ(t), for the
case of dimer deposition, k = 2, is obtained from Eq. (4),

ρjam = 1− (1− ρ0) exp[−2(1− ρ0)]. (5)

Thus, we reproduced the result first derived in the con-
text of two-particle annihilation reaction with immobile
reactants [7,8]. From Eq. (5) one sees that the jam-
ming concentration has a minimum ρmin

jam = 1 − e−1/2 =
0.8160 . . . at ρ0 = 1/2. This behaviour is reminiscent
of the general k-mer deposition problem where the jam-
ming coverage is a nonmonotonic function of the impurity
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density (see Figure 1). Clearly, in the limit of a full ini-
tial state ρ0 <∼ 1, ρjam

∼= ρ0. The simulational result of
Milošević and Švrakić exhibits a minimum at ρ0

∼= 0.13.
Moreover, the minimal jamming density is found to be
ρmin

jam
∼= 0.8564. Both values differ significantly from the

exact values.
The exact k-mer solution can be used to obtain the

continuum limit. In this limit, objects of unit length are
deposited on a one-dimensional line, initially occupied by
point defects. The initial density of the defects is set to
λ. To attain this limit we rescale the density kρ0 → λ
and the time kt → t. Thus, we take the limit k → ∞ of
Eq. (4), with the rescaled density and the rescaled time
remaining finite, and obtain the following continuum cov-
erage function

ρ(t) =
∫ t

0

dt′ exp
[
−λ− 2

∫ λ+t′

λ

du
1− e−u

u

]
. (6)

In the limit λ → ∞ this coverage approaches zero ex-
ponentially, ρjam

∼= λ exp(−λ). Conversely, when λ → 0
the jamming coverage approaches the well known Rényi
number ρjam = 0.7475 . . .. Unlike the lattice case, the
coverage monotonically decreases to zero, as the density
of impurities increases.

Using the exact solution for the density, we study the
approach to the jamming limit. In the lattice case we
find from Eq. (4) an exponential approach ρjam − ρ(t) ∼
exp(−t). This decay was confirmed by the simulation

performed by Milošević and Švrakić. Interestingly, in the
continuum case the approach is slower, and from Eq. (6)
one finds algebraic decay ρjam − ρ(t) ∼ t−1.
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