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We report an experimental study of the statistical properties of vibrated granular rings. In this
system, a linked rod and bead metallic chain in the form of a ring is collisionally excited by a
vertically oscillating plate. The dynamics are driven primarily by inelastic bead-plate collisions and
are simultaneously constrained by the rings’ physical connectedness. By imaging many instances
of the ring configurations, we measure the ensemble averages and distributions of several physical
characteristics on the scale of individual beads and composite ring. We study local properties such
as inter-bead seperation and inter-bonds angles, and global properties such as the radius of gyration
and center of mass motion. We characterize scaling with respect to the size of the chain.

PACS numbers: 05.40.a, 81.05.Rm, 82.35.Lr

I. INTRODUCTION

In the last decade the study of granular materials has
become a mainstream pursuit amongst physicists who
have summarized the advances in recent reviews [1–3].
The broad spectrum of static and dynamic behaviors of
granular media are being studied by a combination of
state-of-the-art experiments, computer simulations and
theoretical approaches. Shaken granular materials are
one example of a comprehensively studied subset of this
spectrum. Experiments and simulations on shaken grains
have demonstrated a variety of phenomena such as local-
ized structures [4], extensive patterns [5, 6], clustering
[7, 8], compaction [9, 10] and non-Maxwellian statistics
[11, 12].

Granular chains consist of hollow spheres connected
by rods, i.e., grains constrained by a chain backbone.
In granular chains we get the juxtaposition of the hard
grains of granular physics with the flexibility of polymers.
The chains can be excited, say, by collisions with a vi-
brating plate and can be observed visually. As such they
afford a simple system for the direct measurements of
micro- and macro-scopic variables. Experiments on gran-
ular chains, supported by theoretical models and simu-
lations, have probed the diffusive relaxation of a simply
knotted chain [13], the dynamical behavior of a verti-
cally excited hanging chain [14], the entropic tightening
of a once-twisted “figure-8” ring [15] and the spontaneous
formation of spirals [16].

In this paper we report our study of vibrated granular
rings. Our experimental system consists of a vertically
oscillated plate on which we place a granular ring con-
structed from a ball chain; a schematic is shown in Fig. 1.
Rings are constructed by joining the two free ends of a
chain. A chain with free ends suffers unequal excitation
along its length since beads near the ends are less con-
strained and thus preferentially excited. Rings, which
are devoid of free ends, restore the equality in excitation
amongst the beads, and it is for this reason that they are
particularly attractive to study.

In our experiments we control the amplitude and fre-
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FIG. 1: A schematic of our experimental apparatus.

quency of the harmonically oscillated plate. A chain ini-
tially resting on the plate becomes airborne when the
plate imparts to it an acceleration that exceeds the grav-
itational acceleration. Thereafter, collisions between the
plate and chain appear to randomize the motion and
shape of the granular ring. The collisions of different
parts of the chain are asynchronous with the phase of the
plate’s oscillation. Further collisions amongst the beads
on the chain occur frequently.

We observe the ring from above at a random phase
of the oscillation. We acquire images which are two-
dimensional projections of the position of the ring. From
these images we obtain the spatial coordinates and order
of the beads in the ring. Since the images are sequential
and time stamped, we are also able to calculate differ-
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ences and therefore dynamics. We make a large number
of position measurements for rings under vertical vibra-
tion. From this data we study the geometrical proper-
ties on the bead scale, i.e., local characteristics, and on
the scale of the chain, i.e., global characteristics. The
local properties include the inter-bead separations, the
bending angle between two consecutive rods, the aver-
age curvature and the dynamics of the beads. For the
global characteristics we focus on descriptors of the size
and overall motion of the ring. These are the radius of
gyration and the dynamics of the rings’ center of mass.

This paper is organized as follows. In Section II we
describe the experimental apparatus, the specific design
considerations, the image acquisition and analysis proce-
dure. Our experimental results depend at most on the
ordered positions of the beads in a ring and on the data
acquisition rate. We have divided the results into local
and global properties which are discussed in Sections III
and IV respectively. Local (global) properties are rel-
evant to the scale of the bead (ring). We discuss the
the inter-bead separation, the inter-rod angle, the aver-
age curvature and the bead dynamics as local properties.
For global characteristics we discuss the radius of gyra-
tion and the average motion of the ring center of mass.
A conclusion and an outline of future directions follows
in Section V.

II. EXPERIMENT

In this Section we describe our experimental apparatus
and our data extraction procedure. In overall design, the
apparatus is comprised of an electromechanical shaker
that drives a plate which is observed by a CCD camera.
A schematic of our experimental setup is shown in Fig. 1.

A. The electromechanical vibration assembly

A commercial electromechanical shaker driven by a si-
nusoidal voltage input is used to oscillate a plate. The
shaker operates electromagnetically with the current-
carrying coil armature oscillating in the strong magnetic
field of permanent ceramic magnets. The electromechan-
ical shaker is coupled to the plate by a shaft but is other-
wise vibrationally isolated from the rest of the apparatus.
A massive aluminum platform that is rigidly bolted to
the laboratory floor acts as a low-pass filter of vibrational
noise. The shaft is guided by the bore of a precise square-
section linear air bearing. In addition to linear motion,
the square-section shaft decouples the plate from the ro-
tational torque in the drive. The driving is thus accu-
rately uni-axial and a leveling plate facilitates alignment
with gravity. The shaft is coupled to the plate by two
concentric cylindrical tubes. A sensitive accelerometer is
attached centrally on the underside of the plate.

The plate is driven harmonically with amplitude A and
angular velocity ω = 2πf , where f is the driving fre-

quency. The dimensionless peak acceleration Γ = Aω2/g,
where g is the gravitational acceleration, and the fre-
quency f specify the driving conditions for the experi-
ment. The shaker is operated at f = 16 Hz and Γ = 2.12
for all the experiments described in this paper. The
shaker is protected from bearing the combined weight
of the plate and shaft by adjustable counter-weighting
springs such that the drive oscillates about its natural
equilibrium position.

B. The plate and the granular rings

The plate is circular with a diameter of 11.50 inches
and is made of stress-relieved aluminum. The primary
design requirements are light weight, flexural stiffness
and surface hardness. Aluminum’s low density and com-
parable flexural properties to most metals make it a suit-
able choice. On oscillation we expect that bending modes
of the plate are excited. The higher the stiffness the
higher the frequecies excited. Since our experiments have
drive frequency f ∼ 10 Hz, we designed the plate so that
its excitable bending modes had much higher frequencies.
This is accomplished by tapering the lower surface of the
plate and by boring out cylinders from this surface in a
space-filling azimuthally symmetric manner. The cylin-
ders bored out of the aluminum have various depths and
diameters. The plate is at its thickest 1.50 inches decreas-
ing to 0.25 inches at the boundary. These considerations
lead to a selective damping of pure modes of the shaken
plate. A further safeguard against exciting modes of the
plate is achieved by forcing the plate at two annular re-
gions rather than at the center or at the edge. The an-
nular regions are at radial locations 1.25 ≤ r ≤ 2.00 and
4.88 ≤ r ≤ 6.00 inches. Surface hardness needed to with-
stand the many metal on metal collisions of the chains
hitting the plate is attained by hard black anodization of
the aluminum plate.

The granular chains are commercially available ball
chains. They consist of hollow, approximately-spherical
shells that are connected by dumb-bell shaped rods. We
use two types of ball chains in our experiments. The
smaller is made from nickel-plated stainless steel rods
and beads. The beads have a nominal diameter of 3

32

inches. The larger is a 1

8
inch diameter brass chain. Thus

there are typically 100 beads across the plate diameter.
The chains are connected end to end to make rings. The
splicing together of the free ends is natural in the sense
that a rod from one of the end beads is inserted into the
shell of the other end bead. The joined free ends could
seldom be identified in the constructed ring. The tightest
rings that we could make have 8 beads. Hence the an-
gle θ between two consecutive rods is constrained so that
0 ≤ θ ≤ 50◦. Our experiments use rings with N beads
where 13 ≤ N ≤ 309. The rings are laterally confined to
the plate by an acryllic boundary.
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C. Data extraction

Our data consist of digital images of the granular ring
on the plate. We illuminate the chain using approxi-
mately normally-incident light from far above the plate.
To minimize reflection from the background, we paint
the acryllic boundary black. Additionally, before black-
anodizing the flat surface of the plate is roughened by
sand blasting. The very shallow surface inhomogeni-
ety helps randomize even simple collisions with the plate
and diffusively scatters far-field light. The poorly reflec-
tive background reduces noise in the digital image. The
normal far-field illumination gives an almost uniform re-
flected light intensity across the plate area. Furthermore,
the light reflected by the beads is primarily from the
center of the beads. Non-normal lighting preferentially
illuminates crescent-shaped areas on the surface of the
beads. A representative raw image is shown in Fig. 2a.

Typically, our images are acquired at sampling rates
of 0.25 − 16 Hz and have a resolution of approximately
1000 × 1000 pixels. Depending on the data set we have
between 8.8 and 13.0 pixels to the bead diameter d. The
reflected light is brightest from the the center of the
beads and diminishes radially outwards. A sequence of
standard image analysis procedures such as background
subtraction, intensity rescaling, high-pass thresholding
and smoothing result in reducing the data into roughly
N × 7 × 7 non-zero pixels for N beads. Local maxima
in the intensity field are then determined and ranked by
their peak intensity. The intensity field of each set of
5 × 5 pixels centered about a local maximum is fit to an
azimuthally symmetric Gaussian. The fit parameters of
the position of the Gaussian peak are taken as the sub-
pixel coordinates of the bead. The fit to the standard
deviation of the Gaussian gives an estimate to the posi-
tional accuracy of about 0.05 bead diameters. Figure 2c
shows a blow up of part of the raw image in Fig. 2a and
our determination of the bead centers.

In most of the images, our data extraction procedure
resulted in more than N local maxima. Most of these
occur when a rod appears brighter than a bead. A rod
between two beads is visible in Fig. 2c. The frequency of
this occurrence is about 1% of the number of beads. Since
the distance between the position of a rod and an adja-
cent bead is smaller than the minimum distance between
two adjacent balls, we eliminated these by iteratively ap-
plying a strict minimum distance criterion.

The next step is to order the N coordinates so that the
ring can be reconstructed. The ordering algorithm uses
the geometrical restrictions imposed by the interconnect-
ing rods. Given two adjacent beads, the third is searched
for in the sector defined by the maximum inter-bead sep-
aration and angle. This efficient greedy algorithm re-
quires N2 operations to order an N bead chain. The
overall accuracy of our data extraction process exceeds
96% ,i.e., in less than 4% of the images are we unable to
reconstruct the chain. There are various reasons for this.
The beads are constructed by crimping sheet metal and

(b)

0

400

800

400 800

FIG. 2: (a) Raw data image, (b) reconstruction by identifying
the bead coordinates (in pixels) and order, and (c) overlay of
a section of the raw image and the position data (•) for the
center of the beads. Locally bright regions between beads in
(c) correspond to reflection from an interconnecting rod.
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so have a seam running along one half of a great circle.
The seam is comparatively duller in reflected light than
any other part of the beads and so in a few images our
extraction process misses these beads. Since the images
are two-dimensional projections of the chain, the strict
inter-bead distance criteria can appear to be violated. In
these cases our algorithms may allow a false bead posi-
tion. In Fig. 2b, we show a complete reconstruction of
a chain from the raw image data in Fig. 2a. Given the
small number of misidentifications, we are confident that
these issues have a small effect on the results reported
below.

III. LOCAL PROPERTIES

In this Section we present our results on the local prop-
erties of vertically vibrated granular rings. Local prop-
erties are relevant to the scale of the bead and here we
discuss the inter-bead separation, the inter-rod angle, the
average curvature and the bead dynamics. We noted ear-
lier that the chains are constructed out of hollow shells
that are connected by rods. This connection imposes
constraints on the minimum and maximum separation
between beads, on the maximum bending that 3 adja-
cent beads can sustain, and on the displacements that
occur on excitation.

A. Inter-bead separations

The inter-bead separation δ = |ri+1 − ri| is measured
between every two consecutive bead positions for brass
and nickel rings. ri is position of bead i in two dimen-
sions. Hence, there are N measurements of δ for an N -
bead ring. Our data is based on no fewer than 5200 mea-
surements of δ for N = 13 and more than 105 samples for
N ≥ 256. From these data, we construct the probability
distribution function of the inter-bead separations P (δ).

In Fig. 3, we plot the mean 〈δ〉 and standard deviation
σδ as a function of N . For N sufficiently large, 〈δ〉 and σδ

are independent of N . The distributions P (δ) are similar
in gross feature for the brass and nickel rings for the var-
ious lengths N . Combining the data for 30 ≤ N ≤ 309,
we obtain the distribution function shown in Fig. 4. The
distribution has a sharp cut-off at δ ≈ 1.4 corresponding
to the maximal extension between the beads. A much
softer small δ cut-off appears at δ ≈ 0.8. The minimal
distance in an accurately two-dimensional chain would be
at δ = 1. The quasi-two-dimensional motion of the chain
and our measuring the motion on a planar projection al-
lows values of δ < 1. The peak of the distribution at
small separations is possibly due to bead-bead frictional
effects. Between the small-δ peak and the upper-δ cut-off
we find that the distribution is roughly flat. These inter-
mediate separations occur with significant and approxi-
mately equal probability, perhaps because of the constant
rod-bead friction at these extensions.

10
1

10
2

N

0.50

0.75

1.00

1.25

<
δ>

0.10

0.20

0.30

σ δ

FIG. 3: The mean 〈δ〉(◦) and standard deviation σδ(•) of the
inter-bead separations δ vs ring length N .

0.8 1.0 1.2 1.4

δ
0.0

0.1

0.2

0.3

0.4

P(
δ)

FIG. 4: The probability distribution P (δ) for the inter-bead
separations. The distribution combines data for rings with
lengths 30 ≤ N ≤ 309. The dashed line δ = 1(1.4) in the
theoretical lower (upper) bound.

B. Bending angles

Given the positional ordering ri−1, ri, ri+1 of three con-
secutive beads in the ring, we describe the bending by

cos θ =
dri−1 · dri

|dri−1||dri|
, (1)

where dri = ri+1 − ri. There are N values of cos θ for
every N -bead ring. As with the inter-bead separations,
we have approximately 5200 measurements of cos θ for
N = 13 and more than 105 samples for N ≥ 256 from
which we determine the distribution function. In Fig. 5,
we plot the mean 〈cos θ〉 and standard deviation σcosθ

of the bending distribution functions for granular rings
as a function of N . As N increases, 〈cos θ〉 → 1 and
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σcosθ → 0. This large N behavior implies that a long ring
is primarily composed of locally straight segments. For N
approaching the smallest ring size of 8 beads, 〈cos θ〉 →
0.7 consistent with the tightest bending.

The large N limiting behavior of the mean bending an-
gle is particularly interesting. In Fig. 6, we plot the dif-
ference between the limiting value of unity and the mea-
sured 〈cos θ〉. For an ideal circular ring with N beads,
1 − 〈cos θ〉 ∼ N−2. We find that although the granular
ring becomes locally straight as its length increases, it
does so very differently from a circular ring. Our data
show a gentler approach with

1 − 〈cos θ〉 ∼ N−0.6. (2)

This implies that the chain curvature decreases slowly as
the chain length increases.

The bending distributions for representative small and
large rings are shown in Fig. 7. The distributions peak
near cos θ ∼ 1 and monotonically decrease for smaller
cos θ. The peak and range depends weakly on the num-
ber of beads N . The peak probability for bending angles
is higher for the longer rings whereas the range of bend-
ing angles is larger for the shorter chains. There are
significant quantitative differences (not shown) between
the distributions for brass and nickel rings but the qual-
itative features are similar. The principal difference is
at large angles where the greater flexibility of the brass
chains increases the range of variation in cos θ.

C. Average curvature

The vibrated rings sample many microscopic configu-
rations subject only to the stretching and bending con-
straints imposed by the interconnecting rods and by mu-
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FIG. 5: The mean 〈cos θ〉 (◦) and standard deviation σcosθ

(•) of the bending angle cos θ vs ring length N . The dashed
line corresponds to the lower bound set for 〈cos θ〉 by a ring
with N = 8.
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FIG. 6: Plot of 1 − 〈cos θ〉 vs N . The dashed line is, up to a
constant, N−0.6

tual self-exclusion. One of the properties of the configu-
ration is the overall extent to which the ring is curved. To
probe this feature we use the ordered positions to com-
pute the average squared curvature K which we define
as

K =

∮

k(s) · k(s) ds
∮

kcircle(s) · kcircle(s) ds
, (3)

where k is given by

k(s) =
d2

r

ds2
; r(s) = (x(s), y(s)) . (4)

In Eq. 4, s is the arc length along the chain and r(s)
is a unit-speed reparametrization of the chain. Then,
by definition |dr/ds| ≡ 1 so k(s) measures the way

0.7 0.8 0.9 1.0
cos θ

10
-1

10
0

10
1

P
(c

o
s 

θ
)

FIG. 7: The probability distribution of the bending angle
P (cos θ) for rings with lengths N = 32(◦) and N = 128(2).
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FIG. 8: The mean 〈K〉 (◦) and standard deviation σK (•) of
the squared curvature, K vs ring length N . The horizontal
dashed line K = 1 represents a circle. The solid lines are
proportional to N1.5 and N2.

the chain turns. kcircle(s) is obtained by computing
Eq. 4 for a circle with circumference equal to the arc
length of the chain. The local squared curvature is
k(s) = k(s) · k(s). Averaging over the ring we get
∮

k(s) ds/
∮

ds. Similarly for the circle with circum-
ference equal to the chain’s length, we have an average
squared curvature

∮

kcircle(s) ds/
∮

ds. Normalizing the
average squared curvature of the ring by that of an equal
arc length circle, we get the quantity K defined in Eq. 3.

As a procedure, for each ring, we first calculate its cir-
cumference by adding the separations between adjacent
beads. We then reparameterize the positions of the beads
by the arc length s so that ri = (xi, yi) = (x(si), y(si))
such that the ring has unit circumference and is traversed
with unit speed. Since

∮

kcircle(s) · kcircle(s) ds = 4π2

for a circle of unit length and speed, we have normal-
ized K such that as the ring approaches a circle K → 1.
Hence K measures the departure from a circular shape.
In practice, the integral in Eq. 3 is replaced by a sum-
mation over the N discrete bead positions and k(si) is
approximated by the difference

k(si) =
d2

ri

ds2
i

=
dri+1 − dri

1

2
(si+1 − si) + 1

2
(si − si−1)

. (5)

Using in excess of 6800 images or approximately 425
realizations per chain, we have measured the mean and
rms values of K for brass and nickel rings for several N .
In Fig. 8, we plot the mean 〈K〉 and standard deviation
σK as a function of N . The two smallest rings have
N = 13 and 20. They are approximately circular and
tightly constrained, resulting in 〈K〉 ≈ 1; the smallest
ring has N = 8 and is practically rigid. For larger N we
find that the scaling exponent µ ∼ 2 in the power-law
〈K〉 ∼ Nµ for 20 ≤ N ≤ 256. This implies, in agreement
with Eq. 2, that as N increases, the ring increasingly

deviates from a circle. The standard deviation σK from
the data shows a scaling relation σK ∼ Nλ with λ ∼ 1.5.
This observation is consistent with Eq. 2.

D. Bead displacements

The dynamics of the beads are studied by measuring
the displacement of a bead as a function of time. It is well
known that the mean square displacement of a randomly
excited particle scales linearly with time while ballistic
motion results in quadratic scaling. It is interesting to
probe how a bead constrained to the ring behaves.

We restrict our analysis to images acquired at 16 Hz
which is sufficiently fast so that bead positions between
two consecutive images show small changes. Conse-
quently, we can identify beads in an image with the pre-
ceding image. Discerning the bead identity is increas-
ingly more difficult with slower image acquisition rates
since the bead displacements are quite large. The or-
dered position data of the beads in the ring is obtained
as described earlier in Section IIC. Then assuming the
bead identity in the first image, we order the bead posi-
tions of the second image so that they correspond to the
preceding image. Since there is only 1 plate oscillation
and therefore on average 1 chain excitation between con-
secutive images, we are confident that we have accurately
identified the beads. Additionally, we visually verify the
ordering for a subset of the data sets. We implement
our bead identity algorithm by translating the data from
both images to a common center of mass and then min-
imizing the mean square position difference between the
two images up to cyclic permutations and orientation of
the second image. The procedure is iterated until all the
images are properly ordered.

The squared displacement that bead i in a ring
with N beads undergoes between time τ and τ + t is
∆r2

i (t, τ,N) = (ri(τ + t)−ri(τ)) · (ri(τ + t)−ri(τ)). For
the data, the times τ and t are chosen to coincide with
the image acquisitions, i.e., multiples of 1/16 s, and the
displacement is measured in units of the bead diameter.
Note that both images are translated to the origin, i.e.,
the center of mass is subtracted from the bead coordi-
nates before calculating the squared displacement.

Averaging over all beads i in the ring and over possible
values of τ , we define the mean squared bead displace-
ment:

〈∆r2〉(t,N) = 〈∆r2
i (t, τ,N)〉τ,i . (6)

We probe the time dependence of 〈∆r2〉 by assuming
a length dependent constant factor β(N) such that the
mean squared displacements are the same for the short-
est experimentally observed time t = 1/16 s. In Fig. 9,
we plot 〈∆r2〉/β(N) versus t. For times corresponding to
about 10 plate oscillations, 〈∆r2〉/β(N) increases linearly
with time for all rings. This behaviour is consistent with
diffusive motion. Thus, although the ring is mechan-
ically and athermally driven, collective properties may
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FIG. 9: The mean squared displacements 〈∆r2〉 of the beads
as a function of time t for various ring length N . The displace-
ments are scaled by a ring length-dependent constant β(N)
so that all 〈∆r2〉 are the same for the shortest experimentally
observed time t = 1/16 s. The dashed line is proportional to
t. The 〈∆r2〉 for the smallest ring N = 13 is shown in black
solid circles.
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FIG. 10: The probability distribution function for the
∆r2/〈∆r2〉 at t = 1/16 s for all ring lengths N . The dashed
line has slope −4.

still behave as if they are randomly (thermally) forced
[13, 15]. For shorter times the mean squared displace-
ments increase faster than linearly with time for all but
the smallest ring which is consistent with the expected
crossover from very short time ballistic motion to long
time diffusive dynamics.

For the shortest observation interval of t = 1/16 s,
we study the distribution of the squared displacements.
Since each bead in the ring collides with the plate, on
average, once per oscillation, it is highly probable that
several beads in the chain will have altered direction due
to a collision. Thus, it is unlikely that the 1/16 s interval

is sufficiently short to deduce an instantaneous velocity.
Since the bead-plate collisions occur over a range of phase
in the oscillation, however, the beads encounter a range
of displacements. Large displacements correspond to col-
lisions and smaller displacements to beads being dragged
along by the chain connectedness. In Fig. 10, we plot
the probability distribution function of ∆r2 measured at
t = 1/16 s. The squared displacement is normalized
by its mean value. Our data show that small squared
displacements are highly probable decaying slowly until
O(〈∆r2〉). For larger displacements the probability de-
cays more rapidly and the large displacement tail decay
is consistent with (∆r2)−4.

IV. GLOBAL PROPERTIES

Global characteristics of granular rings probe the over-
all conformation and dynamics of the chain. Below we de-
scribe the conformation, roughly speaking, by the chain’s
size. The size, defined to be the mean radius of gyration,
is obtained by averaging over many observations. The
global dynamics are described by the motion of the cen-
ter of mass of the ring.

A. Radius of Gyration

A measure of the global size of a long chain or a poly-
mer is its radius of gyration. Since the chain’s configura-
tion is constantly changing owing to collisional excitation
with the plate, better measures are the statistical aver-
ages of radius of gyration. Given the N position coordi-
nates ri = (xi, yi) for the beads i = 1, .., N , we calculate
the radius of gyration Rg from

Rg
2 =

1

N

N
∑

i=1

(ri − rcm)2 , (7)

where rcm = (xcm, ycm) is given by

rcm =
1

N

N
∑

i=1

ri . (8)

Since our coordinates are in units of the bead diam-
eter d, the radius of gyration Rg is in these units. We
have measured Rg for granular rings for several values of
N . Since there are no self-intersections, the ring can be
likened to a self avoiding walk that returns to itself.

Averaging over approximately 450 realizations per
granular ring of length N , we measure the mean and
rms values of Rg. In Fig. 11, we plot 〈Rg〉 and σRg

as a
function of N for 13 ≤ N ≤ 309. In these experiments
the lateral boundary has a radius of 53.2 bead diameters.
This is an absolute upper bound on 〈Rg〉 and is shown by
the horizontal line in Fig. 11. Our 〈Rg〉 data for nickel



8

10
1

10
2

N

10
-1

10
0

10
1

<
R

g>
, σ

R
g

FIG. 11: The mean (◦) and standard deviation (•) of the
radius of gyration vs the length of the rings N . The dashed
horizontal line is the radius of the plate. The two solid lines
have slopes of 3/4 (top) and 1 (bottom), respectively.

and brass chains are consistent and increase with N . A
power-law fit for the range 20 ≤ N ≤ 219 gives an ex-
ponent ν = 0.85 ± 0.05. The σRg

data in Fig. 11 shows
a linear increase with N for 20 ≤ N ≤ 219 with a sharp
drop for larger N . The sharp drop is associated with the
constraining effect of the lateral boundary.

Self avoiding walks have universal scaling characteris-
tics in the large-N limit. In particular, 〈Rg〉 ∼ Nν with
Flory exponent ν = 3

4
in two dimensions [17, 21]. Exper-

iments with surface adsorbed DNA[18], polymer molecu-
lar monolayers[19] and connected plastic spheres[20] have
measured exponents consistent with the 2D Flory value
ν = 3

4
. Both the DNA and plastic chain had free ends

and by being constrained to 2D were self-avoiding. Our
measured exponent ν = 0.85 ± 0.05 is for a ring (likened
to self avoiding walk that closes on itself) and is some-
what higher though not inconsistent with these experi-
ments. The σRg

increase linearly with N in the range
20 ≤ N ≤ 219.

B. Center of Mass Motion

Under oscillation the rings sample many configurations
with different positions of their center of mass. Since
the plate is accurately level, the rings do not drift grav-
itationally. Any motion of the center of mass is then
associated with the overall mobility of the rings. We
study the motion of the center of mass of nickel rings
with 13 ≤ N ≤ 309. The data are acquired at 16 Hz
which is sufficiently fast for probing the motion of the
ring’s center of mass. Given the center of mass rcm we
calculate the magnitude of the average velocity v given
by

10
1

10
2

N

10
-1

10
0

<
v>

, σ
v

FIG. 12: The mean (◦) and standard deviation (•) of the cen-
ter of mass velocity. The straight lines are power-law fits to
the data with slopes -0.67 (mean) and -0.59 (standard devia-
tion), respectively.

v =

√

drcm

dt
·
drcm

dt
. (9)

¿From approximately 400 images per ring we measure
the mean and rms values of v. In Fig. 12, we plot the
mean 〈v〉 and standard deviation σv for several N . For
our largest ring N = 309 significant interaction with the
lateral boundary appears to be responsible for the un-
expectedly large 〈v〉 and σv. Assuming scaling relations
〈v〉 ∼ Nη and σv ∼ N ζ power-law fits for 13 ≤ N ≤ 256
give η = −0.67 ± 0.08 and ζ = −0.59 ± 0.14. The speed
v varies from just over 1 bead diameter/s for N = 13
to about 1/10 bead diameters/s for N = 256. As N
increases more and more segments of the ring move inde-
pendently resulting in large cancelations to contributions
to center of mass motion. Qualitatively, this diminished
mobility with increasing chain length resembles the be-
havior observed for a random polymer where the diffu-
sivity is inversely proportional to the molecular weight
[21].

As with the bead displacements studied in Sec-
tion IIID, we can study the dynamics of the ring center of
mass. The squared displacement that ring center-of-mass
undergoes between time τ and τ + t is ∆R2

cm(t, τ,N) =
(rcm(τ + t) − rcm(τ)) · (rcm(τ + t) − rcm(τ)). For the
data, the times τ and t are chosen to coincide with the
image acquisitions, i.e., multiples of 1/16 s and the dis-
placement is measured in units of the bead diameter. Av-
eraging over all possible values of τ we define the mean
squared ring center of mass displacement:

〈∆R2
cm〉(t,N) = 〈∆R2

cm(t, τ,N)〉τ . (10)

The time dependence of 〈∆R2
cm〉 is plotted in Fig. 13.

Here, we have assumed a length dependent constant fac-
tor α(N) such that the mean squared displacements are
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FIG. 13: The mean squared displacements 〈∆R2

cm〉 of the
ring center of mass as a function of time t for various ring
length N . The displacements are scaled by an ring length-
dependent constant α(N) so that all 〈∆R2

cm〉 are the same
for the shortest experimentally observed time t = 1/16 s. The
dashed lines are proportional to t and t2. The 〈∆R2

cm〉 from
the three longest rings N = 219, 256 and 309 are shown in
magenta, cyan and maroon open square symbols respectively.

the same for the shortest experimentally observed time
t = 1/16 s.

For times corresponding to less than about 10 plate os-
cillations, the 〈∆R2

cm〉/α(N) increase quadratically with
time for all rings except the three largest rings with N =
219, 256 and 309. The constraining effect of the plate’s
lateral boundary explains the less than quadratic time
dependence of 〈∆R2

cm〉/α(N) for large rings. For times
in excess of about 10 plate oscillations, the 〈∆R2

cm〉/α(N)
approaches a linear increase with time. The short time
behaviour is consistent with ballistic motion of the ring
center of mass. This suggests that at short times the
motion of the ring center of mass is dominated by coher-
ent large bead displacements. The longer time behaviour
averages over several, apparently random, large displace-
ments resulting in the approach to diffusive motion.

The distribution of the squared displacements of the
ring center of mass is studied for the shortest observa-
tion interval of t = 1/16 s. At this time scale the cen-
ter of mass motion is ballistic and so an average veloc-
ity proportional to the displacement may be infered. In
Fig. 14, we plot the probability distribution function of
∆R2

cm measured at t = 1/16 s. The squared displacement
is normalized by its mean value. Our data show that
small squared displacements are highly probable with the
probability decaying consistent with (∆R2

cm)−1.5. The
small squared displacements of the ring center of mass
arise from averaging the almost independent motions of
the beads on the ring. The less probable large squared
displacements occur from rarer coherent motions of seg-
ments of beads on the rings.
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FIG. 14: The probability distribution function for the
∆R2

CM/〈∆R2

CM 〉 at t = 1/16 s for all ring lengths N . The
dashed line has slope −1.5.

V. CONCLUSION

In this paper we presented an experimental study of
vibrated granular rings. Our study elucidates the statis-
tical characterization of various local and global proper-
ties. We have been particularly interested in power-law
scaling of average properties with the chain size. Local
properties were on the scale of a bead. We specifically
studied the inter-bead separations, angles, shape and po-
sitional dynamics. Global or macroscopic properties were
on the scale of the entire chain. In particular our study
probed the size and overall motion of vibrated rings.

The size of various parts of the experimental appara-
tus limits our study to chains of moderate bead numbers
typically N < 300 for rings. Consequently the rings are
analogous to relatively short self-avoiding walks. Despite
the relatively short chain lengths, we are still able to de-
duce reasonable scaling laws. The mean global properties
typically show power-law scaling over the modest range
in N with cross-over effects at small N and pronounced
finite-size effects at large N . Generally in between the
extremes, power-law scaling appears to provide an ade-
quate description.

The system of vibrating granular chains presents a
fertile ground for experimentally studying nonequilib-
rium statistical mechanics. It is particularly well-suited
since it permits simultaneous measurements of micro-
and macro-scopic variables. Our future experiments will
primarily concern this aspect in the setting of multi-chain
experiments. We expect to study groups of rings and
free-end chains and measure the average individual and
collective properties as they vary with density and con-
formation. The variation of the average individual or
microscopic properties with the macroscopic density will
elucidate the statistical mechanics of this system. Rings
of different N have different internal degrees of freedom.
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A tight ring with N = 8 is almost circular and has small
deviations from this configuration under vibrational ex-
citation. Its space of configurations is small and we may
think of it as having almost zero internal degrees of free-
dom. Rings of larger N , however, have shapes that de-
part significantly from simple conformations and conse-
quently a large configuration space and thus many inter-
nal degrees of freedom. The richness bestowed by the
ability to vary these internal degrees of freedom will per-
mit the detailed study of their bearing on macroscopic

properties of a collection of such rings. Other cooperative
behavior arising from rings of different sizes, a collection
free-end chains and self-interactions between different re-
gions of very long chains afford abundant possibilities for
studying nonequilibrium statistical physics.

We thank Mike Rivera and Brent Daniel for useful sug-
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This research is supported by the U.S. DOE (W-7405-
ENG-3

[1] L.P. Kadanoff, Rev. Mod. Phys., 71, 435 (1999).
[2] P.G. de Gennes, Rev. Mod. Phys., 71, S374 (1999).
[3] H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod.

Phys., 68, 1259 (1996).
[4] B. Umbanhower, F. Melo, and H.L. Swinney, Nature

(London) 382, 793 (1996).
[5] J.R. de Bruyn, C. Bizon, M.D. Shattuck, D. Goldman,

J.B. Swift, and H.L. Swinney, Phys. Rev. Lett., 81, 1421
(1998).

[6] J.R. de Bruyn, B. Lewis, M.D. Shattuck, and H.L. Swin-
ney, Phys. Rev. E., 63, 041305 (2001).

[7] A. Kudrolli, M. Wolpert, and J.P. Gollub,Phys. Rev.
Lett., 78, 1383 (1997).

[8] J.S. Olafsen and J.S. Urbach, Phys. Rev. Lett., 81, 4369
(1998).

[9] J.B. Knight, C.G. Fandrich, Chun-Ning Lau,
H.M. Jaeger, and S.R. Nagel, Phys. Rev. E., 51,
3957 (1995).

[10] E.R. Nowak, J.B. Knight, E. Ben-Naim, H.M. Jaeger,
and S.R. Nagel, Phys. Rev. E., 57, 1971 (1998).

[11] J.S. Olafsen and J.S. Urbach, Phys. Rev. E, 60, R2468
(1999).

[12] F. Rouyer and N. Menon, Phys. Rev. Lett., 85, 3676
(2000).

[13] E. Ben-Naim, Z.A. Daya, P. Vorobieff, and R.E. Ecke,
Phys. Rev. Lett., 86, 1414 (2001).

[14] A. Belmonte, M.J. Shelley, S.T. Eldakar, and C.H. Wig-
gins, Phys. Rev. Lett., 87 114301 (2001).

[15] M.B. Hastings, Z.A. Daya, E. Ben-Naim, and R.E. Ecke,
Phys. Rev. E., 66, 025102(R) (2002).

[16] R. E. Ecke, Z. A. Daya, M. K. Rivera, and E. Ben-
Naim, Materials Research Society Symposium Proceed-
ings, 759, 129 (2003).

[17] P. G. de Gennes, Scaling Concepts in Polymer Physics,
(Cornell, Ithaca, 1979).
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