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We study reversible polymerization of rings. In this stochastic process, two monomers bond and
as a consequence, two disjoint rings may merge into a compound ring, or, a single ring may split into
two fragment rings. This aggregation-fragmentation process exhibits a percolation transition with a
finite-ring phase in which all rings have microscopic length and a giant-ring phase where macroscopic
rings account for a finite fraction of the entire mass. Interestingly, while the total mass of the giant
rings is a deterministic quantity, their total number and their sizes are stochastic quantities. The size
distribution of the macroscopic rings is universal, although the span of this distribution increases
with time. Moreover, the average number of giant rings scales logarithmically with system size.
We introduce a card-shuffling algorithm for efficient simulation of the ring formation process, and
present numerical verification of the theoretical predictions.
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I. INTRODUCTION

Percolation [1, 2] controls many natural processes from
polymer gelation [3–5] and diffusion in porous media
[6, 7], to the spread of forest fires [8, 9] or infectious dis-
eases [10–12]. In the standard percolation picture, a sys-
tem evolves from a state with many small, microscopic,
clusters into a state with a single, macroscopic, system-
spanning, cluster. This phase transition is continuous,
and it is controlled by the total number of connections
between elementary units in the system.

In this study, we show that restricting the structure
of the clusters leads to a different percolation behavior
where multiple macroscopic clusters coexist. Percolation
with multiple giant clusters has been recently reported
in theoretical studies [13, 14], and it is relevant to the
production of colloidal micro-gels [15, 16].

Our starting point is the classic polymer gelation pro-
cess introduced by Flory [3–5, 17, 18], a simplified model
that is essentially the mean-field theory for percolation
[1, 19–23]. In this polymerization process, a very large
number of molecular units (“monomers”) join irreversibly
to form clusters (“polymers”). This process has a second
order phase transition between a “sol” phase in which all
polymers are finite to a “gel” phase in which a single gel
containing a finite fraction of the monomers in the sys-
tem emerges. With time, this gel grows and eventually,
it engulfs the entire system.

In the Flory model, there is no limit on the num-
ber of bonds per monomer, and the resulting polymers
may have very different structures. We modify the poly-
merization process so that all polymers have the same
structure. In our version, all monomers have exactly
two bonds, so that all polymers are rings. Rings oc-
cur in magnetized powders or beads [24–26] because due
to magnetic interactions, linear chains are unstable with
respect to formation of rings (Figure 1). As is the case
for magnetic beads, we consider directed rings where the
bonds have directionality (Figure 2). The results extend

FIG. 1: Rings made of magnetic beads.

to undirected rings.

II. AGGREGATION-FRAGMENTATION

PROCESS

At time t = 0, our system consists of N isolated
monomers. These particles bond to form polymeric rings
through the following process. In each elementary step,
two monomers are selected at random and a first bond
is drawn between them. Subsequently, both monomers
drop an existing bond and then, the two “dangling”
monomers form a second bond, as shown in Figure 2.
Time is updated, t → t + ∆t with ∆t = 2/N , after
each step so that each monomer experiences one bond-
ing event per unit time. We note that the directionality
of the first bond dictates the directionality of the second
bond. This polymerization process conserves the total
number of bonds because two bonds are gained and two
bonds are lost in each event. We assign an imaginary
self-bond to every original monomer, so that formally,
the original monomers have a ring structure. Therefore,
the total number of bonds in the system equals N . With
this formulation, the polymerization process maintains a
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FIG. 2: (a) Inter-ring bonds lead to aggregation. (b) Intra-
ring bonds result in fragmentation.

ring topology as every monomer has exactly two bonds.
The above polymerization process is equivalent to an

aggregation-fragmentation process. When a monomer
that belongs to ring of size i bonds with a monomer that
belongs to a different ring of size j, a composite ring
with size i + j forms (Figure 2a). Hence, rings undergo
the aggregation process

i, j
Kij−→ i + j with Kij = ij. (1)

The aggregation rate Kij is proportional to the product
of the sizes because there are i× j distinct pairs that can
bond. We note that the aggregation process (1) alone
constitutes the Flory model.

A bond between two monomers in the same ring breaks
that ring into two smaller rings. Schematically, the frag-
mentation process is (Figure 2b),

i + j
Fij−→ i, j with Fij =

i + j

N
. (2)

Due to the circular symmetry, the fragmentation rate
Fij is proportional to the ring size, while the factor 1/N
reflects that for fragmentation to occur, one must pick
two monomers within the same ring. The fragmentation
rate (2) is unusual as there is an explicit dependence on
system size. Also, the aggregation-fragmentation process
specified by (1) and (2) is reversible because for every ag-
gregation event, there is an opposite fragmentation event,
and vice verse.

Let rk(t) be the density of rings made of k monomers
at time t. That is, if Rk is the expected number of rings
of size k, then rk ≡ Rk/N . This size density obeys the
rate equation

drk

dt
=

1

2

∑

i+j=k

ij rirj−krk +
1

N





∑

j>k

jrj− k(k−1)
2 rk



. (3)

The first two terms represent gain and loss due to the
aggregation process (1), and the last two terms represent
gain and loss due to the fragmentation process (2). In

particular, let us consider the two loss terms. The to-
tal aggregation rate is, by definition, the ring size k, but
the total fragmentation rate, Fk ≡

∑

i+j=k Fij , grows

quadratically with size, Fk = 1
N

(

k
2

)

= k(k−1)
2N . Our

goal is to understand the time evolution of the density
rk(t), starting from the monomer-only initial condition,
rk(0) = δk,0.

III. FINITE RINGS

Our implicit assumption is that the system is very
large. When N → ∞, one can use perturbation the-
ory with the inverse system size being the small param-
eter [27]. We expand the size distribution to first order,
rk = ck + 1

N gk + · · · , and substitute this form into (3) to
obtain the rate equation

dck

dt
=

1

2

∑

i+j=k

ijcicj − kck. (4)

The initial condition is ck(0) = δk,1. The two terms in
this equation describe gain and loss due to aggregation.
To zeroth order, the fragmentation process is negligible
because the likelihood of picking two monomers within
the same ring vanishes when N → ∞. Equations (4) de-
scribe the evolution of the size distribution in the Flory
model, where there is no fragmentation. The solution to
these equations is well-known (see [20, 28] for a review)

ck(t) =
1

k · k!
(kt)k−1e−kt. (5)

Let Mn(t) =
∑

k≥1 knck(t) be the nth moment of the
distribution ck. The second moment diverges at a fi-
nite time as M2(t) = (1 − t)−1 for t < 1, a signa-
ture of the percolation transition at time t = 1. The
first moment, M1(t), provides additional information
about this phase transition. Consider the “missing mass”
g(t) = 1 − M1(t). This quantity obeys the transcenden-
tal equation

g = 1 − e−gt. (6)

When t < 1, there is only the trivial solution g = 0,
and hence, finite clusters contain all of the mass. How-
ever, when t > 1, there is a second, nontrivial solution,
0 < g < 1, and this solution is the physical one. Finite
rings account for only a finite fraction, M1 = 1−g, of the
total mass. Therefore, giant rings must account for the
remaining fraction of the total mass, g. At time t > 1,
the total mass of the giant rings equals g(t)N .

At time t = 1, the critical size distribution has a power-
law tail (Figure 3),

ck(1) ≃
1

√
2π

k−5/2, (7)

when k ≫ 1. At the critical point, the size of largest ring
scales as N2/3 with system size N [29–31].
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FIG. 3: (color online) The critical size distribution, ck ≡

ck(t = 1) versus k. The simulation results are from 104 inde-
pendent realizations of a system with N = 108.

IV. GIANT RINGS

When t > 1, we expect that macroscopic rings, that is,
rings that contain a finite fraction of the total mass in the
system, account for the missing mass. For a giant ring
with size k ∝ N , the total aggregation rate, k, and the

total fragmentation rate, k(k−1)
2N , are both proportional

to N . Hence, aggregation and fragmentation occur with
comparable rates. Also, since both rates are proportional
to the system size, aggregation and fragmentation are
very rapid. To find the size distribution of the giant rings,
we must consider the aggregation-fragmentation process
governing the giant rings.

We characterize a giant ring using the normalized size,
ℓ, defined as ℓ = k/N . This quantity equals the fraction
of the total mass contained in the ring. Let G(ℓ, t) be the
average number of rings with normalized size ℓ at time t.
Conservation of mass dictates

g(t) =

∫

dℓ ℓG(ℓ, t), (8)

where g(t) is the nontrivial solution of (6).
The quantity G(ℓ, t) satisfies

1

N

∂G(ℓ, t)

∂t
=

1

2

∫ ℓ

0

ds s(ℓ − s)G(s, t)G(ℓ − s, t)

− ℓ(g − ℓ)G(ℓ, t)

+

∫ g

ℓ

ds sG(s, t) −
1

2
ℓ2G(ℓ, t). (9)

This rate equation, essentially the continuous analog of
Eq. (3), describes the aggregation-fragmentation process
that governs the giant rings. To formally derive (9) from
(3), we first make the transformations Gk ≡ Nrk and
k = ℓN , and then, note that the aggregation loss rate is
reduced by the factor (g− ℓ) because self-interactions do
not lead to aggregation.
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FIG. 4: (color online) Simulation results for G(ℓ) ≡ G(ℓ, t)
at three different times, t(g = 1/4) = 1.150729, t(g =
1/2) = 1.386294, and t(g = 3/4) = 1.848392. The time
t(g) = 1

g
ln 1

1−g
follows from (6). Also shown for reference

is the theoretical prediction (10). The simulations results
are from 107 independent realizations of a system with size
N = 106.

From the definition of G(ℓ, t) and from equation (8),
we deduce that the quantity G(ℓ, t) is finite when t > 1
and 0 < g(t) < 1. Therefore, the right-hand side of (9) is
finite, while the left-hand side is negligible in the large-N
limit. We therefore replace the left-hand side of Eq. (9)
with zero to determine the time-dependent distribution
G(ℓ, t). The resulting non-linear integral equation has
the remarkably simple solution (see Figure 4)

G(ℓ, t) =

{

ℓ−1 ℓ < g(t),

0 ℓ > g(t).
(10)

Indeed, this solution obeys the mass conservation state-
ment (8). Surprisingly, the size distribution is universal,
although the span of the distribution grows with time,
0 < ℓ < g(t). Therefore, at time t > 1, there are giant
rings of all sizes up to the maximal value g(t)N .

The distribution of rings includes two distinct compo-
nents: Nck gives the average number of finite rings, and
G(ℓ) gives the average number of giant rings. Of course,
the former expression applies at all times, while the lat-
ter holds only for t > 1. The giant rings grow at the
expense of the finite rings and essentially they take over
the entire system as g → 1 when t → ∞.

Finite rings and giant rings undergo separate, essen-
tially decoupled, aggregation-fragmentation processes.
Indeed, the rate equation (4) for ck is closed, while the
rate equation (9) for G(ℓ) is, in practice, also a closed
equation. There is a constant flux of mass, N × dg/dt,
from finite rings to giant rings, and this flux couples the
two types of rings. This coupling enters only through the
fraction g(t) which appears explicitly in (9).

The distribution (10) implies that there are multiple
giant rings: the average number of giant rings, Ng, scales
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FIG. 5: (color online) The average number of giant rings, Ng,
and the variance σ2, versus system size N . The simulation
results represent an average over 105 independent realizations.
We measured Ng and σ2 by counting the number of rings with
size k > 4 ln N at time t = 2.

logarithmically with system size (Figure 5)

Ng ≃ lnN. (11)

This behavior follows from Ng =
∫ g

l∗
dℓG(ℓ). The

lower limit ℓ∗ = k∗/N can be deduced from the crite-
rion N

∑

k≥k∗

ck(t) = 1 that estimates the size of the
largest finite ring. Using this criterion together with
Eq. (5) we find k∗ ≃ (t − ln t − 1)−1 lnN and therefore
ℓ∗ ∼ N−1 lnN .

Since the merger-breakup process is random, we ex-
pect that the variance in the number of giant rings, σ2,
is proportional to the mean, σ2 ≃ lnN . Numerical sim-
ulations confirm this behavior (Figure 5). Hence, the
standard deviation

σ ≃
√

lnN (12)

quantifies fluctuations in the number of giant rings.
Figure 6 shows the normalized sizes of the three largest

rings as a function of time using a simulated system.
These sizes exhibit huge fluctuations as giant rings con-
stantly merge and break on a very fast time scale. In-
terestingly, while the size of an individual giant ring is a
stochastic quantity, the total size of all giant rings, g(t),
is a deterministic quantity.

The number of finite rings is proportional to N , while
the number of giant rings scales only logarithmically with
N . Equation (5) shows that monomers dominate in the
long-time limit. By comparing the average number of
monomers, Nc1 = Ne−t, with the the average number of
giant rings, given by (11), we conclude that giant rings
overtake finite rings when t ≫ tf with

tf ≃ lnN. (13)
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FIG. 6: (color online) The largest three rings. Shown is the
time evolution of ℓn(t), the size of the nth largest ring at time
t, for n = 1 (upper red line), n = 2 (middle green line), and
n = 3 (lower blue line). The results are from a single run of
a system with N = 106. Also shown is the cumulative mass
g(t).

In writing this expression, we ignored secondary logarith-
mic corrections.

For times t ≫ tf , the ring-size distribution reaches a
steady state. Setting g = 1 in (10) shows that Nk, the
average number of rings with (unnormalized) size k, has
the following form

Nk =
1

k
, (14)

for all 1 ≤ k ≤ N . Thus, at the steady state, there are
rings of all lengths, from finite rings to macroscopic rings.
The distribution (14) also follows from the detailed-
balance condition Kijcicj = Fijci+j with the solution
ck = (Nk)−1 [28, 32].

In the steady state, aggregation generates an upward
flux from small sizes to larger sizes, while fragmentation
leads to a downward flux from large sizes to smaller sizes.
These two fluxes perfectly balance. While the steady
state distribution (14) includes rings of all sizes, rings of
finite size account only for a microscopic mass, while rings
of giant size account for nearly all of the (macroscopic)
mass.

V. SHUFFLING ALGORITHM

Throughout this paper, we presented results of Monte
Carlo simulations that support the theoretical predic-
tions. We implemented an elegant algorithm that takes
advantage of an isomorphism between the polymerization
process and a card shuffling process. In the card shuffling
algorithm [33–36], we start with an ordered deck of N
cards, numbered 1 through N . Then, at each elementary
step, we pick two cards at random and exchange their
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FIG. 7: (color online) The average number Nk of rings of size
k at the steady state. The simulation results are from 103

independent realizations of a system with N = 108 at time
t = 20.

positions. For example, the first two steps in shuffling a
deck of 6 cards may look like

123456 → 153426 → 154326 → · · · .

Time is updated by ∆t = 2/N after each step,
t → t + 2/N , and thus, each card participates in one shuf-
fling event per unit time, on average.

We now use cycles to represent permutations. For
example, six cards ordered 134265 are represented by
(1)(234)(56) because there are three cycles: the card 1
forms a cycle of length one, the cards 234 form a cycle of
length three, and the cards 56 form a cycle of length two.
Initially, there are N cycles of length 1. Then, exchange
of two cards in distinct cycles leads to merger, while ex-
change of two cards in the same cycle leads to breakup.
For example, the following steps generate the merger and
breakup events in Figure 2,

(123)(456) → (156423), and (156423) → (123)(456).

Furthermore, the merger rate and the breakup rate are
given by (1) and (2). Hence, the dynamics of cycles in the
shuffling process are identical to the dynamics of rings in
the polymerization process.

The above algorithm is straightforward and efficient.
The shuffling steps take O(N) operations per unit time,
and moreover, tracing the cycle structure requires only
O(N) operations. This linear algorithm enabled us to
simulate large systems with as many as N = 108. Fig-
ure 7 demonstrates the excellent agreement between the
simulation results and the theoretical prediction (14).

The distribution Nk given in (14) equals the average
number of cycles of length k for a random permutation of
N elements [37, 38]. As expected, repeated shuffling ran-
domizes the card order and according to (13), the num-
ber of exchanges required to generate a perfectly random
shuffle scales as N lnN .

A natural generalization is to n-card shuffling where n
randomly chosen cards are reordered according to a pre-
scribed rule. For example, if n = 3, we may follow the
cyclic rule 123 → 231. The equivalent polymerization
process now involves merger of n polymers. Straightfor-
ward generalization of the Flory model shows that the
total gel mass, g(t), satisfies [39]

1 − g = e−
1−(1−g)n−1

(n−1)!
t, (15)

with 0 < g < 1 in the giant-ring phase t > (n − 2)!. We
anticipate that the distribution of giant rings is given
by (10), except that the total mass is now specified by
(15). Our numerical simulations of the three-card process
confirm this behavior.

VI. DISCUSSION

In summary, we studied a ring polymerization process
in which a bond between two monomers results either
in aggregation of two rings into one or in fragmentation
of one ring into two. This process exhibits a percola-
tion transition with a finite-ring phase in which all rings
are microscopic and a giant-ring phase in which multiple
macroscopic rings coexist. While the cumulative mass of
the giant rings is deterministic, the sizes of individual gi-
ant rings are stochastic. Moreover, the giant rings exhibit
huge fluctuations due to the extremely rapid merger and
breakup processes. Finally, the size distribution of giant
rings is stationary, although the span of this distribution
grows with time.

The aggregation-fragmentation process that governs
the rings is perfectly reversible. On the one hand, the
distribution of ring size reaches a stationary state where
detailed balance is formally satisfied. On the other hand,
this final distribution is not thermodynamic because the
number of rings varies logarithmically, rather than lin-
early, with system size. Phase transitions with non-
thermodynamic states were previously observed only in
irreversible aggregation-fragmentation processes [40–42].

The original Flory model is equivalent to an evolving
random graph [17, 18, 22, 23, 28–31] in which a node
can have an arbitrary degree. The ring formation pro-
cess above generates an evolving regular random graph
in which all nodes have degree 2. In this context, the
fragmentation process illustrated in figure 2b naturally
represents redirection of links. Hence, our analysis also
constitutes the kinetic theory of an evolving regular ran-
dom graph.

The ring formation process can be generalized in many
ways. We focused on the mean-field version, and it will be
interesting to study two-dimensional rings where spatial
correlations play an important role. Another direction
for further study is percolation of polymers with other
types of fixed structures, for example, polymers where
all monomers have exactly three bonds [3].
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Finally, we notice that the unusual behaviors in the
giant-ring phase are the consequence of the basic topo-
logical constraint, namely that the polymers maintain a
ring structure. This suggests to investigate the influence
of other constraints such as planarity [43, 44]. Another
interesting question is what happens if the polymers are
membranes [45] such as spheres (say due to the surface

tension) that can merge and divide.
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