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Abstract.

Statistical properties of evolving random graphs are analyzed using kinetic theory. Treating the
linking process dynamically, structural characteristics of links, paths, cycles, and components are
obtained analytically using the rate equation approach. Scaling laws for finite systems are derived
using extreme statistics and scaling arguments.
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INTRODUCTION

Random graphs have been studied in many disciplines including statistical physics,
chemical physics, combinatorics, probability theory, and computer science [1, 2, 3, 4, 5,
6]. For example, they are used to model percolation in polymerization processes [7, 8]
and phase transitions in algorithmic complexity [9].

A random graph is a set of nodes that are joined by random links. When the number
of links exceeds a threshold, a connected component containing a finite fraction of all
nodes, the giant component, emerges. Essentially, random graphs are a mean-field model
of percolation [10, 11].

In this short review, we summarize our recent work on random graphs [12, 13].
We describe how, by treating the linking process dynamically, random graphs can be
studied using kinetic theory. Structures such as paths, cycles, and components grow
via elementary aggregation processes and their distributions can be obtained using
the rate equation approach [14, 15, 16, 17, 18, 19]. This technique complements the
combinatorial methods, traditionally used to analyze random graphs [3, 4, 5].

THE EVOLVING RANDOM GRAPH

A graph is a collection of nodes that are joined by links, and in a random graph, the links
are random. There are different types of graphs. In a static graph, the links are generated
instantaneously, while in an evolving graph the links are generated sequentially. In a
simple graph, a given pair of nodes may be connected by a single link only, but in a
multigraph they may be connected by multiple links.

We consider the following random graph model. Starting with no links and N discon-
nected nodes, links are sequentially added between randomly selected pairs of nodes.
This linking process continues ad infinitum with constant rate, set to (2N)~! without



loss of generality. The two nodes selected for linking may not be different, and addition-
ally, the number of links between two nodes is not limited. In other words, we consider
a random evolving multi-graph. Additionally, we consider the infinite system size limit,
N — oo, where statistical fluctuations can be usually ignored.

LINKS, PATHS, AND CYCLES

Attimet, the total number of links is on average Nt /2, and therefore, the average number
of links per node (the degree) equals time t. Let | be the degree of a node. It undergoes
the additive stochastic process | — | + 1. The probability F that the degree of a node
equals |, the degree distribution, satisfies

at F1—F (1)

with the initial condition F, (0) = & ,. Therefore, the degree distribution is Poissonian

|
F=pe" 2)

with the mean degree equal to time, (I) =t.

A pair of nodes may be connected by a consecutive series of links forming a path.
When a newly added link connects two paths of lengths nand m, a longer path is formed:
n,m— n+m+ 1. Thus, paths undergo an aggregation process. Let P (t) be the density
of distinct paths containing | links at time t. This density satisfies

dP
d—tl - PnPm (3)

n+m=l-1

for | > 0 and R, (t) = 1. The initial condition is R (0) = ¢ ;. Therefore, the path length
density is
p=t (4)

For example, the first quantity P, =t reflects that the link density is equal to t/2 and
that every link corresponds to two distinct paths of length one. The total density of paths
Pot = 3, P diverges at the percolation time, Py, = (1 —t)™! ast — 1. At this time, the
system develops a giant component that eventually percolates through the entire system.
The divergence of the total number of paths is typical: average quantities as well as
typical characteristics diverge near the transition point. For example, the typical path
length diverges as the percolation time is approached

|~ (1-t)7, (5)

as seen from the average path length, (1) =5,I1R/ 3, B =t(1—t)~1.
When two nodes along a path are linked, a cycle forms. Cycles have been studied
extensively [20, 21, 22, 23] and for example, they are useful for characterizing phase



transitions in algorithmic complexity [9]. Let the average number of cycles of size | at
time t be Q, (t). It is coupled to the path length density via the rate equation

dQ, 1
@~ 2h ©

The right-hand side equals the link creation rate 1/(2N) times the total number of paths
NP, _,. As aresult, the cycle length distribution is

I
Q=g 7

Thus, at the percolation time, the cycle length distribution is inversely proportional to
the length, Q,(t = 1) = (21)~1. In general, size distributions decay exponentially away
from the percolation point and algebraically precisely at the percolation point. The total
number of cycles in the system Qi = 5, Q; is Qi = %In ﬁ It weakly diverges as
the percolation point is approached. We note that the average number of cycles is not
an extensive quantity and for large systems, it saturates at a finite value. The number
of cycles is therefore a non-self-averaging quantity, it fluctuates from realization to
realization.

What is the probability S(t) that the system contains no cycles at time t? Since the
cycle formation process is random, and the cycle production rate is J = dQy,/dt =

ﬁ, then dS/dt = —SJ or alternatively,

ds S
dt — 2(1-t) (®)
Therefore, the probability that the system contains no cycles decays with time as follows
S=(1-t)¥2, 9)

This survival probability shows that the system is bound to nucleate at least a single
cycle prior to the percolation time.

Following similar reasoning, properties of the first cycle may be obtained. The size
distribution of the first cycle G, obeys a simple generalization of (6)

dG, 1

dt 27T
The rate by which the first cycle is produced is simply the rate by which all cycles are
produced times the probability that there are no cycles in the system. Since the first cycle
must be produced by the percolation time, the final size distribution of the first cycle is
G(1)= %fol dt SP_, and performing the integration gives

NN C/0)
Gt=1=2r11372) (1)
This size distribution has an algebraic tail, G, (1) ~ 17%/2 for | >> 1. The characteristic

exponent for the tail of G, is larger than the characteristic exponent for the tail of Q,: the
first cycle is created earlier, and thus, it must be smaller.

(10)



FINITE COMPONENTS: SIZE DISTRIBUTION

A component is a set of connected nodes: every pair of nodes in a component is
connected by a path. Components merge due to linking: a link placed between two
distinct components causes the two to join. There are i x j ways to join disconnected
components of size i and | and hence, components undergo the aggregation process
(i, j) — i+ j with the aggregation rate ij /(2N).

Let ¢, (t) be the density of components containing k nodes at time t. The component
size distribution obeys the nonlinear rate equation

dc, 1 R
d—tk =3 i+Jz:k(|Ci)(JCj) —ke,. (12)

The initial condition is ¢, (0) = d1- The gain term represents merger between two
components whose sizes sum up to k and the loss term accounts for links involving a
node inside a component of size k.

The moments of the size distribution, M = ¥, k"c,, provide a useful probe of the
dynamics. For example, the second moment obeys the closed equation dM, /dt = M%
and with the initial condition M, (0) = 1, the solution is

M, =(1-t)7% (13)

for t < 1. The divergence shows that the system undergoes a percolation transition.
In a finite time tg = 1, an infinite component, the giant component, is formed. Past
the percolation point, the giant component contains a finite fraction of the nodes, and
eventually, it grows to engulf the entire system.

The component size distribution can be obtained analytically*

K2 et i
This size distribution decays exponentially away from the percolation point and alge-
braically at the percolation point, ¢, (1) ~ (2m)~1/2k=5/2, Both behaviors follow from
the scaling behavior ¢, (t) — (1 —t)°® (k(1 —t)?) with the typical component size

k~ (1—t)72 (15)

and the scaling function ®(x) = (2m)~Y/2x~5/2exp(—x/2). The large-size algebraic
decay of the size distribution is reflected by the small-argument behavior of the scaling

L A convenient solution method is as follows. The time dependence is “peeled” first, ¢, = G tk"te
with the coefficients satisfying (k—1)C, = 3;,;_, (iG)(iC;). The generating function G(z) = 5 kC, €
satisfies the differential equation (1 — G)G’ = G and consequently Ge~® = €. The coefficients are found

using the Lagrange inversion formula [13]. The very same technique can be used to derive the joint
distributions described in the next section.



function. Hence, the size distribution exhibits dynamical scaling in the vicinity of the
percolation transition. This behavior is generic: size distributions obey dynamical scal-
ing near the percolation point and for example, both the path length density (4) and the
cycle length density (7) can be written in a self-similar form.

Other statistical properties including for example the moments follow from the gen-
erating function, c(z t) = ¥, ke, (t)€¥, that can be written explicitly

c(zt) =t 1G(z+Int —t), (16)

in terms of the auxiliary generating function

6=y e (17)

k=1

This function satisfies Ge~® = € or alternatively, (1 — G)dG/dz= G.

Combining the latter relation and the behavior of the generating function near z= 0,
the second moment result (13) is generalized to all times, M, = u/[t(1 —u)] with u=
G(Int —t). This quantity satisfies

ue Y=te . (18)

Let the fraction of nodes outside finite components be g=1—M, with M; = ¢(z=0) = u/t.
Fort < 1, there is a single solution u=t and therefore all nodes are in finite components,

g = 0. But when t > 1, there is an additional nontrivial solution, and as a result, this
fraction becomes finite, g > 0. In particular, at the late stages of the process, the giant
component contains almost all nodes, g(t) — 1, and furthermore, since u ~ te™! then
l-g~c = e, indicating that other than the giant component, there are only a few
isolated nodes. Also, just past the percolation point, the fraction of nodes outside finite
components grows linearly, g(t) ~2(t —1).

FINITE COMPONENTS: JOINT DISTRIBUTIONS

We have seen that components undergo an aggregation process of one kind and that
links, paths, and cycles undergo growth or aggregation processes of another kind. By
combining these separate processes into a bi-aggregation process [24] involving two
variables, say the component size and the node degree, a more detailed analysis of
structural properties of finite components is possible.

Links

Each node can be characterized by two indices: its degree | and the size k of the
component it belongs to. The distribution f, , of nodes of degree | in components of size
k satisfies

5t = 2 UeIi=D)f i+ fiy ] —kf o (19)



The initial conditions are f, ,(0) = § , 4, ;. The first gain term accounts for linking
events that leave the node degree unchanged (the added link involves other nodes in
the component), while the second gain term represents linking events that augment the
node degree by one. Of course, the component size distribution and the node-degree
distribution can be obtained by summation of the joint distribution, so that Egs. (1) and
(12) can be recovered from (19).

The joint distribution can be obtained analytically

_aykel—2
=7 _(li)!(lk)q it e (0)

for1 <l <kand f,,(t) = g, € for | = 0. Fixing the node degree, the joint distribution

decays algebraically at large sizes at the critical point f;  (t =1) ~ k=3/2. Exponential
decay occurs elsewhere.

The generating function f(zw) = zl’ke"zvv' fl’k is expressed directly in terms of
auxiliary generating function

f(Z, W) — WG(Z-Hnt—t)-I-Z—t. (21)

Average quantities and correlations follow from the generating function, and for exam-
ple, the average node degree, the average component size, and the average correlation
between the two are

1 2u

<|>—U, <k>_1_u7 <kl>_1_u (22)
Below the percolation transition, the average node degree equals time, () =t. Above
the percolation transition, the average node degree is reduced () <t because nodes in
finite components have less connections than the rest of the nodes. The average degree
vanishes in the long time limit {I) ~ te~t. In comparison, the fraction of isolated nodes
is ¢y ~ —t_ Interestingly, the properly normalized correlation between the node degree
and the component size is time independent, (kl)/(k){l) = 2. The node degree and
the component size are correlated: nodes that have more links likely belong to larger
components.

Paths

Since every two nodes in a component are connected, there must be a path connecting
them. Let p, , be the density of paths of length | in components of size k. There is the

obvious bound 0 < | < k— 1 and additionally, there isa sumrule 5, p, , = k?c, reflecting
that there are k? distinct paths in a component of size k. The density of linkless paths is

The path length and the component size separately undergo an aggregation process
and combining the two processes, these two indices undergo a bi-aggregation process.



The joint distribution evolves according to the rate equation

o Y PaiPmit > (ip)(ic) —kpy (23)
i+]=k i+)=k
n+m=l-1

The initial conditions are p, . (0) = §, ;4 ,. There are two separate convolutions: one
over the path length and one over the éorﬁponent size. The first term on the right-hand
side of Eq. (23) describes newly formed paths due to linking and the last two terms
correspond to paths that do not contain the newly placed link.

The path length density is

k—I—-2

thte (24)

Pk= (H‘l)m

The two shortest paths satisfy Pox = ke, and Pk = 2(k —1)c,. The latter reflects
that there are k— 1 links in a (tree) component of size k. Also, the longest possible
path, | = k— 1, corresponds to a linear (chain-like) component, and the density of
such components, p,_, , = t“"'e"*, decays exponentially with length, so that such
components are typically small.

The path length density can be simplified in the limit k> 1 > 1,

pl,k ~ | (2nk3)_1/2tk_1 ek(l—t) e—|2/2k. (25)

As was the case for the component size distribution, the path length density is self-
similar in the vicinity of the percolation point, p, , — (1 —1t)?®, (k(1—t)2,1(1-t)),
with the scaling function

Dp(x,Y) =y (2mE) 2 exp(—y?/2X). (26)

The characteristic path length is as in (5) and the characteristic component size is
as in (15). At the percolation point, the path length density (25) is governed by the
factor exp(—12/2k) and therefore, the typical path length scales as square root of the
component size

| ~ K2 (27)

The generating function p(z,w) = zl’kekzvv' P is expressed in terms of the auxiliary
function (17)

G(z+Int —t)
1-wG(z+Int—t)’
The total density of paths in finite components p =3, P Iis therefore
Pt = U/t(1—u) and for t < 1 we recover p,; = 1/(1—1t). Eipan’ding p(z,w) in
powers of w, the total number of paths of length |, p, =5, P ko is given by p, = t—1ul+1
with u satisfying (18), in accord with (4) fort < 1.

p(zw)=t"* (28)



Cycles

We have seen that the cycle length distribution is coupled to the path length distribu-
tion. In a similar way, the joint distribution of cycles in finite components of a given size
is coupled to the joint distribution of paths of a given length in components of a given
size.

To characterize cycles in a given component size, we consider the joint distribution
0 ko the average number of components of size k containing a cycle of length | with
1 <| < k. This joint distribution evolves according to the linear rate equation

doj, 1 o
a2 pl—LkﬁﬂZ:k('ql,i)(ch)—kq.,k (29)

for | > 1. Initially, there are no cycles, and therefore g, ,(0) = 0. The first term on
the right hand side represents generation of cycles from péths, and the next two terms
represent merger events where only the component size changes.

The joint cycle-length component-size distribution is

k—1—-1
_ = koKt
ql,k(t) =5 (k—l)!t e . (30)
The smallest cycle, | = 1, is a self-connection, and the average number of such cycles

IS Oy = %kck. The largest cycles are rings, | = k, and their total number is on average

Ok = %(tke_k‘. As for linear chains, the number of rings decays exponentially with

length.
The large-k behavior of the cycle length distribution is similar to (25)

0 (t) = (87HC) M2tk U g 12k (31)

This distribution is self-similar in the vicinity of the percolation transition,
G () = (1—1)%®g (k(1—t)%1(1—t)), with the scaling function ®qg(x,y) =
(8mx®)~1/2exp(—y?/2x). We see that the cycle length is characterized by the same
scale as the path length, | ~ (1 —t)~L. At the percolation point, the cycle length distri-
bution (31) is dominated by the factor exp(—I12/2k) so that when the component size
is fixed, the typical cycle length behaves as the typical path length, | ~ k/2. Moreover,
the size distribution of finite components containing a cycle, g, = 3, 0 ko decays as a

power-law at the percolation point, g, ~ (4k)~2.
The joint generating function, q(zw) = 5, €W q . is
1 1

q(Z’W):Elnl—wG(z+Int—t)' (32)

As for paths, statistics of cycles are directly coupled to statistics of components via
the generating function G(z). The total number of cycle-containing components of
finite-size, Gy = 3, G 4, IS therefore gy, (t) = 3 In ;. Below the percolation point,



Oiot(t) = %In ﬁ for t < 1. Moreover, expanding g(z,w) in powers of w shows that the

the cycle length distribution (in finite components only) is Q, = u' /21, in agreement with
(7) prior to the percolation time (t < 1).

FINITE GRAPHS

Thus far, we used rate equations to describe infinite systems. While the rate equation
approach can be extended to finite systems, the resulting equations are difficult to handle
[25, 26]. When the number of nodes is finite, fluctuations are no longer negligible, and
instead of a deterministic rate equation approach, a stochastic approach is needed. Finite-
size scaling laws can be conveniently obtained by combining the exact infinite system
results with scaling and extreme statistics arguments.

Finite-size scaling laws of random graphs are quite interesting. For example, the giant
component nucleates at a size that it much smaller than the system size. The size of
the largest component in the system, M, can be estimated by employing the cumulative
component size distribution and the extreme statistics criterion, Ny, .\, C (t =1) ~ 1.

Using ¢, ~ k™5/2 gives
M ~ N2/3, (33)

The largest component in the system grows sub-linearly with the system size [3]. This
component nucleates very close to the percolation time. The time T when this compo-
nent emerges approaches unity for large enough systems as implied by the diverging
characteristic size scale M ~ (1 — 7)™, so that

1-T~N1/3, (34)

Just past the percolation time, the size of the giant component grows linearly with time.

For finite systems, the scaling laws for the typical path length (5) combined with the
characteristic component size (33) yields a scaling law for the characteristic path (and
cycle) length

| ~ N3, (35)

One can deduce several other scaling laws and finite-size scaling functions underlying
the path length density. For example, substituting the percolation time (34) into the total
number of paths P, = (1 —t)~! yields the total path density P,y ~ N/, Similarly, the
total number of cycles at the percolation point grows logarithmically with the system
size, Quor(N) = g InN.

In finite systems, it is possible that no cycle are created by the percolation time. This
probability decreases algebraically with the system size, as seen from (9) and (34)

S~ N6, (36)

Moreover, combining the size distribution of the first cycle, G, (1) ~ |-3/2 with the char-

acteristic cycle scale | ~ N1/2 yields the moments of the size distribution corresponding
to the first cycle
(1" ~ NV3-1/8, (37)



In particular, the average size of the first cycle is much smaller than the characteristic
cycle length (1) ~ N1/6,

SUMMARY

In summary, we used Kinetic theory to describe structural properties of random graphs
including paths, cycles, and components. Modeling the linking process dynamically
shows that paths and components undergo separate aggregation processes. Cycles are
generated by paths and thus, the cycle length distribution is coupled to the path length
distribution.

Generally, size distributions decay exponentially away from the percolation point, but
at the percolation point, algebraic tails emerge. As the system approaches this critical
point, the size distributions follow a self-similar behavior and they are characterized by
diverging size scales.

The kinetic theory approach is well-suited for treating infinite systems. Nevertheless,
the behavior of finite systems can be obtained from heuristic scaling and extreme
statistics arguments. This yields scaling laws for the typical component size, path length,
and cycle length at the percolation point.

The rate equation approach is powerful in that it utilizes a continuous time variable
and therefore, differential, rather than difference equations. It has been successfully used
to model growing random networks and it should be applicable to more complex random
structures.
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