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The motion of dynamically-neutral Brownian particles which are influenced by a unidirectional
velocity field of the form ~v(x, y) = v0|y|β sgn(y)x̂, with β ≥ 0, is studied. Analytic expressions for
the two-dimensional probability distribution are obtained for the special cases β = 0 and β = 1.
As a function of β, the longitudinal probability distribution of displacements exhibits bimodality
for β < βc and unimodality otherwise. A simple effective velocity approximation is introduced,
which provides an integral form for the longitudinal probability distribution for general β, and
which predicts the existence of this transition. A numerical exact enumeration of the probability
distribution yields βc = 3/4. The power-law model parallels the behavior found for tracer motion
in a class of non-Newtonian fluids, where a unimodal to bimodal transition is also found to occur.
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I. INTRODUCTION

The phenomenon in which a Brownian particle moves
faster than diffusively arises in a number of diverse sit-
uations. In the context of fluid mechanics [1-3], for ex-
ample, a dynamically neutral tracer particle in a linear
shear flow, with fluid velocity ~v(x, y) ∝ yx̂, exhibits a
mean-square longitudinal displacement which grows in
time as 〈x(t)2〉 ∼ t3. It is also well-known that the prob-
ability distribution of longitudinal displacements for the
tracer particles is Gaussian, PL(x, t) ≡

∫
P (x, y, t) dy ∼

econst.×x2/t3 . In the context of random media, enhanced
diffusion can arise when there is a steady unidirectional
convection field whose magnitude depends stochastically
on the transverse coordinate [4-5]. One such example is a
system where the magnitude of the longitudinal velocity
is itself determined by a random walk [6]. In a typical
realization of this ”random walk” shear flow, the longi-
tudinal velocity at transverse co-ordinate y increases as
y1/2, a feature which leads to faster than ballistic motion
of a tracer particle. The competition between transverse
mixing and the large effective longitudinal steps imposed
by the flow field also leads to a bimodal form for PL(x, t)
in a single random shear flow configuration. This intrigu-
ing aspect of the system motivates our present work.

In this paper, we investigate the motion of a
dynamically-neutral tracer particle which moves in a
deterministic velocity field, ~v(x, y) = v0|y|β sgn(y)x̂
(Fig. 1). This can be viewed as the average over many
configurations of the random walk shear flow problem.
We find, rather strikingly, that the probability distribu-
tion of longitudinal displacements exhibits a transition
from unimodal to bimodal behavior as β is varied. One
of our primary goals is to elucidate this phenomenon.
A potential application of this result is that power-law
shear flow qualitatively mimics the flow field of a non-
Newtonian fluid under fixed external shear. In this latter
system, we have also found that there is a transition from
a unimodal to bimodal probability distribution when the

flow condition of the fluid is varied. Thus the shape of
PL(x, t) may provide useful information about the flow
field of the ambient fluid.

In section II, we discuss some basic scaling properties
of PL(x, t) in power-law shear flow. The exact solutions
for the full two-dimensional probability distribution in
the special cases of β = 0 and β = 1 are then presented
in the next two sections. In the case of “split-flow”,
β = 0, our solution represents the extension of the classi-
cal arcsine law [7], which is equivalent to the distribution
of longitudinal displacements, to the full distribution in
the plane. We then describe a new way to obtain the
probability distribution for the case of linear shear flow,
β = 1. While the exact solution in the continuum limit
is well-known [1-3], our simple approach for the discrete
case clearly exhibits the connection between Brownian
motion in linear shear flow, and a temporally inhomo-
geneous diffusion process, where the diffusion coefficient
grows as t2. In section V, we present an effective velocity
approximation for writing PL(x, t) for general β, which
predicts a unimodal to bimodal transition at β = 8/9.
In section VI, numerical results from exact enumeration
are given, which suggest that the critical value of β is
3/4. In section VII, we present exact enumerations for
the qualitatively similar problem of tracer motion in the
flow field of a non-Newtonian fluid under a constant ex-
ternal shear stress. A unimodal to bimodal transition is
again found as the flow conditions of the fluid is varied.

II. SCALING PROPERTIES

For a fluid in which the flow field is ~v(x, y) =
v0 |y|βsgn (y)x̂, the probability distribution of an im-
mersed dynamically-neutral Brownian particle obeys the
convection-diffusion equation
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∂P (x, y, t)
∂t

+ sgn(y)|y|βv0
∂P (x, y, t)

∂x
= D

∂2P (x, y, t)
∂y2

,

(1)

where the subdominant contribution of diffusion in the
longitudinal (x) direction has been neglected at the out-
set. Our primary goal is to determine the distribution
of longitudinal displacements, PL(x, t) ≡

∫
P (x, y, t) dy,

with the initial conditions P (~r, t = 0) = δ(0). The trans-
verse displacement behaves in a purely diffusive manner,
y ∼

√
Dt, as can immediately be confirmed by integra-

tion of Eq. (1) over x. On the other hand, the root-mean
square longitudinal displacement, xrms may be roughly
estimated by noting that the longitudinal velocity at time
t is vx(y(t)) ∼ v0(Dt)β/2. Consequently

xrms ∼ (v0t) (Dt)β/2, (2)

with the correlation length exponent ν = 1 + β/2. The
increase in longitudinal velocity with time scale is the un-
derlying mechanism which leads to xrms growing faster
than linear in time. It is interesting to notice that for
β = 0, x is independent of the diffusion coefficient D.

For describing the probability distribution, it will be
convenient to introduce the scaled longitudinal and trans-
verse displacements,

ξ = x/(v0t) (Dt)β/2 and η = y/
√
Dt, (3)

respectively. In terms of these scaled variables, we may
also write the probability distribution in the following
convenient scaling form,

f(ξ, η) ≡ (v0t) (Dt)(1+β)/2 P (x, y, t). (4)

¿From this, we also define the scaled form of the longi-
tudinal probability distribution as fL(ξ) ≡

∫
f(ξ, η) dη.

We expect that this function has the asymptotic be-
haviors fL(ξ) → const. as ξ → 0, and fL(ξ) ∼ e−ξ

δ

,
as ξ → ∞. We can immediately deduce the value of
the large-distance shape exponent, δ, by constructing a
rough estimate for the probability of finding the extreme
walks that contribute to the tail of the distribution [7-8].
For power-law shear flow, the longitudinally stretched
walks must have each transverse step in the same di-
rection, in order that the walk has the largest possible
velocity at each time step. This implies that the prob-
ability of finding a stretched walk decays as a pure ex-
ponential in t, e−αt. On the other hand, a stretched
walk has a longitudinal displacement which scales as
xmax(t) ∼

∫ t
yβ dy ∼ t1+β . This maximal displacement

corresponds to a scaled displacement ξ ∼ tβ/2, and corre-
spondingly, fL(ξ) ∼ e−t

δβ/2
. Since we have argued that

this probability decays as a pure exponential in t, we con-
clude that δ = 2/β. Using ν = 1 + β/2, the expression
for δ can be written as δ = |1− ν|−1. This is of the same
form as the classical Fisher relation [9] between the shape
and size exponents, δ = (1− ν)−1 for the usual situation
where ν < 1.

III. SPLIT FLOW

In this section we present an exact solution for the two-
dimensional probability distribution of displacements
in the case of “split-flow”, where the velocity field is
~v(x, y) = v0 sgn(y) x̂ (Fig. 2). Within a discrete ver-
sion of the problem, the transverse behavior is simply a
symmetric random walk, while the longitudinal displace-
ment is proportional to the difference, n+− n−, where
n+ and n− are the number of steps that the transverse
random walk spends in the upper- and lower-half planes,
respectively. Since n+ + n− equals the total number of
steps n, the probability distribution in the plane can be
found once we determine Pn(y, n+), the probability that
an n-step random walk is at transverse position y and
has spent n+ steps in the upper half-plane.

Consider first, the special case of Pn(y = 0, n+), the
probability that an n-step walk, which starts and ends at
y = 0, spends n+ steps in the upper half-plane. Rather
surprisingly, this probability is independent of n+ [10].

Pn(y=0, n+) ∼
√

1/2πn3. (5)

To obtain the corresponding probability for arbitrary y,
it is helpful to visualize the individual random paths that
contribute to this probability as the sequence of points
{i, yi} in a space-time representation (Fig. 3). For a walk
which starts at {0, 0} and ends at {n, yn} there will be a
“break point”, which is the last time that the walk passes
through the axis y = 0. Without loss of generality, we
need only consider the case yn > 0. We define the break
point to occur at time step n − k, and divide the tra-
jectory from {0, 0} to {n, yn} into a “return” segment,
from {0, 0} to {n− k, 0}, and a “first passage” segment,
from {n − k, 0} to {n, yn}. The probability for the full
trajectory can then be computed as the convolution of
the probabilities of these two segments.

The initial return segment takes n − k steps, and
by construction, n+ − k of these lie in the upper half
plane. Consequently, the probability for this segment is
Pn−k(y= 0, n+−k). By construction, the subsequent k-
step segment touches y = 0 only once. Hence the trans-
verse co-ordinate of the time-reversed segment is exactly
a k-step first-passage trajectory from y = yn to y = 0,
and the probability for this event is [10],

fk(y) ∼ y
√

2/πk3 e−y
2/2k. (6)

The convolution of these two probabilities yields

Pn(y, n+) =
n+∑
k=y

Pn−k(0, n+−k) fk(y)

∼
n+∫

k=y

dk
y

π
√
k(n− k)

3 e
−y2/2k (7)
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The lower limit of k is y, since the walker must spend at
least y steps in the first-passage segment of the trajec-
tory in order to reach transverse position y. Changing
variables to u = y2/2k, defining x = v0(n+−n−), and
replacing n by t, the integral can be performed. From
this result we deduce that

f(ξ, η) ∼ 1−η2

√
2π

erfc

(
η

√
1− ξ

2(1 + ξ)

)
e−η

2/2 +

η

π

√
1 + ξ

1− ξ
e−η

2/1+ξ (8)

where ξ and η are the scaled longitudinal and transverse
coordinates defined in Eq. (3) (note that |ξ|<1).

It is instructive to examine the asymptotic behaviors
of this probability distribution. Consider first the behav-
ior of longitudinal slices, i.e., fix η and vary ξ. For η � 1
and −1 + 2η2<ξ<1, Eq. (8) reduces to

f(ξ, η → 0) ∼ 1√
2π

+
2ηξ

π
√

1− ξ2
. (9)

Indeed, this function is independent of ξ when η = 0.
For constant positive η, the profiles of f(ξ, η) are sharply
peaked at ξ = 1, as determined by the leading behavior
of ' 1/

√
1− ξ. For ξ → −1, however, the probability

decays exponentially as e−η
2/1+ξ (see Fig. 4(a)). Note

also that the area of the constant-η profiles is propor-
tional to exp(−η2/2), as expected. For fixed non-zero
ξ, the profiles of f(ξ, η) are peaked at a non zero value
of η which depends on ξ (Fig. 4(b)). More surprisingly,
note that the area of the profiles for fixed ξ increases as
ξ increases, as required by the arcsine law.

The longitudinal probability distribution is obtained
by integrating Eq. (8) over η and gives the arcsine law
[10]:

fL(ξ) ∼ 1

π
√

1− ξ2
(10)

In addition to being bimodal, the distribution is singu-
lar at the extrema |ξ| = 1. Thus the split flow velocity
field, which corresponds to the case β = 0 in power-law
shear flow, gives rise to a probability distribution with
an extreme degree of bimodality(Fig. 4(c)).

IV. LINEAR SHEAR FLOW

A well-known, and exactly-soluble [1-3] limit of power-
law shear is the case of linear shear flow. Here we present
an alternative method of solution for the discrete version
of diffusion in linear shear which provides useful insights
into the nature of the resulting longitudinal motion.

We define the discrete limit of linear shear flow as a
random walk which moves from (xk, yk) to (xk + vx(yk +
εk), yk+ εk) at the kth step. Here εk is a random variable

that describes the individual transverse hop at the kth

step and is governed by the time independent probability
distribution py(εk). Since vx(yk) = v0yk in linear shear
flow, the two-dimensional displacement after n steps can
be written as

(xn/v0, yn) = (y1 + y2 + · · ·+ yn , ε1 + ε2 + · · ·+ εn),
= (ε1 + (ε1 + ε2) + · · · , ε1 + ε2 + · · ·+ εn),
= ε1(n, 1) + ε2(n−1, 1) + · · ·+ εn(1, 1). (11)

To analyze this sum, it is helpful to reverse the order
of the εk’s. Since their distribution is independent of
time, this redefinition does not affect the resulting two-
dimensional distribution. Consequently, we may write
the displacement after n steps as

(xn, yn) = ε1(v0, 1) + ε2(2v0, 1) + · · ·+ εn(nv0, 1). (12)

According to this expression, the longitudinal displace-
ment in linear shear flow is equivalent to a one-
dimensional random walk in which the magnitude of the
kth step is simply proportional to k. This fundamental
relation is the key that allows us to obtain the full two-
dimensional probability distribution in linear shear flow
by elementary methods.

For this purpose, we introduce the structure function
[11]

Γn(~θ ) =
∑
~r

Pn(~r )ei~r·~θ . (13)

where Pn(~r ) is the probability that an n-step random
walk is at ~r. According to the convolution theorem,

Γn(~θ ) =
n∏
k=1

λk(~θ ), (14)

where λk(~θ ) is the single-step structure function,

λk(~θ ) =
∑
~r

pk(~r )ei~r·~θ , (15)

and pk(~r ) is the single step probability distribution at
the kth time step. Our discussion has thus far been ap-
plicable to any distribution of the εk’s, and we now spe-
cialize to the special case of a symmetric random walk in
the y direction. Thus at the kth step, the random walk
moves by an amount ±(kv0, 1), each with probability 1/2
(Fig. 5). Therefore, the corresponding single-step struc-
ture function is, λk(θx, θy) = cos(kθx+θy). Evaluating
the product in 1 gives the structure function

Γn(~θ ) = cos(v0θx + θy) cos(2v0θx + θy) · · · cos(nv0θx + θy).

(16)

Moments of the probability distribution can be found by
appropriate differentiation of the structure function, 1.
This calculation gives
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〈xjnykn〉 = ij+k
∂j+k Γn(~θ )
∂θjx∂θky

∣∣∣∣
θ=0

. (17)

From this, we find, for example

〈x2
n〉 ∼ v2

0n
3/3, 〈xnyn〉 ∼ v0n

2/2. (18)

Thus the mean-square longitudinal displacement in linear
shear grows as t3, and perhaps less well-appreciated, the
longitudinal and transverse displacements are coupled, so
that cross-correlations are non-zero.

Finally, the probability distribution Pn(~r ) can be eas-
ily extracted from 2 by the standard procedure of expand-
ing this expression for small θx and θy, re-exponentiating,
and then performing an inverse Fourier transform of the
result. This gives the long time limit of the probability
distribution as

Pn(x, y) ∼
√

3
π v0 n2

e−y
2/2n e−6(x−〈v〉n)2/v2

0n
3
, (19)

where 〈v〉 = v0y/2 is the average velocity of the trans-
verse coordinate in the range [0, y]. For fixed y the prob-
ability profile is a Gaussian function which is peaked at
x = 〈v〉n and whose width grows as t3/2.

An advantageous consequence of our method of so-
lution is that it exposes the basic equivalence between
convection-diffusion in linear shear flow and a tempo-
rally inhomogeneous random walk process in which the
step length grows linearly in time. In the continuum
limit, this leads to a diffusive process with a time depen-
dent diffusion coefficient D(t) = ∆x(t)2/∆t = D(v0t)2.
Consequently, the longitudinal probability distribution
obeys,

∂PL(x, t)
∂t

= D(v0t)2 ∂
2PL(x, t)
∂x2

. (20)

The solution to this equation is the Gaussian fL(ξ) ∼√
3/2πe−3ξ2/2 (following the notations of Eqs. (3) and

(4)), a result which also follows directly from 1. Since
the distribution is a pure Gaussian, the large distance
tail of this distribution which is predicted by the argu-
ment given in Sec. II, is actually valid over the entire
range of ξ.

V. EFFECTIVE VELOCITY APPROXIMATION

Since the exact expression for PL(x, t) is bimodal for
β = 0 and unimodal for β = 1, the distribution must
change between these two shapes as β varies between 0
and 1. We now wish to determine the location and the
nature of this shape transition. To derive the functional
form of PL(x, t) for general β, we introduce the following
effective velocity approximation [6]. We hypothesize that
at a fixed value of y = y0, the probability distribution
P (x, y0, t) is given by the Gaussian form of 1 , but with

the average longitudinal velocity, 〈v〉, now proportional
to yβ . This may be realized by allowing the parameter
v0 to acquire a dependence on y which is determined by
〈v(y)〉 ∝ v0(y)y = yβ , or,

v0(y) ∝ yβ−1. (21)

With this hypothesis, 3 predicts that at fixed y = y0, the
longitudinal dispersion, δx(y0), is proportional to yβ−1

0 ,
a result which we have also confirmed numerically. Thus
for 0 ≤ β < 1, the relative longitudinal width decreases
with y0, although the velocity increases in y0.

In our effective velocity approximation we use the two-
dimensional Gaussian distribution, 2, together with the
velocity given in , and integrate over the transverse co-
ordinate to obtain an approximate form for PL(x, t). In
performing these steps, it is convenient to re-express the
integrand in terms of the scaled coordinates ξ and η and
use symmetry of the integrand in η to write the integral
over positive η only. This computation gives (dropping
all irrelevant numerical factors),

fL(ξ) ∼
∞∫

η=0

dη η1−β e−2η2
e−6ξ2η2−2β

cosh(6ξη2−β). (22)

For large ξ, the asymptotic behavior of the integral is
determined by the maximum of the function in the ex-
ponential at η0 = ξ1/β . Performing the integral by the
Laplace method yields the large distance behavior

fL(ξ) ∼ e−ξ
2/β
, (23)

which gives the same shape exponent as that predicted
by the naive argument of Sec. II.

The transition point between bimodality and uni-
modality can be determined by evaluating the second
derivative of 1 at ξ=0. Omitting irrelevant factors, this
calculation yields

∂2

∂ξ2
fL(ξ)

∣∣∣∣
ξ=0

∝
∞∫

η=0

dηe−2η2
[3η5−3β − η3−3β ]

∝ Γ
(

4− 3β
2

)[
8
9
− β

]
, (24)

where the last expression is valid only for β < 4/3. For
β > 4/3, the second derivative of fL(ξ) at ξ = 0 di-
verges, indicative of a cusp in the distribution function
at the origin. The effective velocity approximation there-
fore predicts that the transition point between unimodal-
ity and bimodality occurs at βc = 8/9, compared to our
numerical estimate βc = 3/4 (see below).

Similar qualitative results are obtained if we use an ef-
fective velocity approximation with the two-dimensional
distribution of split-flow as the basis for writing the gen-
eral β distribution. In this case, the amplitude of the ve-
locity v0 must now acquire the y dependence v0(y) = yβ ,
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in order to obtain the appropriate magnitude of the lon-
gitudinal velocity at y = y0. Using this result, and fol-
lowing step by step the reasoning that led to 2, we ob-
tain an expression for fL(ξ) which is characterized by a
shape exponent δ = 2/β and the longitudinal dispersion
δx(y0) ∼ yβ−1

0 , in agreement with the results obtained by
using the distribution of linear shear as the basis for the
effective velocity approximation. The analytic expression
that determines the critical value of β is complicated and
numerically we estimate that βc ≈ 0.5. Thus both effec-
tive velocity approximations predict qualitatively similar
properties for the longitudinal distribution.

VI. EXACT ENUMERATION OF THE
PROBABILITY DISTRIBUTION

To test our predictions about the nature of the longitu-
dinal probability distribution, we now present the results
of a numerical exact enumeration [12] in power-law shear
flow. At the start of the enumeration, there is a unit
probability at the origin, and we evolve the probability
distribution according to the following recursion relation

Pn+1(x, y) =
∑

y′=y±1

1
2
Pn(x− vx(y′), y′). (25)

This evolution process takes into account both transverse
diffusion and longitudinal convection. In the case of a
non-integer value for the velocity, this recursion formula
would lead to probability being propagated to positions
between lattice sites. When this occurs, the interstitial
probability element is split longitudinally between the
two nearest-neighbor sites, with the relative weight of
each component ensuring that the correct average dis-
placement occurs.

Over the temporal range of our enumeration (up to
128 time steps), the longitudinal distribution is a scaling
function of ξ to a high degree of accuracy. This verifi-
cation of scaling thus excludes the possibility that the
longitudinal distribution could undergo a unimodal to
bimodal transition as a function of time. Consequently,
the numerical determination of βc is relatively unambigu-
ous. In Fig. 6(a) we plot the scaled probabilities v.s. the
scaled coordinate for various values of β. At β = 1, the
distribution is a Gaussian, and as β is decreased the dis-
tribution develops broader shoulders. As β → βc, the
distribution becomes flat at the maximum, indicative of
the vanishing of the second derivative at ξ = 0. Numeri-
cally, we find the critical value of β to be 0.75± 0.01. As
β is decreased beyond this point, the bimodality of the
distribution becomes more pronounced, and ultimately a
singularity develops at |ξ| = 1 when β = 0. Qualitatively,
these features mirror our theoretical predictions.

VII. AN APPLICATION TO NON-NEWTONIAN
FLUIDS

A potential application of the abstract power-law shear
flow problem is to Brownian motion of a dynamically-
neutral tracer particle in a class non-Newtonian fluids,
where the shear (assumed to be along the y direction)
and the force along x, τxy, are related by,

τxy ∝
(
dvx
dy

)n
. (26)

Thus the exponent n quantifies the non-linearity of the
fluid [13]; for n = 1, one recovers a Newtonian fluid, while
if n 6= 1, one has a “power law” fluid. Under the applica-
tion of a shear, a power-law fluid develops a flow field in
which the longitudinal velocity has a functional depen-
dence on the transverse coordinate which qualitatively
resembles that of power-law shear flow. Hence, we might
expect that tracer motion in a non-Newtonian fluid will
exhibit the same rich spectrum of behavior as in power-
law shear. In particular, by varying the exponent n, or
equivalently, by varying external parameters of the flow
itself, it should be possible to obtain both bimodal and
unimodal distributions of longitudinal displacements for
tracer particles.

For example, consider the case of plane Couette flow.
For two parallel planes at y = −L, and y = L, mov-
ing at velocities −v0 and +v0, respectively, along the x
direction, the steady state velocity profile is

vx(y) = v0 sgn(y)
λm − (λ− |y|)m

λm − (λ− L)m
, (27)

where m = 1 + 1/n, and λ is a constant with the di-
mension of a length whose value depends on details such
as the external pressure gradient, velocity at the bound-
ary, etc. Qualitatively, this velocity profile is very simi-
lar to that in power-law shear flow (Fig. 7), and there is
a similar correspondence between the probability distri-
butions (Fig. 6(b)). The analogy with power-law shear
flow should hold as long as

√
Dt < L, as the influence

of the transverse boundaries of the system are irrelevant
within this temporal range. Our enumeration for the case
λ = L = 32 after 32 time steps exhibits a transition from
bimodality at small n to unimodality when nc ≈ 1/7.
This transition can also be produced by fixing the value
of n and varying λ. For example, the situation where
n = 1/7 and λ � L corresponds to linear shear, where
the probability distribution is unimodal. Conversely, the
case where n = 1/7 and λ < 32 should lead to a bimodal
distribution. Thus the transition can be obtained either
by tuning n, the non-linearity exponent of the fluid, or
by tuning λ, which can be achieved by experimentally-
controllable parameters contained in λ. Therefore, the
unimodal to bimodal transition is an aspect of transport
in non-Newtonian fluids which should be amenable to
experimental observation.

5



VIII. CONCLUSIONS

We have elucidated some unusual features of the mo-
tion of dynamically-neutral tracer particles which are
carried by a power-law shear flow, where ~v(x, y) =
v0|y|βsgn(y)x̂. Our main result is that the probabil-
ity distribution of longitudinal displacements, PL(x, t),
is bimodal for small β and unimodal for larger β. From
a practical viewpoint, this result may apply to tracer
motion in a non-Newtonian fluid. The existence of this
transition follows from consideration of the special cases
β = 0 (split flow), where the distribution is bimodal,
and β = 1 (linear shear flow), where the distribution is
unimodal. For these cases, we also obtained the exact
expressions for the two-dimensional probability distribu-
tions.

These results which serve as a starting point for writ-
ing an effective velocity approximation for PL(x, t) for
general β, an approach which appears to capture the es-
sential mechanism underlying the unimodal to bimodal
transition. This mechanism can be appreciated by view-
ing the full longitudinal distribution, PL(x, t), as a super-
position of longitudinal distributions for each layer with
fixed y = y0. Each component layer distribution is char-
acterized by its average position, 〈x(y)〉, its width, δx(y),
and its weight, e−y

2/t. The competition between these
three factors, as the component distributions for different
values of y are superposed, governs the shape of PL(x, t).

For the case of small β, 〈x(y)〉 rapidly increases as
a function of y, while δx(y) is decreasing in y. These
features lead to a bimodal form of PL(x, t) when the su-
perposition of layer distributions is performed. On the
other hand, for β <∼ 1, 〈x(y)〉 increases nearly linearly in
y, while δx(y) is nearly independent of y. Consequently,
the superposition of distributions for each layer should
lead to a unimodal shape. The effective velocity approxi-
mation involves taking either the two-dimensional distri-
bution of split flow or linear shear flow, and incorporating
a physically-motivated functional form for 〈x(y)〉 which
concomitantly determines δx(y). The competition be-
tween these two quantities when the superposition over
all layers is performed provides a simple and reasonably
accurate description of the unimodal to bimodal transi-
tion.
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FIGURE CAPTIONS

Fig 1 The velocity profile of power-law shear flow and a
schematic illustration of the trajectory of a dynamically
neutral Brownian particle in this flow field.

Fig 2 The velocity profile of split flow.
Fig 3 Space-time representation of a random walk path

which contributes to Pn(y, n+). This trajectory is de-
composed into a “return” portion (- - - -) and a first-
passage portion (——), and are separated by the break
point at time step n− k.

Fig 4 Profiles of the two-dimensional probability distri-
bution in split flow for: (a) fixed η, i.e., f(ξ, η = fixed),
with the cases η = 0.1 (solid) and η = 1.0 (dotted)
shown; (b) fixed ξ, i.e., f(ξ = fixed, η), with the cases
ξ = 0 (solid) and ξ = 0.8 (dotted) shown; (c) the arcsine
law which gives the longitudinal probability distribution,
fL(ξ).

Fig 4 The sequence of single step distributions in linear
shear flow.

Fig 5 (a) Exact enumeration results for the scaling
function fL(ξ) v.s. ξ in power-law shear flow at 64 time
steps for (i) β = 0.25 (dashed), (ii) β = 0.75 (dotted),
and (iii) β = 1.0 (solid). (b) Exact enumeration results at
32 time steps for PL(x, t) v.s. x in the flow field given by
Eq. (26) for a power-law fluid for the cases of (i) n = 1/14
(dashed), (ii), n = 1/7 (dotted), and (iii) n = 1/4 (solid).

Fig 6 Comparison of the velocity profiles of power-
law shear flow with v0 = 1 and β = 0.45 (dashed), and
of a power-law fluid in Couette flow, (Eq. (26)), with
v0 =L=1, λ = 4, and n = 1/9 (solid).
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