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Abstract. We study statistical properties of a continuum model of polynuclear surface growth
on an infinite substrate. We develop a self-consistent mean-field theory which is solved to deduce
the growth velocity and the extremal behaviour of the coverage. Numerical simulations show
that this theory gives an improved approximation for the coverage compared to the previous
linear recursion relations approach. Furthermore, these two approximations provide useful upper
and lower bounds for a number of characteristics including the coverage, growth velocity and
the width exponent.

1. Introduction

Kinetics of surface growth is a fascinating field that has been the subject of intense current
research [1–4]. It is well established that as the surface grows its morphology remains
scale invariant, and for example, fluctuations in the interface height exhibit an asymptotic
scaling behaviour. While the understanding of growth on one-dimensional (1D) substrates is
rather comprehensive, in the physical case of two-dimensional substrates current theoretical
understanding remains incomplete [3, 4].

In this study we focus on an appealingly simple yet non-trivial surface growth problem,
the so-called polynuclear growth (PNG) model [5–7]. The PNG model describes the
evolution of islands that nucleate at random on top of previously nucleated islands and
grow in a radial direction. This model is appropriate for describing situations where there
is a competition between growth along the step edges and growth due to nucleation, as is
the case in polymer crystal growth [8, 9].

The submonolayer version of the PNG model is identical to the classical Kolmogorov–
Avrami–Johnson–Mehl (KAJM) nucleation-and-growth process [10–12], where exact results
for the coverage and more detailed statistical properties are possible [13–16]. Using the
exact solution for the KAJM coverage, an approximate linear recursion relations (LRR)
approach to the PNG process in arbitrary dimension was suggested [6, 17–19].

In one dimension, the PNG model is equivalent to an ensemble of ‘kinks’ (down steps)
and ‘antikinks’ (up steps) moving ballistically and annihilating upon collision. Steady states
on finite 1D substrates were obtained analytically using the fact that kinks (antikinks) are
uncorrelated [5, 20, 21]. In the steady state, the width scales with system sizeL according
to w(L) ∼ √L, i.e. the roughness exponent isχ = 1

2. However, the non-equilibrium
behaviour and especially the asymptotic time dependence remains an open problem, despite
a number of studies [18–24].
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Our goal is to develop a self-consistent approach that can be viewed as a mean-field
theory (MFT) of the PNG process, and to compare it with the previous LRR approximation
as well as with numerical simulations. We shall show that MFT offers a better description
for the time-dependent coverage, and that the two approaches, when combined, provide
upper and lower bounds for the coverage and the growth velocity.

This paper is organized as follows. In section 2 we define the PNG model. In
section 3, we develop a self-consistent mean-field approximation; we find that possible
growth velocities are bounded from below,v > vmin, showing that the minimal velocity
is actually selected. We also solve the coverage profile in the tail regions. In section 4,
we review the LRR approach and derive the coverage profile analytically. In section 5, we
present simulation results, with our conclusions given in section 6.

2. The PNG Model

The PNG is a continuous time, off-lattice model which contains both deterministic and
stochastic events. Starting from a flat uniformd-dimensional substrate at timet = 0, seeds
of negligible size nucleate at random times and random positions at a constant rate per
unit area. Once created, islands grow laterally at a constant velocity in the radial direction.
When two islands in the same layer meet they coalesce, and the joint perimeter continues to
grow in the corresponding radial direction. Meanwhile, nucleation continuously generates
additional layers on top of previously nucleated layers. Clearly, there are no overhangs
in this model, a feature which considerably simplifies the analysis. Another important
simplification in the PNG model is that the nucleation rate is uniform in time as well as in
space, i.e. it is independent of the local surface structure. Without loss of generality, we
set the nucleation rate and the radial growth velocity to unity. This can be achieved by an
appropriate rescaling of space and time.

Below, we concentrate onSj (t), the uncovered fraction in thej th layer at timet . This
important characteristic of multilayer growth gives the net exposed fraction of thej th layer,
Sj (t) − Sj−1(t), and can therefore be used to calculate relevant statistical properties. The
variable j plays the role of the local heighth, often used in surface growth studies. In
general〈f (j)〉 =∑∞j=0 f (j)[Sj+1(t)− Sj (t)], and in particular the average height is given
by

h(t) = 〈j〉 =
∞∑
j=1

j [Sj+1(t)− Sj (t)]. (1)

Fluctuations in the height are quantified by the mean square widthw2(t) defined via

w2(t) = 〈j2〉 − 〈j〉2 =
∞∑
j=1

j2[Sj+1(t)− Sj (t)] − h2(t). (2)

We expect a linear growth in time for the average height,h(t) ' vt , and an algebraic
growth of the width,w(t) ∼ tβ , with a priori unknown width exponentβ. In other words,
the uncovered fraction obeys the following wavelike form

Sj (t) = F
(
j − vt
tβ

)
. (3)

The argument reflects the overall shift in the position of the wavefront, and the multiplicative
scale accounts for the algebraic widening of the front. This expression also serves as a
definition of the width exponentβ, which is equivalent to equation (2).
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Away from the front region, we anticipate the following extremal behaviour of the
scaling functionF(z):

F(z) ∼
{

1− exp(−zσ+) z→∞
exp(−|z|σ−) z→−∞.

(4)

Thus the exponentsσ± characterize relaxation away from the front region [25]. The
exponentσ+ which describes large positive fluctuations in the height can simply be related
to the roughness exponent. Consider a large positive height fluctuation,j = Avt , with
A� 1. Such large ‘towers’ can be only created by an anomalously large number,Avt , of
nucleation events localized in the same region. Given the Poisson nature of the nucleation
events, such fluctuations are suppressed exponentially. Thus, the quantity 1− SAvt (t) is
estimated by exp(−t), but since equation (4) gives exp[−tσ+(1−β)], we conclude that

σ+ = 1

1− β . (5)

In this study, we focus on systems with infinite lateral size. If the size is finite,
it eventually becomes important and the width follows the scaling formw(t, L) ∼
LχW(t/Lz). The infinite size limit corresponds tot � Lz where the size dependence
disappears and thereforew(t) ∼ tβ with β = χ/z follows [3].

3. Mean-field theory

3.1. One dimension

We start with the PNG model in one dimension where a more comprehensive analysis is
possible. In this situation, steps nucleate in pairs and move away from each other with a
constant velocity. The constant nucleation rate and the growth velocity are set to unity,
without loss of generality. Hence, the length of an island at timet after birth equals 2t .
Considerfj (x, t), the density of gaps of lengthx at timet in thej th layer. This distribution
evolves according to

∂fj (x, t)

∂t
= 2

∂fj (x, t)

∂x
+ γj (t)

[
− xfj (x, t)+ 2

∫ ∞
x

dy fj (y, t)

]
. (6)

The spatial derivative term describes the shrinkage of gaps. The last two terms account for
changes due to nucleation and thus, are proportional to the overall nucleation rate at the
j th layer,γj (t). The loss term is proportional to the gap length and the gain term describes
creation of gaps from larger gaps.

Equations (6) contain yet unknown nucleation ratesγj (t) which will be chosen to satisfy
the correct kinetic equations for the uncovered fractions

Sj (t) =
∫ ∞

0
dx xfj (x, t) (7)

and the gap (or island) densities

Nj(t) =
∫ ∞

0
dx fj (x, t). (8)

The uncovered fraction decreases with a rate proportional to the island density,Ṡj (t) =
−2Nj(t), and by integrating equations (6) we recover this exact equation. The island
density changes owing to the disappearance of gaps and to nucleation. The total
nucleation rate is proportional to the exposed fraction of thej th layer and thus,Ṅj (t) =
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−2fj (0, t) + Sj (t) − Sj−1(t). On the other hand, by integrating equations (6) we obtain
Ṅj (t) = −2fj (0, t)+ γj (t)Sj (t). Therefore, the choice

γj (t) = 1− Sj−1(t)

Sj (t)
(9)

guarantees that the gap density evolves according to theexactrate equation. The expression
of equation (9) for the nucleation rateγj (t) in thej th layer is intuitively appealing since the
total unit nucleation rate should be reduced to account for nucleation events below thej th
layer. Taking into account thatS0(t) ≡ 0 we findγ1(t) ≡ 1 and we note that equation (6) for
the first layer agrees with the exact KAJM equation [13]. Thus, the set of rate equations (6)
with the nucleation rates (9) provides a self-consistent description of the 1D PNG model.
It is exact for the first layer, and additionally, the first two moments of the gap density
satisfy the correct rate equations. However, it is a mean-field description since it assumes
a spatially homogeneous nucleation rateγj (t).

The gap density is found to be exponential, and the formal solution reads

fj (x, t) = g2
j (t) exp

[
− gj (t)x − 2

∫ t

0
dτ gj (τ )

]
(10)

with gj (t) =
∫ t

0 dτ γj (τ ). The uncovered fraction and the island density are evaluated using
equations (7) and (8):

Sj (t) = e−2
∫ t

0 dτ gj (τ )

Nj (t) = gj (t)Sj (t).
(11)

Evaluatingd2 ln Sj (t)/dt2 together with equation (9) anḋgj (t) = γj (t), leads to an infinite
set of recursive differential equations for the uncovered fraction

S̈j − Ṡ2
j S
−1
j + 2(Sj − Sj−1) = 0. (12)

Equations (12) should be solved subject to the initial conditionsSj (0) = 1 and Ṡj (0) = 0
for j > 1. The recursive structure of equations (12) reflects the fact that the kinetics of a
given layer isunrelatedto that of all the above layers (owing to the absence of overhangs).
Additionally, equations (12) agree with the nature of the PNG model implying that the
kinetics of a given layer should bedirectly coupled only to the previous layer.

Using S0(t) ≡ 0, S1(t) is determined, thenS2(t), etc. Thus, for the first layer, the
KAJM nucleation-and-growth results are reproduced [13]

S1(t) = e−t
2

f1(x, t) = t2e−xt−t
2
.

(13)

It is also possible to solve analytically for the second layer

S2(t) = cosh2 te−t
2

f2(x, t) = [t cosht − sinht ]2e−(t−tanht)x−t2.
(14)

Using the transformation,Sj (t) = exp[uj (t) − t2], the differential equations (12) formally
simplify to a directed version of the Toda equations [26],üj = 2 exp[uj−1 − uj ], with the
initial conditionsuj (0) = u̇j (0) = 0 and the boundary conditionu1(t) = 0. Despite this
simplification it is not possible to integrate these equations, and we solve numerically for
Sj (t). Figure 1 shows how the coverage in a given layer changes with time. We note that the
coverage quickly relaxes onto a travelling wave form with a finite width,Sj (t)→ F(j−vt).
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Figure 1. The uncovered fractionSj (t) versus time for layersj = 20, 40, 60 and 80. Clearly,
the coverage follows a travelling waveform.

Some quantitative characteristics of the travelling wave can be determined analytically.
For j − vt � 1, the nonlinear term in (12) is negligible and equations (12) become linear.
Thus, we write

1− Sj (t) ∼ e−α(j−vt) j − vt � 1 (15)

with a yet unknown coefficientα. Substituting into equations (12) gives

v2 = 2
eα − 1

α2
. (16)

The right-hand side has a minimum atα = 1.593 62. Therefore any velocity in the interval
[vmin,∞) with vmin = 1.757 35 is possible. Our numerical integration shows a velocity
that falls within 0.1% ofvmin, thereby implying that the minimal velocity is selected. Such
minimum velocity selection is ubiquitous and occurs for a wide class of initial conditions
[27, 28].

To obtain the asymptotic behaviour in the other extreme,z = j − vt → −∞, we first
note thatS2(t) � S1(t), as follows from (13) and (14). We assume this for all layers
behind the front; we will check this assumptionSj (t)� Sj−1(t) a posteriori. This reduces
equations (12) töSj−Ṡ2

j S
−1
j +2Sj = 0 which is solved to yieldSj (t) = exp(−t2+Aj t+Bj).

The travelling wave form implies thatSj (t) should be a function of a single variablez =
j −vt . This determines the constantsAj andBj , and we findSj (t) = F(z) ∼ exp(−z2/v2).
One can verify that the assumptionSj (t)� Sj−1(t) is valid.

3.2. Arbitrary dimension

The above analysis cannot be generalized in a straightforward manner tod 6= 1 since the
gap distribution is intrinsically one-dimensional. However, it is still possible to obtain a
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mean-field description for the uncovered fraction.
Consider a KAJM nucleation-and-growth process where the rate of nucleation events

γ (t) is homogeneous in space but time dependent. Ignoring the overlap between growing
disks, the uncovered fractionS(t) decreases with time according to

dS(t)

dt
= −d�d

∫ t

0
dτ γ (τ)(t − τ)d−1 (17)

where�d = πd/2/0(1+ d/2) is the volume of thed-dimensional unit sphere andd�d
is its surface area [29] (0 is the gamma function). Thus, equation (17) overestimates the
decay rate since some of the area is already covered. Nevertheless, this may be corrected
if (−dS/dt) is reduced by the uncovered fraction,S,

dS(t)

dt
= −d�d S(t)

∫ t

0
dτ γ (τ)(t − τ)d−1. (18)

For a constant nucleation rate,γ = 1, equation (18) gives

S(t) = exp

[
−�dt

d+1

d + 1

]
. (19)

Thus, the exact KAJM coverage is recovered. Furthermore, a generalization of the KAJM
solution to time-dependent nucleation rates appears to be equivalent to equation (18) [14].

We now return to the PNG model. Note that the non-local in time integro-
differential equation (18) can be converted to a higher-order ordinary differential equation
dd+1 ln Sj (t)/dtd+1 = −d!�dγj (t). Unlike the 1D case, it is not possible to derive the
nucleation rate self-consistently. However, assuming a spatially homogeneous nucleation
rate [7] implies the total nucleation rateγj (t)Sj (t) = Sj (t) − Sj−1(t) and therefore
equation (9). Thus we arrive at the following generalization of the mean-field equation (12)
for the uncovered fraction

dd+1

dtd+1
ln Sj + d!�d

[
1− Sj−1(t)

Sj (t)

]
= 0. (20)

The analysis presented in the one-dimensional case applies for arbitrary dimensions. For
example, the transformationSj (t) = exp[uj (t)−�dtd+1/(d + 1)] reduces equations (20) to
a set of generalized directed Toda equationsdd+1uj/dt

d+1 = d!�d exp[uj−1−uj ]. Analysis
of these equations or equations (20) reveals that the coverage relaxes to a travelling wave
with a finite width. To determine the growth velocity, we insert the ansatz of equation (15)
into equations (20) to find

vd+1 = d!�d
eα − 1

αd+1
. (21)

This provides the lower bound for the growth velocity,vd > vmin
d . Again the minimal

velocity should be selected, and for examplev0 = 1, v1 = 1.757 35,v2 = 1.671 15, and
vd '

√
2πe/d when d → ∞. Furthermore, in finite dimensions MFT predicts universal

exponentsβ = 0, σ+ = 1, andσ− = 2. (Note that the relationship of equation (5) is
obeyed.)

In the zero-dimension limit, the behaviour changes qualitatively. Indeed, for thed = 0
case equations (20) becomelinear,

dSj

dt
+ Sj = Sj−1. (22)

Solving (22) recursively yields the uncovered fraction,Sj (t) = e−t
∑j−1

i=0 t
i/ i!.

Alternatively, by treating the variablej as continuous, this set of linear equations reduces
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to a simple convection-diffusion equation. Consequently, the width becomes diffusive, i.e.
β = 1

2.

4. Linear recursion relations

The LRR approach employs the exact uncovered fractionS1(t) in the first layer, provided
by the KAJM solution (19) [6, 18, 30, 31]. Nucleation in the(j + 1)th layer proceeds only
on the already covered fraction of thej th layer, formed with rate−dSj/dt . Subsequent
covering proceeds as in the KAJM, so one can anticipate that nucleation events in the time
interval(τ, τ+dτ) should provide contributionS1(t−τ)[−Ṡj (τ )]dτ to the exposed fraction
Sj+1(t) − Sj (t) in the (j + 1)th layer. This leads to a recursion relation between adjacent
layers:

Sj+1(t) = Sj (t)−
∫ t

0
dτ S1(t − τ)dSj (τ )

dτ
. (23)

The first layer coverage (19) can be recovered by setting the substrate coverage appropriately,
dS0/dt = −δ(t).

Although MFT and LRR are both recursive as every layer is coupled to the preceding
layer, they differ in that the MFT equations are nonlinear, while the LRR equations are
linear. Nevertheless, whend → 0, both approximations are identical. Indeed, multiplying
equation (23) by et and differentiating, one recovers the MFT equation (22).

Using the Laplace transform, analytical results for the growth velocity and the interface
width have been established [31, 18, 19]. Hereafter, we give an alternative and simpler
derivation which additionally provides the asymptotic behaviour of the coverage profile. In
the long-time limit, it is reasonable to treat the layer numberj as a continuous variable.
Replacing the differenceSj+1−Sj by a partial derivative, the recursive relations (23) become

∂S

∂j
∼= −

∫ t

0
dτ S1(τ )

∂S(j, t ′)
∂t ′

∣∣∣∣
t ′=t−τ

∼= − 1

vd

∂S

∂t
+ 1

2v2
d

0
(
d+3
d+1

)
02
(
d+2
d+1

) ∂2S

∂t2
(24)

with vd the growth velocity

vd =
(
�d

d + 1

) 1
d+1
/
0

(
d + 2

d + 1

)
. (25)

The second line in (24) has been derived by expandingS(j, t − τ) in a Taylor series inτ ,
retaining only the two dominant terms of the expansion, and replacing the upper limit in the
integral by∞. The following growth velocities are found:v0 = 1, v1 = 2/

√
π = 1.128 38,

v2 = 1.137 19, andvd →
√

2πe/d asd →∞. The velocity is almost constant for physical
dimensions (it varies by less than 4% in the range 16 d 6 4) indicating the weak dimension
dependence of this approach.

Changing variables from(j, t) to (j, ξ = j − vdt) recasts equation (24) into a diffusion
equation

∂S

∂t
= D∂

2S

∂ξ2
. (26)

The constantD = vd
2 0

(
d+3
d+1

)
/02

(
d+2
d+1

)
plays the role of a diffusion coefficient and controls

the width of the interface. By obtaining equation (26),j was replaced byvdt . This is clearly
valid in the scaling limit,j →∞, |ξ | → ∞, j ∼ ξ2. The initial profile of the uncovered
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fraction, S(j,0), is a step function:S(j,0) = 0 for j 6 0 andS(j,0) = 1 for j > 0.
Solving (26) subject to these initial conditions yields

S(j, t) = 1
2erfc(−z) z = ξ√

4Dt
= j − vdt√

4Dt
(27)

with erfc(z) = 2√
π

∫∞
z
du e−u

2
the error function [29]. While the two approximations

generally differ in their asymptotic behaviour, they do agree in the extreme cases ofd = 0
andd = ∞.

In summary, the LRR approach predicts a dimension-independent ‘diffusive’ width
exponentβ = 1

2. The shape of the coverage profile is symmetric and Gaussian away from
the front,σ± = 2.

5. Comparison with simulations

To test the two approximations we simulated the PNG process. The simulation results
presented below are for a one-dimensional chain of lengthL = 104 and represent a single
realization. Our work is different from most previous numerical studies which simulated
the PNG process on a lattice [24]. The 1D continuous PNG process is simple. The initial
conditions consist of a flat substrate. Island nucleation corresponds to the creation of a kink–
antikink pair, while island merger corresponds to a kink–antikink annihilation. A list of all
distances between kink–antikink pairs moving towards each other is maintained throughout
the simulation. These distances decrease linearly with time as the motion is ballistic. Thus,
the first collision time is picked, and the annihilating pair is removed from the system. In
parallel, kink–antikink pairs are nucleated with unit rate, and the distance list is updated
accordingly. This simulation treats time and space as continuous variables. This allows a
direct calculation of the growth velocity, which should vary from that obtained from lattice
simulations. In contrast to previous simulations [18] of the first few layers, this calculation
obtains the growth velocity to a much higher accuracy, as it is orders of magnitude larger
in size as well as in temporal range.

The time dependence of the uncovered fraction for the first four layers is shown in
figure 2. It is seen that the MFT and the LRR approaches provide upper and lower
bounds, respectively, for the actual PNG coverage. Additionally, the MFT provides a
better approximation for the uncovered fraction,Sj (t). For early times, the height and
width predicted by either approximations are relatively close to simulation results, as shown
in figure 3. In fact, both approaches agree to the first significant order in time, as both
equation (12) and equation (23) predictSj (t) = 1− 2j

(2j)! t
2j . The disagreement between the

two is of the ordert2j+2. As the two approximations give upper and lower bounds for the
PNG process, we conclude that this is the leading early time behaviour ofSj (t).

However, both approximations become progressively worse at later times, owing to the
fact that the asymptotic behaviour of the width is predicted incorrectly (see table 1). As the
MFT predicts an asymptotically flat surface, both the roughness and width exponents vanish
χ = β = 0. Figure 4 shows that at least in one dimension, the PNG asymptotic behaviour
belongs to the Kardar–Parisi–Zhang (KPZ) universality class [32]. This is consistent with
the analytical result in 1D that givesχ = 1

2. As our simulations are continuous in space
and time, they enable measurement of the surface growth velocity. Although in principle,
there is no reason to expect that the surface growth velocity in an infinite and a finite
system are equal, the numerical velocityvnoneq= 1.41± 0.01, which corresponds to (non-
equilibrium) growth on an infinite substrate, is in very good agreement with the known
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Figure 2. Uncovered fractionSj (t) versust for j = 1, 2, 3, 4. MFT and LRR approaches give
lower and upper bounds, respectively, for the uncovered fraction.

Figure 3. Short-time behaviour of the heighth(t) and the widthw(t). MFT is closer to the
actual behaviour.



5010 E Ben-Naim et al

Table 1. Characteristics of the three approaches for the one-dimensional PNG model.

MFT PNG LRR

v1 1.757 35 1.41± 0.01 1.128 38
β 0 1

3
1
2

σ+ 1 3
2 2

σ− 2 >2 2

Figure 4. Long-time behaviour of the width. Early behaviour is linear and late behaviour is in
the KPZ universality classt1/3.

analytical equilibrium growth velocityveq =
√

2 [20]. Numerical values forv, β and
σ± are summarized in table 1. Two-dimensional simulations give a velocityv2 ≈ 1.4
[7] compared to the valuesv2 = 1.671 (MFT) andv2 = 1.137 (LRR). Furthermore, the
exponentβ decreases when the spatial dimension increases [3]. Thus the MFT improves
for higher dimensions.

It is useful to note that the dynamical exponent for the 1D PNG isz = 3
2, as it follows

from the exponent relationz = χ/β together withχ = 1
2 andβ = 1

3. The finite size effects
are negligible as long ast � Lz, so for the system sizeL = 104 we should guarantee that
t � 106. The time range of our simulations,t < 103, is well within the above bound.

We also examined the extremal behaviour ofSj (t) using the simulations. The scaling
prediction (5) holds as the simulation data is consistent with the exponent valueσ+ = 3/2,
in agreement with the KPZ behaviour [25]. Given that the PNG uncovered fraction is
bounded by the two approximations, the parametersv, β, and thereforeσ+ are similarly
bounded (see table 1.) Since the scaling argument involves the width, one cannot conclude
a priori that the same holds forσ−. Nevertheless, the exponent found in the simulation is
relatively close to 2, or possibly slightly larger. In comparison, numerical studies of the
KPZ equation suggestσ− ∼= 2.5 [33].
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6. Conclusions

We have investigated a continuum model of multilayer growth, the PNG model. We
confirmed that the LRR approximation implies dimension-independent growth exponents.
Moreover, we found that the full coverage profile approaches a dimension-independent form,
thus implying that this approximation effectively ignores interactions. It is therefore not
surprising that the LRR gives the width exponentβ = 1

2 which is characteristic for non-
interacting systems, such as the growth on a zero-dimensional substrate. We developed an
alternative self-consistent mean-field approach which provides a better approximation for the
uncovered fraction, and close estimates for the early time behaviour. Mathematically, the
mean-field approach leads to an interesting system of directed higher order Toda equations.
The mean-field approximation overestimates layer–layer interactions and implies a sharp
interface, i.e.β = 0. Additionally, the two approximate approaches combine to give upper
and lower bounds for statistical properties such as the coverage, the velocity, and the
roughness.

The above MFT should allow computation of spacetime correlation functions and
structure functions. Even more detailed analysis may be possible for 1D substrates. A
bigger challenge is to solve the PNG process analytically. Such a solution will undoubtedly
illuminate the theoretical understanding of non-equilibrium growth.
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