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The spatial probability distribution associated with diffusion and attenuation in partially ab-
sorbing media is studied. An equivalence is established between a system with free diffusion for
x > 0 and partial absorption for x < 0, and a semi-infinite system (x > 0) with a radiation bound-
ary condition at x = 0. By exploiting this equivalence, it is shown that the effect of a partially
absorbing medium in the long-time limit is equivalent to that of a perfect, “virtual” trap whose
size is smaller than the original absorbing medium. For short times, however, there is substantial
penetration of diffusing particles into the absorber. The virtual trap approach is readily generalized
to higher dimensions. This allows one to obtain the density profile of diffusing particles around a
partially absorbing spherical trap. An unusual crossover between short-time penetration and long-
time trapping occurs in two dimensions; the size of the virtual trap is exponentially small in the
case of weak absorption, corresponding to an absorption time which is exponentially large.
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I. INTRODUCTION

The physical basis of Brownian motion in translation-
ally invariant media are well understood, and models
based on this type of transport have been applied to the
interpretation of an enormous variety of physical phe-
nomena. There is likewise a large literature on Brow-
nian motion in the presence of absorbing boundaries.
Perfectly absorbing boundaries are known to change the
properties of Brownian motion in ways that are largely
understood. However, for many practical applications,
the trapping medium is partially absorbing, as in the at-
tenuation and multiple scattering of light in biological
media, in heat conduction processes, and in colloidal sus-
pensions. For example, recent studies of photon migra-
tion in a turbid medium suggest the validity of Brownian
motion as the description of photon transport, as well
as Beer’s law of absorption [1,2]. The analysis of scat-
tered laser light in biological tissue suggests, for example,
the importance of determining the maximum penetra-
tion depth of a Brownian particle in a partially absorbing
medium. Another useful parameter for interpreting ex-
perimental data is the time required for a diffusing parti-
cle to reach an absorbing surface at a given distance from
the interface of the laser beam into the sample. Some as-
pects of this problem have been addressed for models in
which the sample is a semi-infinite partially absorbing
medium [1-4].

These situations motivate us to consider a theoretical
analysis of the penetration of a Brownian particle in ab-
sorbing media. We are interested in developing a quanti-
tative approach to describe how the probability distribu-
tion of the diffusing particles is influenced by partial ab-
sorption. For a one-dimensional composite that consists
of an absorbing medium for x < 0 and a non-absorbing
medium for x > 0, we will show that a continuum de-

scription can be given either by separate equations for
the two media, or by a diffusion equation in the non-
absorbing medium with a radiation boundary condition
at the interface. As a consequence, we will show that the
concentration of particles inside the partially absorbing
medium decays rather modestly in time, as t−1/2, leading
to a concentration at the interface which also decays as
t−1/2. The equivalence between the two descriptions is
the basis for a physical construction in which a partially
absorbing medium can be replaced by an equivalent per-
fectly absorbing medium of a smaller spatial extent, that
is, a perfect “virtual” trap. This analogy can be easily
extended to higher dimensions, both for steady state and
time dependent problems, and provides a simple way to
quantify the effects of partial absorption.

In section II, we first determine the probability distri-
bution for a one-dimensional composite system, which
is described by a diffusion equation for x > 0 and a
diffusion-absorption equation for x < 0. These results are
exploited to obtain the time dependence of the maximal
penetration of particles into the absorbing medium. In
section III we show that for sufficiently weak absorption,
an intermediate time regime exists, where the distance
of the closest particle to the absorbing medium grows as
t1/2, before the asymptotic t1/4 growth sets in. An equiv-
alence between the solution of the composite system, and
that for diffusion in the half-space x > 0 with a radiation
boundary condition at x = 0, is derived in section IV.
This result is the basis for the correspondence between
the partially absorbing medium in the range x ≤ 0 and
a virtual perfect trap located at a position rT < 0. In
section V, this virtual trap correspondence is extended to
higher dimensions for both steady state and time depen-
dent situations. As the strength of the partially absorb-
ing trap decreases, the radius of the virtual trap vanishes,
with a dependence that is strongly dimension dependent.
Furthermore, in two dimensions there is an exponentially
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long time regime of negligible absorption before the vir-
tual trap “turns on”, in the limit of weak trapping.

II. DIFFUSION-ABSORPTION EQUATION

Consider a one-dimensional medium which is partially
absorbing for x < 0, with a finite absorption rate q, and
non-absorbing for x > 0 (Fig. 1). The time evolution of
the density outside the absorber obeys the diffusion equa-
tion, while the density inside obeys a diffusion absorption
equation:

∂c(x, t)
∂t

= D
∂2c(x, t)
∂x2

− qc(x, t) x < 0 (1)

(2)
∂c(x, t)
∂t

= D
∂2c(x, t)
∂x2

x > 0

where D is the diffusion coefficient. At the origin, the
concentration and the flux (−D∂c/∂x) must be continu-
ous. Once the initial condition is specified, one can then
solve for basic quantities, such as the concentration at
the interface, and the total number of particles inside
the absorber, S−(t) =

∫ 0

−∞ c(x, t)dx. This latter quan-
tity is obtained by spatial integration of the first line of
Eq. (1) to yield

∂S−(t)
∂t

= D
∂c(x, t)
∂x

∣∣∣
x=0
−qS−(t). (3)

This reflects the decrease in S−(t) because of absorption,
and its increase because of flux entering at x = 0. We
now present the solution to Eq. (1) for two simple initial
conditions, although the analysis can be carried out for
an arbitrary initial condition.

A. Uniform initial density for x > 0

For c(x, t = 0) = c0H(x), with H(x) the Heaviside
step function, we first introduce the Laplace transform,
c(x, s) =

∫∞
0
c(x, t) exp(−st) dt, to reduce Eq. (1) to the

ordinary differential equations

D
∂2c(x, s)
∂x2

− (s+ q)c(x, t) = 0 x < 0

(4)

D
∂2c(x, s)
∂x2

− sc(x, t) = −c0 x < 0

subject to continuity of both c(x, s) and its spatial deriva-
tive at the origin. The solution in Laplace space is

c(x, s) =


c0
s

( 1
1 + α(s)

exp(x
√

(s+ q)/D)
)

x < 0,

c0
s

(
1− 1

1 + α−1(s)
exp(−x

√
s/D)

)
x > 0,

(5)

where α(s) =
√

(s+ q)/s.
We are primarily interested in extracting quantities

which characterize the penetration of particles into the
absorber, such as the concentration at the interface,
c(x = 0, s) = c0/s

(
1+α(s)

)
, and the number of particles

inside the absorber S−(s) = c0
√
D/(s+ q)/s(1 + α(s)).

Inverting the above Laplace transforms yields the behav-
ior of these two quantities in the time domain[5],

c(x = 0, t) =
c0
2

(
I0(t/2tq) + I1(t/2tq)

)
exp(−t/2tq), (6)

S−(t) = c0lq

√
1

πt/tq

(
1− exp(−t/tq)

)
, (7)

where In(x) is the nth order modified Bessel function.
Here we have introduced dimensionless variables by intro-
ducing the characteristic absorption time, and the typical
distance that a particle travels in the absorber before ab-
sorption

tq = 1/q and lq =
√
D/q (=

√
Dtq). (8)

Interestingly, the concentration at the origin is indepen-
dent of D. In contrast, the behavior of S−(t) does depend
on D, since the flux entering the absorber at a fixed time
depends on D.

For short times, t � tq, absorption is negligible, and
one recovers purely diffusive behavior, namely S−(t) ∼
c0
√
Dt/π and c(x, t) ∼= c0/2. In this “diffusion con-

trolled” time regime, therefore, the absorption term in
the diffusion-absorption equation can be neglected. In
the long time limit, we use [5]

In(z) ∼=
ez√
2πz

(
1− n− 1

8z
+ . . .

)
z � 1, (9)

to obtain

c(x = 0, t) ∼ c0√
πt/tq

, t� tq. (10)

Comparison with Eq. (6) shows that the concentration at
the origin and the number of particles inside the absorber
are proportional to each other in the long-time limit,

c(x = 0, t) ∼ 1
lq
S−(t) t� tq. (11)

Since S−(t) ∼ t−1/2, the time derivative will be a sub-
dominant contribution in Eq. (2). Neglecting this term
and using Eq. (6) gives,

D
∂c(x, t)
∂x

∣∣∣
x=0
∼ qS−(t) ∼ Dc0/

√
πDt, (12)
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i.e., the flux is the same as that entering a perfect trap.
There also is a depletion zone (the extent over which the
concentration is spatially varying) which is of the order of√
Dt. In the long-time regime, therefore, the solution to

Eq. (1) is essentially determined by the absorption term,
since the time derivative in the diffusion-absorption equa-
tion is negligible. Thus the solution can be characterized
as being “absorption controlled”.

A useful way to characterize the penetration of par-
ticles into the absorber is to monitor the time depen-
dence of the average position of the particles which are in
the absorbing medium, 〈`(t)〉 ≡ −

∫ 0

−∞ x c(x, t) dx/S−(t).
From the first line of Eq. (4), the Laplace transform of
the numerator of 〈`(t)〉 is Dc0/s(s+q)

(
1+α(s)

)
. Laplace

inversion gives

S−(t) 〈`(t)〉 = c0 l
2
q

(
I0(t/2tq) exp(−t/2tq)− exp(−t/tq)

)
.

(13)

The penetration depth thus has the asymptotic behaviors

〈`(t)〉 ∼=
{√

πDt, t� tq
lq, t� tq.

(14)

The short-time behavior merely recovers the behavior of
freely diffusing particles. On the other hand, the long-
time behavior can be understood in a simple way by
applying a quasistatic approximation to the diffusion-
absorption equation. This involves neglecting the time
derivative term in this equation, and then solving sub-
ject to the time-dependent boundary condition c(0, t) =
c0
√
tq/πt (Eq. (9)). Inside the absorber, this yields

c(x, t) ∼ c0√
πt/tq

exp(x/lq), x < 0, (15)

which immediately gives the above long-time behavior of
〈`(t)〉.

B. Single particle initial condition

For the complementary problem where one particle is
initially at the origin, c(x, t = 0) = δ(x), the solution to
Eq. (1) in Laplace space is

c(x, s) =


1√
Ds

1
1 + α(s)

exp
(
x
√

(s+ q)/D
)

x < 0,

1√
Ds

1
1 + α(s)

exp
(
− x
√
s/D

)
x > 0.

(16)

Thus the survival probability, S(t) =
∫∞
−∞ c(x, t)dx,

equals

S(t) = I0(t/2tq) exp(−t/2tq) ∼ (tq/πt)
1/2 (17)

for t/tq → ∞, while the survival probability in the ab-
sorbing medium is

S−(t)=
1
2

(
I0(t/2tq)− I1(t/2tq)

)
exp(−t/2tq)

∼ 1
2
√
π

(tq/t)3/2, (18)

when t/tq → ∞. These quantities are independent of
the diffusion coefficient, in contrast to the correspond-
ing behavior for the uniform initial condition. By ap-
plying standard Bessel function identities, it follows that
Ṡ(t) = −qS−(t), i.e., the loss of particles is simply re-
lated to the concentration in the absorbing medium, as
required by integration of Eq. (1) over all space. Simi-
larly, the density at the origin is

c(x = 0, t) =
tq√

4πDt3

(
1− exp(−t/tq)

)
. (19)

For short times, this density is diffusion controlled
(
∼

(4πDt)−1/2
)
, while for later times c(0, t) approaches the

value S−(t)/lq. Other properties such as the concentra-
tion profile inside the absorber and the average penetra-
tion are similar to the one obtained in the many particle
case.

Analogous results can be obtained within a discrete
random walk formulation, where absorption is described
by a random walk which is annihilated with probability
0 ≤ p ≤ 1 when it lands on an absorbing site. The dom-
inant contribution to the survival probability at the nth
step arises from walks which remain in the region x > 0
up to this time, and this latter have probability which is
proportional to n−1/2. Similarly, the survival probability
inside the absorber is dominated by walks which enter
the absorbing region for the first time at the nth step,
which have probability proportional to ∼ n−3/2. For-
mally, the full probability distribution in the composite
can be found in terms of Pn(x, r), the probability that an
n step random walk at position x has visited the region
x < 0 exactly r times [6,7].

III. THE NEAREST-NEIGHBOR DISTANCE

One useful way to quantify the distribution of diffusing
particles near a trap is through the position of the nearest
particle to the trap, xm,[8-11] which may be defined by∫ xm

0
c(x, t)dx = 1. In one dimension with a perfect ab-

sorber at the origin, xm ∝ (Dt/c20)1/4. For a sufficiently
weak trap, however, we shall demonstrate that there is
an intermediate time regime where the closest distance
grows as t1/2.

From our previous results for the concentration at the
origin and its first derivative, the behavior of the concen-
tration near the origin is

c(x, t) ∼ c0√
πt/tq

+
c0√
πDt

x, t� tq. (20)
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Using this form for the concentration, we obtain for xm,

xm ∼= lq

(√
1 + 2

√
πt/t0 − 1

)
, (21)

with t0 = Dc20/q
2. Eq. (20) is valid for t � tq = 1/q,

and thus θ = t0/tq = Dc20/q, which is a dimensionless
measure of the strength of the absorber, is a relevant pa-
rameter. For a sufficiently weak absorber, θ � 1, and
the limiting behaviors of Eq. (20) are,

xm ∼

 (πt/tqc20)1/2 tq � t� t0,

(4πDt/c20)1/4 t0 � t.
(22)

The different limiting behaviors arise from the two terms
in Eq. (19); the constant term dominates at early times,
while the linear term dominates at later times. Note that
the intermediate-time behavior depends on the absorp-
tion rate, while the long-time behavior depends essen-
tially on the diffusion coefficient. For θ < 1, there is no
intermediate time regime, and the asymptotic behavior
of a perfect trap is recovered. The physical meaning of
t0 can be seen from the expression for the total num-
ber of particles in the absorber (Eq. (6)). Namely, for
t � tq, S−(t) ∼

√
t/πt0, so that t0 gives the time at

which the total number of particles in the absorber falls
below unity.

IV. EQUIVALENCE TO THE RADIATION
BOUNDARY CONDITION

We now establish an equivalence between the par-
tially absorbing one-dimensional composite and the free
medium for x > 0 with a radiation boundary condition
at x = 0. Such a boundary condition arises naturally in
heat conduction between two media when the heat trans-
fer is proportional to the temperature difference. As we
shall see, this equivalence provides a useful tool for de-
scribing the physical manifestations of the partially ab-
sorbing medium.

Combining Eqs. (10) and (11), which are valid at long
times, immediately gives the radiation boundary condi-
tion [12]

D
∂c(x, t)
∂x

∣∣∣
x=0

=
√
Dq c(x, t)

∣∣∣
x=0

. (23)

Eq. (22) reduces to an absorbing boundary condition for
q =∞ and to a reflecting boundary condition for q = 0.
However, for q = 0, the long-time limit t � tq is never
reached, and Eq. (22) does not hold for this case.

To appreciate the consequences of the above equiva-
lence, we solve the diffusion equation

∂c(x, t)
∂t

= D
∂2c(x, t)
∂x2

x > 0, (24)

with the radiation boundary condition of Eq. (22) and
the initial condition c(x, t = 0) = c0H(x). In Laplace
space, the solution is

c(x, s) =
c0
s

(
1− 1

1 + β(s)
exp(−

√
s/D x)

)
, (25)

where β(s) =
√
stq, while the solution in the time domain

is

c(x, t) = c0 erf
(

x√
4Dt

)
(26)

+ c0

(
exp
( x
lq

+
t

tq

)
erfc

(
x√
4Dt

+

√
t

tq

))
,

with the notations of Eq. (7). In the long time limit, the
behavior given by the solution to the diffusion-absorption
equation is recovered. For example, the concentration at
the interface is

c(x = 0, t) = c0 erfc
(√

t/tq

)
exp(t/tq) ∼ c0

√
tq/πt,

(27)

for t � tq. Similarly, the intermediate time behavior
for the distance of the nearest particle from the interface
varies as t1/2, provided that the trap is sufficiently weak
(θ � 1).

An essential aspect of the radiation boundary condi-
tion is that it provides, in conjunction with the image
method, an alternative and useful way to quantify the
effect of a partially absorbing medium. For the radia-
tion boundary condition, the concentration profile given
in Eq. (24), when evaluated at t = 0 and for x < 0, leads
to an initial distribution of “image” concentration

cI(x) = c0
(
2 exp(x/lq)− 1

)
x < 0. (28)

This is a uniform distribution of antiparticles at concen-
tration −c0 and an exponentially decaying distribution
of particles (Fig. 2(a)). The superposition of these two
components gives rise to a change in sign of this initial
image distribution at x = −lq ln 2. Owing to the equiv-
alence between the solutions to the diffusion-absorption
equation and to the diffusion equation with the radiation
boundary condition, the effect of a partially absorbing
medium is equivalent to a free medium with an initial
distribution of images given in Eq. (27).

This equivalence motivates our introduction of the vir-
tual trap, which is the position where the time depen-
dent concentration vanishes in the solution to the dif-
fusion equation with the radiation boundary condition.
Equating c(rT , t) = 0 in Eq. (25) and keeping only the
leading behavior for t � tq, gives rT ∼ −lq. Thus the
time dependent solution to a perfect trap located at −lq
provides an excellent approximation to the concentration
obtained by imposing the radiation boundary condition
(Fig. 2(b)). The position of this virtual trap is at the
interface in the limit of a perfectly absorbing medium,
and is infinitely far away in the no absorption limit.

4



V. PARTIAL ABSORPTION IN HIGHER
DIMENSIONS

The notion of a virtual trap can be readily extended
to higher dimensions. In (a) below, we use the steady-
state solution to the diffusion equation to find the loca-
tion of the virtual trap for a radially symmetric geometry
in arbitrary spatial dimension. An application to a time
dependent problem is presented in (b) below, where the
virtual trap method is combined with the quasistatic ap-
proximation.

A. Steady state solution

To illustrate the utility of the virtual trap method, con-
sider radially symmetric flow of particles (or heat) into
an imperfect trap. The steady state concentration exte-
rior to an absorber of radius a obeys the d-dimensional
Laplace’s equation

Dr1−d ∂

∂r
rd−1 ∂c(r)

∂r
= 0 r > a, (29)

with the radiation boundary condition

D
∂c(r)
∂r

∣∣
r=a

=
√
Dqc(r)

∣∣
r=a

. (30)

This equation describes, for example, the flow of parti-
cles to the trap from a continuous source of particles at
a large outer sphere (in order to reach a steady state
in one and two dimensions the system must be finite in
extent). We are primarily interested in the solution for
r > a where the density takes the following forms

c(r) ∝


r − rT rT = a− lq

ln(r/rT ) rT = a exp(−lq/a)

r−1
T − r−1 rT = a/(1 + lq/a)

(31)

We interpret the point where the concentration van-
ishes as the location of the virtual trap. For d = 1, this
location agrees with the form suggested in the previous
section. For strong absorption or for a very large trap,
i.e., lq/a =

√
Dtq/a � 1, the one-dimensional expres-

sion rT = a− lq holds for any dimension. In the opposite
limit of weak absorption, the position of the virtual trap
is

rT ∼=

 a exp(−lq/a) d = 2

a/(lq/a) d = 3
lq/a� 1 (32)

Thus, as expected, the size of the virtual trap vanishes in
the limit of weak absorption. The exponential behavior
occurs only in two dimensions, so that there is a signif-
icant difference between the dependence of the virtual
trap size on the rate q for two and three dimensions.

B. Time dependent solution

The determination of the location of the virtual trap
for transient problems is based on solving the time de-
pendent diffusion equation with a perfect trap at rT given
by Eq. (30), and considering this solution for r ≥ a. Al-
though the exact solution to this problem is straight-
forward, it is much simpler to solve the problem in the
quasistatic approximation to find the asymptotic behav-
ior of the concentration. In this approximation, the time
derivative in the diffusion equation is neglected and the
time dependence is introduced by imposing the appropri-
ate moving boundary conditions [9]

c(r)
∣∣
r=
√

4Dt
= c0 and c(r)

∣∣
r=rT

= 0. (33)

These conditions reflect the fact that the depletion zone
width is controlled by diffusion, and outside this zone the
concentration equals its initial value c0. Solving Laplace’s
equation within the depletion zone, a ≤ t ≤

√
4DT , and

according to the above boundary conditions gives,

c(r, t) =


c0(r − rT )/

√
4Dt d = 1

c0
(

ln(r/rT )/ ln(
√

4Dt/rT )
)

d = 2

c0
(
r−1
T − r−1

)
/
(
r−1
T −

√
4Dt

−1)
d = 3

(34)

The concentration at the interface r = a can now be
evaluated by using the expressions for rT from .Eq. (30),

c(a, t) =


c0
√
tq/t d = 1

c0/
(
(a/lq) ln(

√
4Dt/a) + 1

)
d = 2

c0/(1 + a/lq) d = 3.

(35)

The expression for d = 1 differs by a factor of
√
π/2

from the exact result, a byproduct of the quasistatic ap-
proximation. For three dimensions, in contrast, the con-
centration reaches a constant value, since a steady state
is ultimately reached. The strength of the trap does not
affect the time necessary to reach a steady concentration.
In the marginal case of two dimensions on the other hand,
the time for the concentration to become appreciably less
than the initial concentration occurs when the two terms
in the denominator of Eq. (34) are comparable. We de-
fine this as the “initiation” time of the trap,

τ ≡ a2

D
exp(2lq/a), lq/a� 1. (36)

In the weak absorption limit, τ is exponentially long,
since the virtual trap is exponentially small. Amusingly,
τ can be rewritten as t0 = (a2/D)(a/rT )2, i.e., the initi-
ation time equals a diffusion time multiplied by the ratio
of areas of the imperfect trap to the the perfect trap.
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The initiation time is relevant in calculating the nearest
neighbor distance, since for t < τ , the nearest distance
varies roughly as c−1/2

0 , and for t� τ , the distance grows
as
√

ln t [9-11].

VI. SUMMARY

We investigated the properties of diffusion in the pres-
ence of an imperfect absorber. Our primary result is
that the effect of a partial absorber is equivalent to a
virtual, perfect trap whose spatial extent is smaller than
the partially absorbing medium. By exploiting this anal-
ogy, the survival probability of a diffusing particle in the
presence of a semi-infinite one-dimensional absorber was
found to decay as ∼ t−1/2, just as in the case of a perfect
trap. This result follows because the survival probabil-
ity is dominated by particles in the non-absorbing region
(x > 0) that reach the edge of the trapping region for the
first time at time t. It is this observation that accounts
for the success of the virtual trap analogy in reproducing
the principal features of the kinetics of the system. How-
ever, in the case of weak absorption, there is an interme-
diate time regime where there is substantial penetration
of particles into the absorbing medium. The temporal
range for which this penetration occurs can be described
as the time domain before the virtual trap turns on, in
the virtual trap description.

For higher dimensions, the virtual trap size tends to
zero if the absorber is weak. In two dimensions, this
size decays exponentially and that gives rise to an ex-
ponentially large crossover time, compared with a power
law dependence in one dimension. Although we used
terminology appropriate for diffusing particles, the tem-
perature obeys the same diffusion equation and thus, this
analogy is relevant to heat conduction problems as well.
The virtual trap method is relatively versatile for treating
more general geometries and may be applied to situations
such as partial absorption of an anisotropic absorber.
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FIGURE CAPTIONS

Fig2 The basic geometry in one dimension in which the
region x < 0 absorbs at a rate q.

Fig1 Illustration of the virtual trap method. (a) For a
radiation boundary condition, an initial uniform concen-
tration of particles c0 gives rise to an image distribution
which consists of a uniform concentration c0 of antipar-
ticles and an exponential distribution of particles. This
image distribution vanishes at x = −lq ln 2 (dots). (b)
The time dependent concentration in the case of the ra-
diation boundary condition (solid) is well approximated
by the concentration in the presence of a perfect virtual
trap at x = −lq, namely c(x, t) = c0 erf

(
(x + lq)/

√
4Dt

)
(dots). For both plots lq = tq = c0 = 1, and for (b)
t = 16.
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