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We study extreme value statistics of multiple sequences of random variables. For each sequence
with N variables, independently drawn from the same distribution, the running maximum is defined
as the largest variable to date. We compare the running maxima of m independent sequences, and
investigate the probability SN that the maxima are perfectly ordered, that is, the running maximum
of the first sequence is always larger than that of the second sequence, which is always larger than
the running maximum of the third sequence, and so on. The probability SN is universal: it does
not depend on the distribution from which the random variables are drawn. For two sequences,
SN ∼ N−1/2, and in general, the decay is algebraic, SN ∼ N−σm , for large N . We analytically
obtain the exponent σ3

∼= 1.302931 as root of a transcendental equation. Furthermore, the exponents
σm grow with m, and we show that σm ∼ m for large m.

PACS numbers: 02.50.-r, 05.40.-a, 05.45.Tp

I. INTRODUCTION

The theory of extreme values is a well-developed area
of statistics and probability theory [1–6]. Extreme values
such as the maximal and the minimal data points are
important features of a dataset. Statistics of extreme
events play a key role in a host of data rich subjects
including climate science [7–9], geophysics [10–13], and
economics [14–17].

The running maximum, defined as the largest variable
to date in a sequence of variables, is a central quan-
tity in extreme-value statistics. This quantity evolves
rather slowly: the number of times it changes typically
grows logarithmically with the number of random vari-
ables [5, 6]. Consequently, persistence [18–20] or first-
passage properties [21] involving the running maximum
often exhibit power-law dependence on the number of
variables [22–24]. Methods and concepts from statistical
physics provide a powerful tool for obtaining the nontriv-
ial scaling exponents that characterize such power-law
behaviors [25].

This investigation is motivated by a recent letter [26]
concerning maximal positions of random walks. It was
reported that the probability that the maxima of multi-
ple random walks remain perfectly ordered decays as a
power law with the number of steps [26, 27], and that the
corresponding decay exponents are generally nontrivial.

Here, we study the same probability for uncorrelated

random variables. Figure 1a shows three sequences of
random variables and figure 1b shows the corresponding
running maxima. The running maxima form three stair-
cases. We are interested in the probability that these run-
ning maxima remain perfectly ordered, or equivalently,
that the staircases do not intersect even once. When
the random variables are uncorrelated, this probability
is universal: it is completely independent of the distribu-
tion from which the variables are drawn.

The probability SN that the three staircases are or-
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FIG. 1: (Color online) Illustration of perfectly ordered max-
ima. Panel (a) shows three sequences of random variables
(bars), and the panel (b) displays the corresponding running
maxima (staircases). The latter sequences are perfectly or-
dered. The leading sequence is shifted slightly to the left and
the trailing sequence is shifted slightly to the right.

dered decays algebraically with the number of random
variables. Interestingly, the decay exponent is nontrivial:

SN ∼ N−σ, with σ = 1.302931. (1)

We obtain this exponent analytically. In the general case,
we obtain upper and lower bounds implying that the ex-
ponent grows linearly with the number of independent
sequences. Interestingly, this family of exponents gives a
good approximation for the first-passage exponents found
for maxima of random walks.

The rest of this paper is organized as follows. In section
II, we investigate statistics of perfectly ordered maxima.
We start with two sequences for which the analysis is
straightforward. We then present theoretical results for
the nontrivial case of three sequences. For the general
case, we obtain the leading asymptotic behavior of the
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scaling exponents. In section III, we treat a related ques-
tion concerning partially ordered maxima, and show that
the exponents obtained in section II are part of an infinite
set of families of scaling exponents. We conclude with a
summary and a discussion of related open problems (Sec-
tion IV). The appendix details technical derivations used
in the three-sequence case.

II. PERFECT ORDER

We study extreme values of multiple sequences of N
uncorrelated random variables. Let us first consider one
sequence of random variables

{X1,X2, . . . ,XN}, (2)

where each of the variables Xi is drawn from the same
distribution. We restrict our attention to continuous dis-
tributions for which there are no ties: Xi 6= Xj for all
i 6= j. The running maximum xn is defined as the largest
variable to date

xn = max{X1,X2, . . . ,Xn} , (3)

with n = 1, 2, . . . , N . Overall there are N maxima.
These maxima are monotonically increasing xn+1 ≥ xn

for all n, and form the sequence {x1, x2, . . . , xN}. Figure
1 illustrates that maxima are correlated stochastic vari-
ables: by the definition (3), a running maxima involves
memory of all preceding random variables.

In this study, we consider m independent sequences
of random variables such as (2) and their corresponding
maxima defined by (3) and ask: what is the probability
that the maxima remain perfectly ordered?

A. Two Sequences

We start with two sequences. The second sequence
of random variables, {Y1, Y2, . . . , YN}, is drawn from the
same distribution as the first sequence (2). The run-
ning maxima for the second sequence are again defined
by yn = max{Y1, Y2, . . . , Yn} for n = 1, 2, . . . , N . We
are interested in the probability SN that the first set of
maxima is always larger then the second set:

xn > yn, n = 1, 2, . . . , N. (4)

We term SN the “survival” probability since the condi-
tion (4) defines a first-passage process [21].

The survival probability SN obeys the closed recursion
relation

SN = SN−1

(

1 − 1

2N

)

, (5)

subject to the “initial” condition S0 = 1. To appreciate
(5) let us combine the two sets of N random variables

into a larger set of 2N variables. Since all of these ran-
dom variables are drawn from the same distribution, each
variable is equally likely to be the largest. In particular,
the variable YN is the largest with probability 1

2N . The
probability that the leading sequence remains in the lead
at the Nth step is therefore 1 − 1

2N .

Using Eq. (5) one gets S1 = 1
2 , S2 = 3

8 , S3 = 5
16 , and

generally

SN =

(
2N

N

)

2−2N . (6)

Importantly, this probability is universal as it holds re-
gardless of the distribution from which the random vari-
ables are drawn. There are two requirements for equation
(6) to hold: (i) all 2N variables must be independent and
identically distributed, and (ii) the probability distribu-
tion that governs these random variables is continuous so
that there are no ties.

To obtain the asymptotic behavior for large N , we use
the Stirling formula N ! ≃ (2πN)−1/2(N/e)N and equa-
tion (6). We thus find that the survival probability de-
cays algebraically,

SN ≃ π−1/2 N−1/2 (7)

for large N . As shown below, the survival probability has
a similar algebraic decay in the general case, except that
the decay exponent depends on the number of sequences.

The same probability distribution (6) arises in the con-
text of discrete time random walks. Consider two walks
that start at the origin. The probability SN that the po-
sitions remain ordered, x1(n) > x2(n) for 1 ≤ n ≤ N , is
given by Eq. (6). This result, known as the Sparre Ander-
sen theorem [28–30], remains valid regardless of the step
distribution, e.g., it holds for Levy walks with diverging
average step length [31].

We also remark that the random variables Xn are un-
correlated, e.g. 〈XiXj〉 = 〈Xi〉〈Xj〉 for all i 6= j; further,
there are no correlations between the sequences Xn and
Yn. As a result, the probability ΠN that the actual ran-
dom variables are always ordered, Xn > Yn for all n,
is purely exponential ΠN = 2−N . In view of the much
slower algebraic decay (7), we conclude that ordered se-
quences of random variables are much less likely than
ordered sequences of maxima.

B. Three Sequences

We now consider three sequences. We denote the third
sequence of random variables as {Z1, Z2, . . . , ZN} and the
corresponding sequence of maxima as {z1, z2, . . . , zN}.
We are interested in the probability SN that the three se-
quences remain perfectly ordered as illustrated in Fig. 1:

xn > yn > zn, n = 1, 2, . . . , N. (8)
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FIG. 2: (Color online) The probability SN versus N for three
sequences. Shown are results of Monte Carlo simulation and
the theoretical prediction (25). The numerical simulation re-
sults were obtained from roughly 1013 independent runs. The
inset shows the local slope σ ≡ −d ln S/d ln N .

One immediately finds S1 = 1
3! = 1

6 , but it is challenging
to derive SN for N ≥ 2 (see Table I). Our numerical sim-
ulations (see Fig. 2) show that SN decays algebraically,

SN ∼ N−σ, (9)

for N ≫ 1 with σ = 1.3028 ± 0.0002.
When there are three sequences, the survival probabil-

ity SN no longer obeys a closed recursion equation such as
(5). There are, however, closed recursion equations for
the probability PN,j that: (i) the maxima are ordered,
that is, the condition (8) holds, and (ii) the number of
variables from the first sequence that are larger than the
intermediate maximum yN equals j (with 1 ≤ j ≤ N) as
follows

OO · · ·OO
︸ ︷︷ ︸

3N−1−j

Y XX · · ·XX
︸ ︷︷ ︸

j

. (10)

In this schematic representation, the 3N variables are or-
dered from smallest (on the left) to largest (on the right),
and moreover, the labels are ignored. Further, the sym-
bol O stands for a variable from either one of the three
sequences. Importantly, in all the configurations that
satisfy the requirement (8), the intermediate maximum
is always from the second sequence. Hence, there is no
need to keep track of the location of the maximum of the
third sequence, and we merely need to ensure that the
maximum zN does not overtake the two other maxima
xN and yN .

In the configuration (10), the number of variables from
the first, second, or third sequence are all equal to N . By
definition PN,j is the probability that the maxima are or-
dered and the number of variables from the first sequence
{X1,X2, . . . ,XN} that are larger than the intermediate
maximum yN equals j. There are at most N such vari-
ables, and hence the the survival probability is the sum
of the probabilities PN,j :

SN =

N∑

j=1

PN,j . (11)

N SN (3N)! SN

1 1

6
1

2 29

360
58

3 4 597

90 720
18 388

4 5 393

149 688
17 257 600

5 179 828 183

6 538 371 840
35 965 636 600

6 352 052 449 513

16 005 934 264 320
140 820 979 805 200

TABLE I: The survival probability SN for N = 1, 2, . . . , 6.
Also listed are the integers (3N)!SN . These are the number
of possible ways to order the 3N random variables Xn, Yn,
and Zn such that the condition (8) holds.

The probability PN,j obeys the recursion equation

PN+1,j =
3N + 2 − j

3N + 3

3N + 1 − j

3N + 2

3N − j

3N + 1
PN,j (12)

+
3N + 2 − j

3N + 3

3N + 1 − j

3N + 2

j

3N + 1
PN,j−1

+
3N + 2 − j

(3N + 3)(3N + 2)(3N + 1)

N+1∑

k=j

(3N − k)PN,k

+
3N + 2 − j

(3N + 3)(3N + 2)(3N + 1)

N+1∑

k=j

k PN,k−1.

This recursion equation evaluates the probability that the
configuration (10) persists even after three new variables
(XN+1, YN+1, and ZN+1) are added. A step-by-step
derivation of (12) is detailed in Appendix A.

The recursion (12) is subject to the “initial” condition
P1,k = 1

6δk,1. The first iteration of (12) yields P2,1 = 1
18 ,

P2,2 = 1
40 , and hence, S2 = 29

360 . Table I lists the next few
values of the survival probability, obtained from iteration
of the recursion equation (12).

We are primarily interested in the N → ∞ asymptotic
behavior. In this limit, the probabilities PN,j simplify
greatly because the variables N and j become uncorre-
lated! Numerical evaluation of the recursion (12) shows
that PN,j factorizes

PN,j ≃ SN pj . (13)

The quantity pj is the limiting rank distribution of the in-
termediate maximum, i.e., the probability that there are
j variables exceeding the intermediate maximum. From
(11) and (13) we confirm that the distribution pj is prop-
erly normalized

∞∑

j=1

pj = 1. (14)

We now substitute (13) along with (9) into Eq. (12)
and divide both sides by SN . The leading terms on the
right- and left-hand sides [these are of order O(1)] cancel.
Evaluating corrections to the leading behavior [these are
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FIG. 3: (Color online) The rank distribution pj versus j.
Shown are results of numerical evaluation of the recursion
(12) with increasing values of N .

of order O(N−1)], we arrive at the remarkably simple
recursion relation for the rank distribution

σ pj = (j + 1) pj −
j

3
pj−1 −

1

3

∞∑

k=j

pk. (15)

In deriving (15), we replaced SN+1/SN by 1 − σ N−1.
The first, second, and third terms on the right-hand side
arise from the first, second, and third terms in (12). The
recurrence (15) has to be solved subject to the normaliza-
tion (14), and the exponent σ is essentially an eigenvalue.

First, we mention a few straightforward results. Sum-
ming (15) we express the average rank 〈j〉 =

∑

j j pj

through the exponent σ,

〈j〉 = 3σ − 2. (16)

Next, we iterate (15) to obtain the first few probabilities,

p1 =
1

3(2 − σ)
,

p2 =
7 − 3σ

32(2 − σ)(3 − σ)
,

p3 =
59 − 48σ + 9σ2

33(2 − σ)(3 − σ)(4 − σ)
.

(17)

The rank distribution is a rapidly decreasing function
(Fig. 3). To the leading order, the distribution decays
exponentially, pj ∝ 3−j , as seen by comparing the leading
terms j pj = (j/3)pj−1. The algebraic correction to this
leading asymptotic behavior can be easily extracted from
(15). Indeed, one writes pj = 3−jfj and recasts (15) into
(
σ + 1

2

)
fj = (j + 1)fj − jfj−1 for j ≫ 1, from which we

get fj ∼ jσ−1/2 and hence

pj ≃ b jσ−1/23−j . (18)

The prefactor b = 1.58063 is derived in the Appendix
(see Appendices B and C).

To determine the eigenvalue σ, we employ the generat-
ing function technique. By multiplying (15) by zj+1 and

summing over all j ≥ 1, we recast the infinite system of
equations (15) into the first-order differential equation

(3 − z)
dP (z)

dz
+ P (z)

(
1

1 − z
− 3σ

z

)

=
z

1 − z
, (19)

for the generating function

P (z) =
∑

j≥1

pj zj+1 . (20)

The normalization (14) yields P (1) = 1 and the aver-
age rank (16) gives P ′(1) = 3σ − 1. In addition, we have
P (0) = 0. The solution to Eq. (19) subject to the above
boundary conditions reads

P (z) =

√

1 − z

3 − z

(
z

3 − z

)σ

U(z),

U(z) =

∫ z

0

du

(1 − u)3/2

(3 − u)σ−1/2

uσ−1
.

(21)

To obtain the eigenvalue σ, we evaluate the behavior
of this solution in the vicinity of z = 1. The solution
consists of a regular term Preg(z) and a singular term
Psing(z), that is P (z) = Preg(z) + Psing(z). We already
know that P (1) = 1 and P ′(1) = 3σ − 1, and hence,
Preg(z) = 1 − (3σ − 1)(1 − z) + · · · as z → 1. On the
other hand, the leading behavior of the singular term is
(see Appendix B)

Psing(z) ≃ F (σ)
√

1 − z. (22)

The amplitude F (σ) can be expressed in terms of the
Euler gamma function the hypergeometric function

F (σ)=−
√

π
Γ(2−σ)

Γ
(

3
2−σ

) 2F1

(
− 1

2 , 1
2 − σ; 3

2 − σ;− 1
2

)
. (23)

The quantity P ′(1) must be finite and hence, the lead-
ing term of the singular component of the solution must
vanish, F (σ) = 0. Consequently, the exponent σ is a
root of the following equation involving hypergeometric
function

2F1

(
− 1

2 , 1
2 − σ; 3

2 − σ;− 1
2

)
= 0. (24)

The quantity σ is a transcendental number,

σ = 1.302931 . . . (25)

Results of Monte Carlo simulations are in excellent agree-
ment with this theoretical prediction (Fig. 2). In contrast
with the behavior (7) where the decay exponent is ra-
tional, we see that for three sequences the exponent σ
governing the behavior (9) is apparently irrational.

C. General Case

We now discuss the general case where there are m se-
quences, each containing N random variables. All mN
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m σm

1 0

2 1/2

3 1.302931 . . .

4 2.255 ± 0.015

5 3.24 ± 0.03

6 4.2 ± 0.1

7 5.2 ± 0.2

TABLE II: The exponent σm versus the number of sequences
m. The numerical simulation results represent an average
over roughly 1013 independent realizations.

random variables are independently drawn from the same
distribution function. Based on the results for two and
three sequences, we expect that the probability SN that
the m maxima remain ordered is universal, being inde-
pendent of the details of the distribution function from
which the variables are drawn. Moreover, we anticipate
that the survival probability decays algebraically,

SN ∼ N−σm (26)

for large N . Henceforth, the dependence of SN on m
is left implicit. The decay exponent σm depends on the
number of sequences m. We already know the values
σ1 = 0, σ2 = 1/2, and σ3

∼= 1.302931.
In principle, the recursive equation (12) for the case

m = 3 can be generalized to higher values of m. How-
ever, such a description involves the positions of all m−2
intermediate maxima, and it is tedious. Instead, we use
Monte Carlo simulations. Table II lists the numerically
obtained values for 4 ≤ m ≤ 7, while figure 4 shows the
very same data points. These results suggest that the
exponent grows linearly with the number of sequences.
Below, we derive upper and lower bounds for the expo-
nent and from these two bounds, we deduce the linear
growth analytically.

It is straightforward to establish a lower bound for the
probability SN and consequently, an upper bound for the
exponent σm. Let us consider the special case where: (i)
the m maxima are properly ordered on the very first step,
and (ii) all m maxima remain constant. The probability
for the first event is 1/m! and the probability for the
second scenario is N−m. Hence, we have the lower bound

SN ≥ 1

m!
N−m . (27)

This simple argument gives the upper bound σm ≤ m.
To establish an upper bound for the probability SN

and a consequent lower bound for the exponent σm, we
introduce a natural generalization of the survival proba-
bility SN for the case m = 2. Equation (6) corresponds
to the situation where there are two sequences of random
variables and the first set of maxima is always larger.
When there are m sequences, we can similarly ask: what
is the probability AN that the first set of maxima is al-

1 2 3 4 5 6 7 8
m

0

1

2

3

4

5

6

σ

FIG. 4: The exponent σ versus m. Shown are results of nu-
merical simulations, listed in Table I.

ways ahead? For example, when m = 3 this is the prob-
ability that xn > yn and xn > zn for all n = 1, 2, . . . , N .
The probability AN satisfies a straightforward general-
ization of the recursion (5)

AN = AN−1

(

1 − m − 1

mN

)

. (28)

When m new variables are added, the probability that a
new “global” maximum is set equals 1/N and the proba-
bility that this new maximum belongs to one of the m−1
trailing sequences is simply m−1

m . Starting from A0 = 1,
the recursion equation (28) gives

AN =
Γ(N + 1

m )

Γ( 1
m ) Γ(N + 1)

, (29)

where Γ(x) is the Euler Gamma function. When m = 2,
we recover SN given in (6). Using the asymptotic rela-
tion, Γ(N + a)/Γ(N) ≃ Na as N → ∞, we obtain the
power-law decay

AN ≃ 1

Γ( 1
m )

N−αm , αm = 1 − 1

m
, (30)

for large N . The family of exponents αm approaches a
constant α → 1 in the limit m → ∞,

We are now in a position to construct an upper bound
for SN . The probability that the first maximum is al-
ways larger than all other m− 1 maxima is given by AN

in (29). The probability that the second maximum is
always larger then m− 2 remaining maxima can be esti-
mated by replacing m with m − 1 in (29). Similarly, the
probability that the third maximum is always larger than
the next m − 3 maxima is approximated by replacing m
with m−2 in (29), and so on. The product of these m−1
probabilities constitutes an upper bound

SN ≤
m∏

k=2

Γ(N + 1
k )

Γ( 1
k ) Γ(N + 1)

. (31)

If the maxima are always perfectly ordered, then every
one of the m − 1 conditions mentioned above is always
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FIG. 5: (Color online) The survival probability SN for m = 3.
The upper bound (31) shown in squares is compared with the
exact values (circles), obtained from the exact recursion (12).

satisfied. However, since the opposite is not necessarily
true, the product of m−1 probabilities overestimates the
probability SN . Figure 5 demonstrates that this upper
bound gives a very good approximation for the probabil-
ity SN . For example, when m = 3, the upper bound is
1
12 = 30

360 whereas the exact value is S2 = 29
360 (see Table

I). The lower bound (27) is a much poorer approximation,
in comparison.

By using the upper bound (31) and the asymptotic
behavior (30) we arrive at the lower bound,

σm ≥ α2 + α3 + · · ·αm . (32)

Hence, we conclude that the exponent σm is bounded
from above and from below as follows,

m −
(

1 +
1

2
+

1

3
+ · · · + 1

m

)

≤ σm ≤ m. (33)

For example, for m = 3 we have the bounds 7
6 ≤ σ3 ≤ 3,

and indeed, the lower bound is much tighter compared
with the upper bound. Most significantly, the two bounds
establish the linear growth (see figure 4)

σm ≃ m. (34)

The asymptotic behavior 1+ 1
2 + · · ·+ 1

m ≃ lnm+γ (here
γ ∼= 0.577215 is the Euler constant) shows that the devia-
tion from linear growth is at most logarithmic. The linear
growth (34) is in contrast with the quadratic m(m−1)/4
growth of the exponent characterizing ordering of ran-
dom walks [32–36]. Finally, we mention a numerical ob-
servation: the empirical formula σ̃m = (m−1)2/m, which
is exact for m = 1 and m = 2, yields an excellent approx-
imation for the values listed in Table I.

The exponents σm provide an excellent approximation
to an analogous set of exponents that characterize ran-
dom walks. Let sN be the probability that the maxima
of the positions of m independent random walks, each
consisting of N steps, are ordered. This quantity decays
algebraically sN ∼ N−νm . For two random walks, it was
established analytically that ν2 = 1

4 [26]. In view of the

m νm σm/2

2 1/4 1/4

3 0.653 0.651465

4 1.13 1.128

5 1.60 1.62

6 2.01 2.10

TABLE III: The exponent νm for ordering of random walk
maxima [26] versus the values σm/2, see Table II.

identity ν2 = σ2/2, we compare the values σm/2 with
the values of νm obtained using numerical simulations
for m = 3, 4, 5, 6 [26]. Table III shows that the ordering
exponents, obtained in the present study for uncorrelated
random variables, provide an excellent approximation for
the ordering exponents that characterize the maximal
positions of random walks, at least for small values of
m. Random walk positions are certainly correlated ran-
dom variables, and therefore, the results above, which are
strictly valid for uncorrelated random variables, may in
practice provide useful approximations for certain classes
of correlated random variables.

We also mention that the quantity sN is not universal
as it depends, albeit rather weakly, on the step length
distribution [37]. Nevertheless, the decay exponents νm

listed in Table III are universal, namely they are valid as
long as the step length distribution is symmetric and has
finite variance [26].

III. PARTIAL ORDER

The exponents σm characterizing the statistics of per-
fectly ordered maxima are part of a broader family of
exponents. We have already obtained one such family of
exponents, αm = 1 − 1

m , that characterize the probabil-
ity AN that the first sequence of maxima is always larger
than all other m− 1 maxima. For example, when m = 2
the requirement that xn is largest is equivalent to the
requirement xn > yn for all n = 1, 2, . . . , N . Therefore,
SN = AN for m = 2, and hence α2 = σ2. Another trivial
identity is α1 = σ1.

Similarly, we can introduce the probability BN that
the first two sets of maxima remain ordered and exceed
the other m−2 maxima. In other words, the sequence of
maxima {x1, x2, . . . , xN} is always the largest, and the
sequence {y1, y2, . . . , yN} is always the second largest.
Therefore, the probabilities BN and SN are identical
when there are two or three sequences. We expect the
algebraic decay

BN ∼ N−βm , (35)

with β2 = σ2 and β3 = σ3.
The recursion equation (12) is straightforward to gen-

eralize from three to m ≥ 2 sequences, thereby giving a
recursive calculation of the probability BN . By repeat-
ing the analysis leading to (12) we find that the rank
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FIG. 6: Families of ordering exponents. Shown are the first
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are listed in Table III (circles). The ordering exponents σm

describing perfectly ordered maxima (bullets) are also shown.
The analytic curves for α and β are given in equations (30)
and (37). The curves for γ and δ represent a fourth-order
polynomial best fit to the simulation results.

distribution pj obeys the recursion equation

β pj = (j + 1) pj −
j

m
pj−1 −

1

m

∞∑

k=j

pk (36)

and the normalization condition (14). The expo-
nent β ≡ βm is again an eigenvalue, and the av-
erage rank can be expressed through this exponent,
〈j〉 = [1 + m(β − 1)]/(m − 2). Moreover, the rank dis-
tribution has the following tail pj ∼ jβ−(m−2)/(m−1) m−j .
By following the analysis in Sec. II B, it is straightforward
to show that exponent β is a root of a transcendental
equation involving the hypergeometric function,

2F1(−µ, 1 − µ − β; 2 − µ − β;−µ) = 0, (37)

with the shorthand notation µ = 1/(m−1). When m = 3
this equation coincides with (24) and hence β3 = σ3. The
next three values are β4 = 1.56479, β5 = 1.69144, and
β6 = 1.76164. One can also deduce the asymptotic be-
havior, 2−βm ≃ m−1, when m ≫ 1. Just like the family
of exponents αm, the curve βm saturates in the large m
limit: βm → 2. While the parameter m is discrete, the
solution to the transcendental equation (37) can be eval-
uated for all m ≥ 2 and the resulting continuous curve is
shown in Fig. 6.

There is an infinite set of probabilities generalizing AN

and BN : The probability CN that the first three maxima
(out of a total of m ≥ 3) remain ordered xn > yn > zn

and exceed all others for all 1 ≤ n ≤ N ; the probability
DN that the first four maxima (out of total of m ≥ 4)
remain ordered and exceed all others, and so on. These
probabilities are characterized by three families of expo-
nents,

CN ∼ N−γm , DN ∼ N−δm . (38)

m α β γ δ

1 0

2 1/2 1/2

3 2/3 1.302931 1.302931

4 3/4 1.56479 2.255 2.255

5 4/5 1.69144 2.547 3.24

6 5/6 1.76164 2.680 3.53

TABLE IV: The first few families of exponents. The expo-
nents αm and βm are obtained analytically. When m ≥ 4, the
exponents γm and δm are from numerical simulations.

We have β3 = γ3 = σ3, γ4 = δ4 = σ4, and δ5 = σ5.
The first four families of exponents are shown in Fig. 6.
These families of exponents form an intriguing structure
that resembles a scallop. The smallest two integer expo-
nents in the mth family coincide with the exponents σm

and σm+1. An interesting question for future research
is whether the families of ordering exponents adhere to
a universal scaling curve when the number of conditions
such as (8) becomes very large.

IV. CONCLUSIONS

We have shown that the probability that the running
maxima of independent sets of random variables are or-
dered decays algebraically with the number of variables.
The scaling exponents that characterize this decay are in
general nontrivial. When there are three sequences, the
scaling exponent is eigenvalue of a recurrence equation,
and it is also a root of a transcendental equation. The
scaling exponents grow linearly with the number of in-
dependent sequences. We have also seen that ordering
exponents for uncorrelated random variables provide an
excellent approximation for the corresponding set of ex-
ponents that characterize maximal positions of random
walks.

The key observation that allowed us to treat the three-
variable case analytically is that the rank of the interme-
diate maximum decouples from the sequence length in
the asymptotic regime. This observation, combined with
the power-law decay of the overall survival probability
reduces the complexity of the underlying combinatorial
problem: enumerating the number of ways to order the
random variables such that the respective maxima re-
main ordered.

One can study the probability that the running max-
ima of the first k sequences are ordered and exceed the
maxima of remaining m − k sequences. We have ex-
amined such probabilities for k = 1, 2, 3, 4 and derived
analytic expressions for the exponents for the case with
persistent leader (k = 1) and the case with persistent
leader and persistent second leader. We have seen that
there are families of exponents, in some cases equivalent
to eigenvalues, that form an intriguing structure. For
uncorrelated random variables, the intersection points of
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these eigenvalue families mark a linear envelope. It would
therefore be interesting to investigate the corresponding
exponent families for ordered maxima of Brownian tra-
jectories, where that envelope shows quadratic growth
[32–36].

Furthermore, there are many similar survival probabil-
ities, for example, the probability LN that the running
maxima of one sequence are never the smallest. Nu-
merically, we observe the algebraic decay LN ∼ N−λm .
The first exponent is obvious, λ2 = 1/2. Our numerical
simulations yield a slowly decreasing set of exponents:
λ3 = 0.3801, λ4 = 0.3145, λ5 = 0.2726, and λ6 = 0.2430.

We emphasize that the probability that the actual
random variables remain perfectly ordered decays expo-
nentially while the probability that the running maxima
maintain perfect order decays much more slowly, namely
algebraically, with sequence length. Hence, it is far more
likely to observe ordered maxima. In several contexts
such as temperature records [9] or stock market time se-
ries [15], record highs or record lows are followed very
closely to see for example if one year is the hottest or if
one stock is consistently outperforming its peers. Hence,
we expect that the questions we investigated theoretically
in this study may be of practical relevance in analysis of

time series. Moreover, consistently ordered extreme val-
ues provide a natural way to quantify persistent upward
or downward trends in the data.

We anticipate that the actual survival probabilities,
particularly the values of the scaling exponents, may be
measurable in empirical data, including those with corre-
lated random variables. One such example is inter-event
times for earthquakes where a series of recent studies
demonstrate how “persistence” properties of maxima of
uncorrelated variables provide excellent predictions for
empirical observations [11, 22, 23].

The concept of ordered maxima can also be employed
in analysis of physical systems. For example, in disor-
dered materials such as ensembles granular particles, one
may be able to probe density fluctuations in different re-
gions and in particular, extreme values of the packing
fraction versus time. Measurement of the evolution of
extreme values as described in the current investigation
can be used to identify “hot-spots” or regions of persist-
ing high density or high effective temperatures [39–41].

We acknowledge financial support through US-DOE
grant DE-AC52-06NA25396 for support (EB & NWL).
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APPENDIX A: DERIVATION OF EQ. (12)

The quantity PN,j is the probability that: (i) the con-
dition xn > yn > zn holds for all n = 1, 2, . . . , N and
that (ii) there are exactly j variables from the sequence
{X1,X2, . . . ,XN} that are larger than the intermediate
maximum yN . We introduce a related auxiliary quan-
tity QN,j which is the probability that: (i) the condi-
tion xn > yn > zn holds for all n = 1, 2, . . . , N and
that (ii) there are exactly j variables from the sequence
{X1,X2, . . . ,XN+1} that are larger than the intermedi-
ate maximum yN . The probability QN,j is directly re-
lated to the quantity PN,j ,

QN,j =
3N − j

3N + 1
PN,j +

j

3N + 1
PN,j−1. (A1)

To obtain this recursion we consider how the configura-
tion (10) changes with the addition of the variable XN+1.

The rank of the intermediate maximum remains the same
if XN+1 < yN . The probability of this event equals
3N−j
3N+1 and hence the first term. The second term accounts
for the complementary scenario, XN+1 > yN , where the
rank of the intermediate maximum yN increases by one.

Next, we consider the auxiliary quantity RN,j which
is the probability that: (i) the condition xn > yn holds
for all n = 1, 2, . . . , N + 1, (ii) the condition yn > zn

holds for all n = 1, 2, . . . , N , and (iii) there are exactly
j variables from the sequence {X1,X2, . . . ,XN+1} that
are larger than the intermediate maximum yN+1. The
probability RN,j follows from the quantity QN,j ,

RN,j =
3N + 1 − j

3N + 2
QN,j +

1

3N + 2

N+1∑

k=j

QN,k. (A2)

Now we have to compare the random variable YN+1 with
the maximum yN . If YN+1 < yN , the rank of the in-
termediate maximum does not change. The probability
of this event is 3N+1−j

3N+2 and hence, the first term. The
second term accounts for the complementary situation in
which the rank of the intermediate maximum increases.

Finally, the probability PN+1,j follows immediately
from RN,j

PN+1,j =
3N + 2 − j

3N + 3
RN,j . (A3)

To obtain this equation, we consider the addition of the
variable ZN+1. We must ensure that the maximum from
the trailing sequence does not overtake the intermediate
maximum, ZN+1 < yN+1, and the probability for this

event is simply 3N+2−j
3N+3 . By substituting (A1) into (A2)

and then substituting (A2) into (A3) we obtain the re-
cursion equation (12).

APPENDIX B: THE GENERATING FUNCTION P (z) IN THE LIMIT z → 1

We evaluate the asymptotic behavior of the function U(z) which appears in (21) as z → 1 using the following steps:

U(z) =

∫ z

0

du

(1 − u)3/2

(3 − u)σ−1/2

uσ−1
(B1)

=

∫ z

0

du

(1 − u)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

− 2σ+1/2 + 2σ+1/2(1 − z)−1/2

= 2σ+1/2

(
1√

1 − z
− 1

)

+

∫ 1

0

du

(1 − u)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

−
∫ 1

z

du

(1 − u)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

= 2σ+1/2

{

1√
1 − z

− 1 +
1

2

∫ 1

0

du

(1 − u)3/2

[

u1−σ

(
3 − u

2

)σ−1/2

− 1

]

− 6σ − 5

4

√
1 − z + O

[

(1 − z)3/2
]
}

= 2σ+1/2

(
1√

1 − z
+ F (σ) − 6σ − 5

4

√
1 − z

)

+ O
[

(1 − z)3/2
]

.
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The quantity F (σ) can be expressed in terms of the hypergeometric function,

F (σ) =
1

2

∫ 1

0

du

(1 − u)3/2

[

u1−σ

(
3 − u

2

)σ−1/2

− 1

]

− 1 (B2)

=
1

2

∫ 1

0

dv v−3/2
[

(1 − v)1−σ(1 + 1
2v)σ−1/2 − 1

]

− 1

=
1

2

Γ(− 1
2 ) Γ(2 − σ)

Γ( 3
2 − σ)

2F1(− 1
2 , 1

2 − σ; 3
2 − σ;− 1

2 ) − 1

2

∫ 1

0

dv v−3/2 − 1

= −
√

π
Γ(2 − σ)

Γ
(

3
2 − σ

) 2F1(− 1
2 , 1

2 − σ; 3
2 − σ;− 1

2 ).

First, we note that the integral which specifies F (σ) is finite. In deriving the third line we used the integral represen-
tation of the hypergeometric function

∫ 1

0

dv vb−1(1 − v)c−b−1(1 − zv)−a =
Γ(b) Γ(c − b)

Γ(c)
2F1(a, b; c; z), (B3)

and the identity 2F1(a, b; c; z) = 2F1(b, a; c; z). In deriving the fourth line, we used the identity (valid in the sense

of distributions, or generalized functions [38])
∫ 1

0
dv vλ = 1

λ+1 . This identity is certainly valid in the complex plane

where Re(λ) > −1, and then it may be analytically continued into the whole complex plane, in particular to the value
λ = −3/2.

APPENDIX C: THE GENERATING FUNCTION P (z) IN THE LIMIT z → 3

The integral representation (21) implicitly assumes that z < 1. To obtain the asymptotic behavior of the generating
function P (z) in the limit z → 3, we write the solution of Eq. (19) in a different form

P (z) =

√

z − 1

3 − z

(
z

3 − z

)σ

Ũ(z) ,

Ũ(z) = Ũ(3) +

∫ 3

z

du

(u − 1)3/2

(3 − u)σ−1/2

uσ−1
.

(C1)

To determine the constant Ũ(3) we transform Ũ(z) as follows:

Ũ(z) = Ũ(3) +

∫ 3

z

du

(u − 1)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

+ 2σ−1/2

∫ 3

z

du

(u − 1)3/2

= Ũ(3) +

∫ 3

z

du

(u − 1)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

+ 2σ+1/2

[
1√

z − 1
− 1√

2

]

=
2σ+1/2

√
z − 1

+ Ũ(3) − 2σ +

∫ 3

1

du

(u − 1)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

−
∫ z

1

du

(u − 1)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

=
2σ+1/2

√
z − 1

−
∫ z

1

du

(u − 1)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]

.

The leading singular contribution to the P (z) equals the sum of the second, third, and fourth terms on the third
line, and these terms cancel so that the generating function is regular at z = 1. In the limit z → 3 we have
P (z) ≃

√
2 3σ Ũ(3) (3− z)−σ−1/2. In addition, we use the expansion (1− x)−a =

∑

n≥0 Γ(a + n)xn/[Γ(a)Γ(n + 1)] to

deduce the tail behavior (18) with

b =

√

2

3

1

3Γ(σ + 1/2)

{

2σ −
∫ 3

1

du

(u − 1)3/2

[
(3 − u)σ−1/2

uσ−1
− 2σ−1/2

]}

. (C2)


