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Abstract

We study pattern formation in the bounded confidence model of opinion dynamics. In this

random process, opinion is quantified by a single variable. Two agents may interact and reach a

fair compromise, but only if their difference of opinion falls below a fixed threshold. Starting from

a uniform distribution of opinions with compact support, a traveling wave forms and it propagates

from the domain boundary into the unstable uniform state. Consequently, the system reaches a

steady state with isolated clusters that are separated by distance larger than the interaction range.

These clusters form a quasi-periodic pattern where the sizes of the clusters and the separations

between them are nearly constant. We obtain analytically the average separation between clusters

L. Interestingly, there are also very small quasi-periodic modulations in the size of the clusters.

The spatial periods of these modulations are a series of integers that follow from the continued

fraction representation of the irrational average separation L.

PACS numbers: 89.75.Kd, 82.40.Ck, 05.45.-a
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The so-called “bounded-confidence” model [1–7] and variants thereof have been widely

used to model opinion dynamics [8–14] and have attracted a considerable amount of interest

. The bounded confidence model is appealing because it captures the tendency for reaching

compromise through social interactions, while also taking into account a certain degree of

conviction. Numerical studies show that political parties emerge in the bounded confidence

model as a result of a pattern formation process [1, 3, 4]. In this letter, we obtain analytically

the wavelength governing this process.

We focus on a version of the bounded confidence model in which opinions are quantified

as discrete variables 1 ≤ n ≤ N . In each interaction, two agents with opinions n1 and n2

change their initial opinions by adopting the average opinion (n1, n2) → (n1+n2

2
, n1+n2

2
); such

a compromise occurs only when the opinion difference is smaller than some fixed threshold

|n1 − n2| ≤ σ. We set the threshold σ = 2 and exclude interactions between agents whose

opinion difference equals one, |n1−n2| = 1, to ensure that opinions remain discrete variables.

In this simplified version of the bounded confidence model, opinions change according to [4]

(n − 1, n + 1) → (n, n). (1)

Clearly, this process conserves population and opinion.

Let Pn(t) be the probability density of agents with opinion n at time t. This density

obeys the rate equation

dPn

dt
= 2Pn−1Pn+1 − Pn(Pn−2 + Pn+2). (2)

In writing this equation, we implicitly take the infinite population limit. It is simple to check

that Eq. (2) conserves population,
∑

n Pn, and opinion,
∑

n nPn.

The initial distribution of opinions is uniform with compact support,

Pn(0) =























0 n < 1,

1 1 ≤ n ≤ N,

0 N < n.

(3)

We view the parameter N as the opinion “spectrum,” and also note that N is the only

parameter in the model. The evolution equation (2) is invariant under the scaling transfor-

mation P → αP and t → t/α and hence, we may set the uniform initial density to unity.

This choice allows us to compare systems with different opinion spectrums.
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FIG. 1: [bottom] The probability density Pn(∞) versus n. [top] The cluster mass m versus position

x. . Shown are results of integration of (2)-(3) with N = 109. The dashed line corresponds to the

theoretical value L = 5.671820

The nature of the interaction (1), also reflected by the evolution equation (2), implies

that any probability density that satisfies Pn−1Pn+1 = 0 for all n is stationary. Clearly,

there are infinitely many such steady-state solutions. Starting from the (unstable) initial

condition (3), the deterministic rate equation (2) evolves the system toward one of those

(stable) steady-state solutions [3].

In the final state (i.e., in the limit t → ∞), the system reaches a steady state where

Pn−1(∞)Pn+1(∞) = 0 for all n. In this state, there are multiple opinion “clusters” with

each cluster localized to two neighboring lattice sites (see figure 1). These clusters are

noninteracting because the separation between them exceeds the interaction range.

To quantify the size and opinion of each cluster, we compute for every pair of

occupied lattice sites the mass m = Pn(∞) + Pn+1(∞) and the non-integer position

x = [nPn(∞) + (n + 1)Pn+1(∞)]/m. Let mi be the mass of the ith cluster and xi be the

position of the ith cluster. Conservation of population and opinion sets the sum rules
∑

i mi = N and
∑

i mixi = N(N + 1)/2.

Unlike the probability density, the cluster mass forms a quasi-periodic pattern (see figure

1) as clusters of nearly-identical mass are separated by a nearly-identical distance. This

pattern can be characterized by the average separation L between clusters.

L = lim
N→∞

〈m〉. (4)

With this definition, the average number of clusters scales as N/L in the limit N → ∞.
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FIG. 2: Propagation from the stable into the unstable state. Shown is Pn(t) at equally spaced time

intervals versus n. The curves Pn(t) are shifted vertically with the earliest time at the bottom and

the latest time on top.

Previous numerical studies reported the value L ≈ 5.67 [4]. In this letter, we use theoretical

methods to analyze the evolution of the probability density Pn and analytically obtain L as

the wavelength that governs the underlying pattern formation process.

The uniform initial state (3) is unstable with respect to perturbations that propagate

from either boundary into the unstable uniform state [15, 16]. By substituting the small

periodic disturbance

Pn(t) − 1 ∝ exp[i(kn − ωt)] (5)

into the evolution equation (2) we find the dispersion relation between frequency ω and

wavelength k,

ω = 2i(2 cos k − cos 2k − 1). (6)

Because the quantity −iω is positive for 0 < k < π/2, perturbations with wavenumber in

that range initially grow exponentially with time. The fastest growing mode, by ordinary

linear stability analysis, follows immediately from (6). The maximum of −iω in (6) is set by

dω/dk = 0 which yields klinear = π/3 or alternatively Llinear = 2π/klinear, that is, Llinear = 6.

The perturbations propagate from the stable state into the unstable state at a constant

velocity v (see figure 2). A saddle point analysis shows that the propagation velocity v obeys

(for a comprehensive review see [17] and also [18–21])

v =
dω

dk
=

Im[w]

Im[k]
. (7)
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FIG. 3: The cluster mass m versus position x. The red line corresponds to the theoretical value

(11) and the blue line, to a 100-point running average.

The solution to this equation is the complex wavenumber k∗ ≡ kfront + iλ with kfront =

1.183032 [4]. The constant λ = 0.467227 characterizes the exponential decay of these pe-

riodic perturbations Pn − 1 ∼ e−λ(n−vt) eikfront(n−vt). The wavelength of perturbations at the

leading edge of the front is Lfront = 2π/kfront or explicitly,

Lfront = 5.311086. (8)

Moreover, the propagation velocity v = Im[w∗]/Im[k∗] where w∗ ≡ w(k∗) is

v = 3.807397. (9)

Our numerical results confirm that in the leading edge of the propagating front, the wave-

length of the periodic deviations from the uniform state is indeed given by (8).

Far behind the traveling wave, that is, in the wake of the wave, the system reaches a

steady state with Pn−1Pn+1 = 0 for all n ≪ v t. In this region, clusters are fully-developed.

Interestingly, far behind the propagating front, the pattern that forms, and which ultimately

controls the spacing between clusters, has a larger wavelength due to a Doppler-like effect.

The frequency of oscillations in the front w∗− k∗v, measured in the co-moving frame, trans-

lates to a zero frequency in the rest frame and hence, to stationary patterns, precisely for

the wavenumber [17, 20, 22]

k = k∗ −
w∗

v
. (10)

We note that unlike the Doppler effect, the normalized shift in wavenumber (k∗ − k)/k∗

does not equal a ratio of two velocities as it is complex. The resulting wavenumber (10) is

k = 1.107789 and the corresponding wavelength L = 2π/k is

L = 5.6718200283. (11)
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FIG. 4: The front location xf versus time t.

Hence, out of the entire range of possible wavelengths corresponding to linearly unstable

perturbations, 0 < L < 6, the wavenumber (11) is “selected” by the dynamics of Eq. (2).

We also note the inequality Lfront < L < Llinear. Our numerical results give excellent con-

firmation of the theoretical prediction (see Fig. 3): the numerically-measured wavelength

L = 5.67185 is within 10−5 of (11).

To efficiently perform the computation, we integrated the equations using a lattice with

fixed size N that is moving at the same speed as the traveling wave. Numerical integration

in this co-moving reference frame is feasible because far ahead of the traveling wave Pn = 1

and far behind it, the system settles into a steady-state. The lattice is shifted by one lattice

site, n → n + 1 whenever the deviation from the uniform state at the extreme lattice site,

far ahead of the traveling front, exceeds an infinitesimal threshold, |PN − 1| > ǫ. We used a

Runge-Kutta (4,5) integration method with adaptive step size below 10−3 on a lattice of size

N = 2, 000 and the threshold ǫ = 10−250, well above the smallest machine precision 10−308.

To resolve the leading edge at this precision, we integrated the equations for Qn = Pn − 1

where the leading edge decays to the constant state Qn = 0. Whenever the lattice is shifted

by one site, time and the probability density at the site n = 200, well behind the leading

edge, were recorded. This approach allows us to integrate the equation to times t ≈ 3× 106

and effectively, study systems with very large opinion spectrums N ≈ 106.

The number of shifts at time t directly measures the front position xf . As shown in figure

4, The numerically-measured propagation velocity v = 3.80732 is in excellent agreement with

the theoretical prediction (9). It is remarkable that our computation, for which the ratio

between system size and wavelength is moderate, N /L ≈ 350, yields such high-precision

measurements of L and v. In general, a cutoff error ǫ in the propagating front results in
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FIG. 5: The cluster mass m versus position x (large square) and versus shifted position x + 363

(small circle). The line corresponds to the theoretical value (11).

logarithmic correction δ ∼ (ln ǫ)−2 in the propagation velocity [23]. Moreover, the cutoff

decays exponentially with system size, ǫ ∼ exp(−λN ). By combining these two scaling laws,

we find the algebraic relationship between system size N and correction δ to the velocity,

δ ∼ (λN )−2. The velocity correction we observe, δ ≈ 10−5 for N ≈ 103, is consistent with

this scaling law.

The irrational wavelength L in (11) is not commensurate with the unit lattice spacing.

As a result, the patterns are not strictly periodic but rather, they are quasi-periodic (see

figure 3). Interestingly, we observed small but striking “super-patterns” induced by near-

resonances between L and the lattice spacing. The integer periods of these super-patterns

are found from a continuous-fraction expansion of the wavelength

L = 5 +
1

1 + 1
2+ 1

21+ 1
4+...

≡ 6,
17

3
,
363

64
,
1469

259
, · · · . (12)

Indeed, 3 clusters can be accommodated within the integer period 17. Figure 2 for the

probability density Pn shows that a large peak in the quantity Pn is usually followed by two

smaller ones. Hence, the system exhibits quasi-periodic behavior with integer period 17.

Furthermore, there is also quasi-periodic arrangement of clusters with integer period

363. Figure 5 shows that the cluster mass varies in the range L − ∆ < m < L + ∆. The

variation in cluster mass is very small ∆/m ≈ 2 × 10−3. As a function of position, these

small variations in cluster mass repeat with integer period 363. According to the continued

fraction (12), 64 clusters form this pattern. This intriguing behavior was overlooked in

previous studies that used much smaller values of the opinion spectrum N [3, 4].

Interestingly, the simple evolution equation (2) leads to a hierarchical patterns, governed
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FIG. 6: The cluster mass m versus position x (large square) and versus shifted position x + 1445

(small circle) for the three-site interaction model in (13). The line corresponds to the theoretical

value (15).

by a series of integer periods. The primary pattern, as shown in figure 1 consists of a nearly-

periodic arrangement of clusters with nearly-identical separation. On the first hierarchical

level, M1 clusters are arranged in a nearly periodic super-pattern with period L1. On the

second hierarchical level, M2 patterns form a more intricate super-pattern with the integer

period L2. The fractions M1/L1, M2/L2, and so on are rational approximations of the

wavelength L that follow from its continued fraction representation (12).

To examine the robustness of the above behavior, we also considered the compromise

process (n − 1, n + 2) → (n, n + 1) where the interaction range is three lattice sites. In this

case, the probability density evolves according to the rate equation

dPn

dt
= Pn−2Pn+1 + Pn−1Pn+2 − Pn(Pn−3 + Pn+3). (13)

This equation conserves population and opinion. Starting from the initial condition (3),

the probability density evolves toward a steady state where Pn(∞)Pn+3(∞) = 0 for all

n, and therefore, opinion clusters are now localized to three consecutive lattice sites. By

substituting (5) into (13), the dispersion relation is

ω = 2i(cos k + cos 2k − cos 3k − 1). (14)

By repeating the analysis leading to (11) we obtain the average separation between clusters

and propagation velocity

L = 8.5502770500 and v = 2.50631. (15)

Also, the wavelength of patterns nucleating at the front is Lfront = 8.02282. Numerical
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integration of the evolution equation gives L = 8.5503 and v = 2.5063, in excellent agreement

with the theoretical predictions.

Figure 6 demonstrates the emergence of super-patterns. In this case, continued fraction

representation of the wavelength (15) gives the rational approximations

L = 8 +
1

1 + 1
1+ 1

4+ 1
2+...

≡ 9,
17

2
,
77

9
,
171

20
,
1445

169
· · · . (16)

Figure 6 shows that modulations in cluster mass are periodic and well-characterized by the

integer period 1445, that follows from the continued fraction (16). Accordingly, the super-

pattern consists of 169 clusters. Furthermore, the amplitude of the variations is very small,

∆/m ≈ 5 × 10−4.

We also examined a linear interpolation between (2) and (13), modeling a compromise

process where second- or third-neighbor interactions occur with relative weights τ and 1−τ ,

respectively. We found excellent agreement between the theoretical predictions and the

numerical results for the wavelength L and the velocity v for all values of τ . As expected,

the wavelength decreases monotonically with the mixing parameter τ , which decreases the

effective interaction range. Surprisingly, however, the velocity is not a monotonic function

as it reaches a minimum for τ ≈ 0.88. Thus, replacing a small fraction of the second with

third-neighbor interactions slows down the spreading of the compromise process.

Moreover, we do not observe “mode-locking”. In this phenomenon, common in pattern

forming systems that are exposed to an external spatially-periodic forcing, there is pro-

nounced locking of the wavelength to that of the forcing [24, 25]. In lattice systems, one

therefore expects the observed wavelength to be an integer, in resonance with the unit lattice

spacing, whenever the predicted wavelength is close to an integer. In our case, the predicted

wavelength L is integer (6 or 7 or 8) for particular values of the mixing parameter τ . We

studied values of τ near those resonances but did not observe any locking: the wavelength

varies smoothly and adheres to the predicted values. Further, we did not observe subhar-

monic resonances as in [26–29], where the observed wavelength is an integer multiple of the

predicted wavelength.

We now briefly discuss the original bounded confidence model introduced by Weisbuch et

al [1]. In that model, opinion is quantified by a continuous variable 0 < x < N with N the

opinion spectrum. Agents can interact and reach fair compromise but only if their opinion
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difference falls below a fixed threshold, set to unity without loss of generality [3]

(x1, x2) →
(

x1+x2

2
, x1+x2

2

)

if |x1 − x2| < 1. (17)

The probability density P (x, t) of agents with opinion x at time t obeys the evolution

equation [3]

∂

∂t
P (x, t) =

∫∫

|x1−x2|<1

dx1dx2P (x1, t)P (x2, t)

×

[

δ

(

x −
x1 + x2

2

)

− δ(x − x1)

]

(18)

If the restriction of the integration range is ignored, this equation describes inelastic collisions

[30–33]. According to the interaction (17), opinion clusters are now perfectly localized (delta-

functions) and in the steady-state these localized clusters are separated by distance larger

than unity.

Consider the uniform initial condition: P (x, 0) = 0 for x < 0 or x > N and P (x, 0) = 1

for 0 ≤ x ≤ N . This state is unstable with respect to perturbations that propagate from the

boundary into the unstable uniform state. According to (18), a small periodic disturbance

P (x, t) − 1 ∝ exp[i(kx − ωt)] has the dispersion relation

ω = 2i

[

2
sin(k/2)

k/2
−

sin k

k
− 1

]

. (19)

The fastest growing mode follows from dω/dk = 0 which yields klinear = 2.7906 or alterna-

tively Llinear = 2.2515. The solution to (7) is now k∗ ≡ kfront + iλ with kfront = 3.083750.

The decay constant λ = 1.294620 characterizes the exponential decay far into the unstable

state, φ(x) ∼ exp[−λ(x − vt)]. The wavelength of perturbations at the propagating front is

Lfront = 2.037514. The propagation velocity v = Im[w∗]/Im[k∗] is v = 0.794754. Far behind

the propagating front, that is x ≪ vt, localized clusters form, and these clusters are sepa-

rated by distance L. The corresponding wavenumber is k = 2.924255 and the corresponding

wavelength is

L = 2.1486444707. (20)

The wavelength estimated using numerical integration results for relatively small values of

N [3], L ≈ 2.155, is reasonably close to the exact result (20).

In summary, we studied pattern formation in the bounded confidence model of opinion

dynamics. Our focus was the wavelength that governs the mosaic of frozen clusters that
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develop, starting from a uniform state. We obtained analytically the two wavelengths that

govern the pattern formation process: the wavelength of perturbations at the leading edge

of the traveling wave front and the wavelength of the resulting patterns in the wake of the

wave. We examined discrete and continuous versions of the bounded confidence model.

In the former case, we verified the theoretical predictions using high-precision numerical

measurements of the pattern wavelength and propagation velocity.

The wavelength of the patterns is irrational and since it is not commensurate with the

regular lattice, the pattern formation process is hierarchical. Frozen clusters constitute the

“building bocks” in this hierarchy. Integer number of clusters form quasi-periodic structures

and the period of these super-patterns is an integer, too. Next, a larger number of clusters

form a more intricate super-pattern with a larger integer period. The numbers of clus-

ters and the periods that characterize these super-patterns follow from continued fraction

representation of the irrational wavelength governing the pattern formation process.

We observed that not all rational approximations of the wavelength necessarily correspond

to a super-pattern (see figure 6). Further analysis is therefore needed to understand why

certain integer fractions are realized while others are not, and more generally, to characterize

the intricate structures of the super-patterns.
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