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We analyze the dynamics of competitions with a large number of players. In our model, n players
compete against each other and the winner is decided based on the standings: in each competition,
the mth ranked player wins. We solve for the long time limit of the distribution of the number
of wins for all n and m using scaling analysis of the nonlinear evolution equations, and find three
different scenarios. When the best player wins, the standings are most competitive as there is one-
tier with a clear differentiation between strong and weak players. When an intermediate player wins,
the standings are two-tier with equally-strong players in the top tier and clearly-separated players
in the lower tier. Interestingly, the size and the strength of the upper-tier are nontrivial. When the
worst player wins, the standings are least competitive as there is one tier in which all of the players
are equal. We conclude that controling the rank of the winner provides a way of controling social
inequalities.
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I. INTRODUCTION

Interacting particle or agent-based techniques are a
central method in the physics of complex systems. This
methodology heavily relies on the dynamics of the agents
or the interactions between the agents, as defined on a
microscopic level [1]. In this respect, this approach is
orthogonal to the traditional game theoretic framework
that is based on the global utility or function of the sys-
tem, as defined on a macroscopic level [2].

Such physics-inspired approaches, where agents are
treated as particles in a physical system, have recently
led to quantitative predictions in a wide variety of so-
cial and economic systems [3–5]. Current areas of inter-
est include the distribution of income and wealth [6–9],
opinion dynamics [10–12], the propagation of innovation
and ideas [13], and the emergence of social hierarchies
[14–17].

In the latter example, most relevant to this study, com-
petition is the mechanism responsible for the emergence
of disparate social classes in human and animal commu-
nities. A recently introduced competition process [14, 17]
is based on two-player competitions where the stronger
player wins with a fixed probability and the weaker player
wins with a smaller probability [18]. This theory has
proved to be useful for understanding major team sports
and for analysis of game results data [5].

In the variety of models of economics, wealth distribu-
tion, and social diversity mentioned above, the dynam-
ics are based on agent-agent interactions. Typically, one
agent benefit from such interaction. How an agent, or
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competitor, fare in an interaction is typically a function
of their relative standings with respect to the other com-
petitors. In some cases, the best agent benefit and in
others, the worst benefits. However, there are also situ-
ations where there is a payoff for agents that are neither
the best nor the worst. This is the case for example
in second-price auctions where the second highest bid-
der wins [19]. Similarly, in politics centrists are often
rewarded, while ones taking on extreme positions are pe-
nalized. Motivated by this, we consider the most general
multi-agent interaction where the rank of the agent who
benefits from social interaction or competition can be
specified to be any position from best to worst.

We consider multi-player games and address the situ-
ation where the outcome of a game is completely deter-
ministic. Our modeling approach resembles urn mod-
els [20, 21] that have been used extensively to model
economic growth and social dynamics [22, 23]. In our
model, a large number of players n participate in the
game, and in each competition, the mth ranked player
always wins. The number of wins measures the strength
of a player. Furthermore, the distribution of the number
of wins characterizes the nature of the standings. We
address the time-evolution of this distribution using the
rate equation approach, and then, solve for the long-time
asymptotic behavior using scaling techniques.

We find that there are three types of standings. When
the best player wins, m = 1, there is a clear notion of
player strength; the higher the ranking the larger the
winning rate. When an intermediate player wins, 1 <
m < n, the standings have two tiers. Players in the lower
tier are well separated, but players in the upper-tier are
all equally strong. Interestingly, the size and the strength
of the upper-tier are nontrivial as they follow from roots
of polynomials of degree n+1. When the weakest player
wins, m = n, the lower tier disappears and all of the
players are equal in strength. In this sense, when the
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best player wins, the environment is most competitive,
and when the worst player wins it is the least competitive.

When the number of players is large, the size of the
upper-tier changes in a continuous fashion. The top tier
includes all players in one extreme case and none of the
players in the other extreme case. Thus, one of our main
conclusion is that by controlling the rank of the winning
player, one can control the emergent social hierarchy and
in particular, the size and the strength of the upper-tier.

The rest of this paper is organized as follows. We in-
troduce the model in section II. In Section III, we analyze
in detail three-player competitions, addressing situations
where the best, intermediate, and worst player wins, in
order. We then consider games with an arbitrary number
of players and pay special attention to the large-n limit
in Section IV. We conclude in section V.

II. THE MULTI-PLAYER MODEL

Our model system consists of a large pool of N play-
ers that compete against each other in multi-player com-
petitions. In each game, n competitors are randomly
drawn from the total pool of players. These competitors
are ranked from best to worst according to the number
of wins, and the mth ranked competitor is awarded the
win. The win totals are updated accordingly and this
basic competition process is repeated ad infinitum. Ini-
tially, all the players are equal as they all start with no
wins. Ties are handled in a completely random fashion:
when two or more players are tied, their relative rank-
ings are determined randomly. In other words, if ki is
the number of wins of the ith ranked competitor, i.e.,
k1 ≥ · · · ≥ km ≥ · · · ≥ kn, then the result of the compe-
tition is as follows

(k1, . . . , km, . . . kn) → (k1, . . . , km + 1, . . . , kn). (1)

Initially, players start with no wins, k = 0.
We set the competition rate such that the number of

competitions in a unit time equals the total number of
players. Thence, each player participates in n games per
unit time, and furthermore, the average number of wins
〈k〉 simply equals time

〈k〉 = t. (2)

At large times, it is natural to analyze the winning rate,
that is, the number of wins normalized by time, x = k/t.
Similarly, from our definition of the competition rate, the
average winning rate equals one

〈x〉 = 1. (3)

Our goal is to characterize how the number of wins, or
alternatively, the winning rate are distributed in the long
time limit. We note that since the players are randomly
chosen in each competition, the number of games played
by a given player is a fluctuating quantity. Nevertheless,

since this process is completely random, fluctuations in
the number of games played by a given player scale as the
square-root of time, and thus, these fluctuations become
irrelevant in the long time limit. Also, we consider the
thermodynamic limit, N → ∞.

III. THREE PLAYER GAMES

We first analyze the three player case, n = 3, because it
nicely demonstrates the full spectrum of possibilities. We
detail the three scenarios where the best, intermediate,
and worst, players win in order.

A. Best player wins

Let us first analyze the case where the best player wins.
That is, if the number of wins of the three players are
k1 ≥ k2 ≥ k3, then the game outcome is as follows

(k1, k2, k3) → (k1 + 1, k2, k3). (4)

Let fk(t) be the probability distribution of players with
k ≥ 0 wins at time t. This distribution is properly nor-
malized,

∑

k fk = 1, and it evolves according to the non-
linear difference-differential equation

dfk

dt
=

(

3

1

)

(fk−1F
2
k−1 − fk F 2

k ) (5)

+

(

3

2

)

(

f2
k−1Fk−1 − f2

k Fk

)

+

(

3

3

)

(

f3
k−1 − f3

k

)

.

Here, we used the cumulative distributions Fk =
∑k−1

j=0 fj

and Gk =
∑∞

j=k+1 fj of players with fitness smaller than
and larger than k, respectively. The two cumulative dis-
tributions are of course related, Fk +Gk−1 = 1. The first
pair of terms accounts for games where it is unambigu-
ous who the top player is. The next pair accounts for
two-way ties for first, and the last pair for three way ties.
Each pair of terms contains a gain term and a loss term
that differ by a simple index shift. The binomial coeffi-
cients account for the number of distinct ways there are to
choose the players. For example, there are

(

3
1

)

= 3 ways
to choose the top player in the first case. This master
equation should be solved subject to the initial condition
fk(0) = δk,0 and the boundary condition f−1(t) = 0. One
can verify by summing the equations that the total prob-
ability is conserved d

dt

∑

k fk = 0, and that the average
fitness 〈k〉 =

∑

k kfk evolves as in (2), d〈k〉/dt = 1.

For theoretical analysis, it is convenient to study the
cumulative distribution Fk. Summing the rate equations
(5), we obtain closed equations for the cumulative distri-
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bution

dFk

dt
= −3(Fk − Fk−1)F

2
k−1 (6)

−3(Fk − Fk−1)
2Fk−1

−(Fk − Fk−1)
3.

Here, we used fk = Fk+1 − Fk. This master equation is
subject to the initial condition Fk(0) = 1 and the bound-
ary condition F−1(t) = 0.

We are interested in the long time limit. Since the
number of wins is expected to grow linearly with time,
k ∼ t, we may treat the number of wins as a continuous

variable, Fk−1 = Fk −
∂F
∂k + 1

2
∂2F
∂k2 + · · · . Asymptotically,

since ∂F
∂k ∝ t−1 and ∂2F

∂k2 ∝ t−2, etc., second- and higher-
order terms become negligible compared with the first
order terms. To leading order, the cumulative distribu-
tion obeys the following partial differential equation

∂F

∂t
+ 3F 2 ∂F

∂k
= 0. (7)

From dimensional analysis of this equation, we anticipate
that the cumulative distribution obeys the scaling form

Fk(t) ' Φ(k/t) (8)

with the boundary conditions Φ(0) = 0 and Φ(∞) = 1.
In other words, instead of concentrating on the number
of wins k, we focus on the winning rate x = k/t. In the
long time limit, the cumulative distribution of winning
rates Φ(x) becomes stationary. Of course, the actual dis-
tribution of winning rates φ(x) also becomes stationary,
and it is related to the distribution of the number of wins
by the scaling transformation

fk(t) ' t−1φ(k/t) (9)

with φ(x) = Φ′(x). Since the average winning rate equals
one (3), the distribution of winning rates must satisfy

1 =

∫ ∞

0

dxxΦ′(x). (10)

Substituting the definition (8) into the master equation
(7), the stationary distribution satisfies

Φ′(x)[3Φ2 − x] = 0. (11)

There are two solutions: (i) The constant solu-
tion, Φ(x) = const, and (ii) The algebraic solution
Φs(x) = (x/3)1/3. Invoking the boundary condition
limx→∞ Φ(x) = 1 we find [Fig. 1]

Φ(x) =

{

(x/3)1/2 x ≤ 3

1 x ≥ 3.
(12)

One can verify that this stationary distribution satis-
fies the constraint (10) so that the average winning rate
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FIG. 1: The stationary distribution of winning rates (12) for
the case n = 3, m = 1.

equals one. This result generalizes the linear stationary
distribution found for two player games [17].

Initially, all the players are identical, but by the ran-
dom competition process, some players end up at the top
of the standings and some at the bottom. Although our
model does not include the notion of intrinsic merit, the
random competition process is sufficient to generate a
hierarchy of players with different strengths. Similar be-
havior was reported in a number of wealth distribution
studies [6–9]. The hierarchy in player strength directly
follows from the fact that the distribution of winning
rates is nontrivial. Also, since φ(x) ∼ x−1/2 as x → 0, the
distribution of winning-rate is nonuniform and there are
many more players with very low winning rates. When
the number of players is finite, a clear ranking emerges,
and every player wins at a different rate. Moreover, after
a transient regime, the rankings do not change with time.

Tie breakers play an important role at short times since
the players are all tied initially. However, tie-breakers be-
come irrelevant in the long time limit because the number
of wins grows linearly with time and therefore, the prob-
ability of finding two players with the same number of
wins becomes negligible. This is seen from the fact that
the terms corresponding to situations were there is a two-
or three-way tie for first do not affect the scaling behav-
ior. Moreover, the scaling behavior is unique because it
is governed by the term that corresponds to situations
where the three players have distinct strengths. For the
same reason, it is independent of the initial conditions.
Tie-breaking rules are necessary to break the initial ties
and they affect how the distribution of the number of
wins approaches a stationary form, but they do not af-
fect the final form of the stationary distribution.

B. Intermediate player wins

Next, we address the case where the intermediate
player wins,

(k1, k2, k3) → (k1, k2 + 1, k3). (13)
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Now, there are four terms in the master equation

dfk

dt
=

(

3

1

)(

2

1

)

(fk−1Fk−1Gk−1 − fkFkGk) (14)

+

(

3

1

)

(

f2
k−1Gk−1 − f2

k Gk

)

+

(

3

2

)

(

f2
k−1Fk−1 − f2

k Fk

)

+

(

3

3

)

(

f3
k−1 − f3

k

)

.

The first pair of terms accounts for situations where there
are no ties and then the combinatorial prefactor is a
product of the number of ways to choose the interme-
diate player times the number of ways to choose the best
player. The next two pairs of terms account for situa-
tions where there is a two-way tie for best and worst,
respectively. Again, the last pair of terms accounts for
three-way ties. These equations conserve the total prob-
ability,

∑

k fk = 1, and they are also consistent with (2).
Summing the rate equations (14), we obtain closed

equations for the cumulative distribution

dFk

dt
= −6(Fk − Fk−1)Fk−1Gk−1 (15)

−3(Fk − Fk−1)
2(Fk−1 + Gk−1)

−(Fk − Fk−1)
3.

For clarity, we use both of the cumulative distributions,
but note that this equation is definitely closed in Fk be-
cause of the relation Gk = 1 − Fk+1. Taking the con-
tinuum limit and keeping only first-order derivatives, the
cumulative distribution obeys the following partial differ-
ential equation ∂F

∂t + 6F (1 − F )∂F
∂k = 0 with the bound-

ary conditions F0 = 0 and limk→∞ Fk = 1. Substituting
the definition of the stationary distribution of winning
rates (8) into this partial differential equation, we arrive
at

Φ′(x)[6Φ(1 − Φ) − x] = 0, (16)

an equation that is subject to the boundary conditions
Φ(0) = 0 and limx→∞ Φ(x) = 1. There are two so-
lutions: (i) The constant solution, Φ(x) = const, and
(ii) The root of the second-order polynomial Φs(x) =
1
2

(

1 −
√

1 − 2x/3
)

. Invoking the boundary conditions,
we conclude [Fig. 2]

Φ(x) =

{

1
2

(

1 −
√

1 − 2
3x
)

x < x0

1 x > x0.
(17)

As the nontrivial solution is bounded Φs(x) ≤ 1/2, the
cumulative distribution must have a discontinuity. We
have implicitly assumed that this discontinuity is located
at x0 < 3/2.

The location of this discontinuity is dictated by the
average number of wins constraint. Substituting the sta-
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FIG. 2: The stationary distribution of winning rates (17) for
n = 3, m = 2.

tionary distribution (17) into (10) then

1 =

∫ x0

0

dxxΦ′(x) + x0[1 − Φ(x0)].

In writing this equality, we utilized the fact that the sta-
tionary distribution has a discontinuity at x0 and that
the size of this discontinuity is 1 − Φ0. Integrating by
parts, we obtain an implicit equation for the location of
the discontinuity

1 = x0 −

∫ x0

0

dxΦ(x). (18)

Substituting the stationary solution (17) into this equa-
tion and performing the integration, we find after several
manipulations that the location of the singularity satis-
fies the cubic equation x2

0

(

x0 −
9
8

)

= 0. The location of
the discontinuity is therefore

x0 =
9

8
. (19)

This completes the solution (17) for the scaling function.
The size of the discontinuity follows from Φ0 ≡ Φ(x0) =
1/4. Interestingly, the size and the strength of the upper
class are not trivial.

There is an alternative way to find the location of the
discontinuity. Let us transform the integration over x
into an integration over Φ using the equality

x0Φ0 =

∫ x0

0

dxΦ(x) +

∫ Φ0

0

dΦx(Φ). (20)

This transforms the equation for the location of the dis-
continuity (18) into an equation for the size of the jump

1 = x0(1 − Φ0) +

∫ Φ0

0

dΦx(Φ). (21)

Substituting x(Φ) = 6Φ(1 − Φ) we arrive at the cubic
equation for the variable Φ0, 1 = 6Φ0 − 9Φ2

0 + 4Φ3
0. The

relevant solution is Φ0 = 1
4 , from which we conclude

x0 = 9/8. For three-player games, there is no partic-
ular advantage for either of the two approaches: both
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(18) and (21) involve cubic polynomials. However, in
general, the latter approach is superior because it does
not require an explicit solution for Φ(x).

The scaling function corresponding to the win-number
distribution is therefore

φ(x) =
1

6

(

1 −
2

3
x

)−1/2

+
3

4
δ

(

x −
9

8

)

,

where δ(x) denotes the Kronecker delta function. The
win-number distribution contains two components. The
first is a nontrivial distribution of players with winning
rate x < x0 and the second reflects that a finite fraction
of the players have the maximal winning rate x = x0.
Thus, the standings have a two-tier structure. Players
in the lower tier have different strengths and there is a
clear differentiation among them. Players in the upper-
tier are essentially equal in strength as they all win with
the same rate. A fraction Φ0 = 1

4 belongs to the lower

tier and a complementary fraction 1−Φ0 = 3
4 belongs to

the upper tier. Interestingly, the upper-tier has the form
of a condensate. We note that a condensate, located at
the bottom, rather than at the top as is the case here,
was found in the diversity model in Ref. [17].

C. Worst player wins

Last, we address the case where the worst player wins
[18, 24]

(k1, k2, k3) → (k1, k2, k3 + 1). (22)

Here, the distribution of the number of wins evolves ac-
cording to

dfk

dt
=

(

3

1

)

(fk−1G
2
k−1 − fk G2

k) (23)

+

(

3

2

)

(

f2
k−1Gk−1 − f2

k Gk

)

+

(

3

3

)

(

f3
k−1 − f3

k

)

.

This equation is obtained from (5) simply by replacing
the cumulative distribution Fk with Gk. The closed equa-
tion for the cumulative distribution is now

dFk

dt
= −3(Fk − Fk−1)G

2
k−1 (24)

−3(Fk − Fk−1)
2Gk−1

−(Fk − Fk−1)
3.

In the continuum limit, this equation becomes
∂F
∂t + 3(1 − F )2 ∂F

∂k = 0, and consequently, the stationary
distribution satisfies

Φ′(x)[3(1 − Φ)2 − x] = 0. (25)

Now, there is only one solution, the constant Φ(x) =
const, and because of the boundary conditions Φ(0) = 0

0 0.25 0.5 0.75 1 1.25 1.5 1.75
x

0

0.25

0.5

0.75

1

Φ

FIG. 3: The stationary distribution of winning rates (26) for
the case n = m = 3.

and limx→∞ Φ(x) = 1, the stationary distribution is a
step function: Φ(x) = 1 for x > x0 and Φ(x) = 0 for
x < x0. In other words, Φ(x) = Θ(x − x0). Substitut-
ing this form into the condition (10), the location of the
discontinuity is simply x0 = 1, and therefore [Fig. 3]

Φ(x) = Θ(x − 1) (26)

where Θ(x) is the Heaviside step function. When the
worst player wins, the standings no longer contain a
lower-tier: they consist only of an upper-tier where all
players have the same winning rate, φ(x) = δ(x − 1).

IV. ARBITRARY NUMBER OF PLAYERS

Let us now consider the most general case where there
are n players and the mth ranked player wins as in (1). It
is straightforward to generalize the rate equations for the
cumulative distribution. Repeating the scaling analysis
above, Eqs. (11) and (16) for the stationary distribution
(8) generalize as follows:

Φ′(x)[CΦn−m(1 − Φ)m−1 − x] = 0. (27)

The constant C equals the number of ways to choose the
mth ranked player times the number of ways to choose
the m − 1 higher ranked players

C =

(

n

1

)(

n − 1

m − 1

)

=
n!

(n − m)!(m − 1)!
. (28)

Again, there are two solutions: (i) The constant solu-
tion, Φ′(x) = 0, and (ii) The root of the (n − 1)th-order
polynomial

CΦn−m(1 − Φ)m−1 = x. (29)

We now analyze the three cases where the best, an inter-
mediate, and the worst player win, in order.
Best player wins (m = 1): In this case, the stationary
distribution can be calculated analytically,

Φ(x) =

{

(x/n)1/(n−1) x ≤ n;

1 x ≥ n.
(30)
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One can verify that this solution is consistent with (3).
We see that in general, when the best player wins there is
no discontinuity and Φ0 = 1. As for three-player games,
the standings consist of a single tier where some players
rank high and some rank low. Also, the winning rate
of the top players equals the number of players, x0 =
n. In general, the distribution of the number of wins is
algebraic.
Intermediate player wins (1 < m < n): Based on the
behavior for three player games, we expect

Φ(x) =

{

Φs(x) x < x0;

1 x ≥ x0.
(31)

Here, Φs(x) is the solution of (29). Numerical simula-
tions confirm this behavior [Fig. 4]. Thus, we conclude
that in general, there are two tiers. In the upper tier, all
players have the same winning rate, while in the lower
tier different players win at different rates. Generally, a
finite fraction Φ0 belongs to the lower tier and the com-
plementary fraction 1 − Φ0 belongs to the upper tier.

Our Monte Carlo simulations are performed by simply
mimicking the competition process. The system consists
of a large number of players N , all starting with no wins.
In each elemental step, n players are chosen at random
and ranked according to strength. Then, the mth ranked
player is awarded a win (tied players are ranked in a ran-
dom fashion). Time is augmented by 1/N after each
such step. This elemental step is then repeated. Since
this simulation procedure involves individual agents and
since the players are chosen randomly, this is a Monte
Carlo method for solving the master equations. While it
is also possible to use direct numerical integration meth-
ods, we present the Monte Carlo results because this
method also allows simulation of systems with a small
number of agents.

The parameters x0 and Φ0 characterize two important
properties: the maximal winning rate and the size of each
tier. Thus, we focus on the behavior of these two parame-
ters and pay special attention to the large-n limit. Substi-
tuting the stationary distribution (31) into the constraint
(10), the maximal winning rate x0 follows from the very
same Eq. (18). Similarly, the size of the lower tier follows
from Eq. (21). In this case, the latter is a polynomial of
degree n + 1, so numerically, one solves first for Φ0 and
then uses (29) to obtain x0. We verified these theoretical
predictions for the cases n = 4 and n = 10 using Monte
Carlo simulations [Fig. 4].

For completeness, we mention that it is possible to
rewrite Eq. (21) in a compact form. Using the definition
of the Beta function

∫ 1

0

dΦΦn−m(1 − Φ)m−1 = B(n − m + 1,m) (32)

=
(n − m)!(m − 1)!

n!

= C−1
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FIG. 4: The stationary distribution of winning rates Φ(x) for
n = 4 (top) and n = 10 (bottom). Shown are Monte Carlo
simulation results with N = 106 particles at time t = 105.
The circles are the theoretical predictions for the maximal
winning rate x0 and the size of the lower tier Φ0.

we relate the definite integral above with the combinato-
rial constant in (28). Substituting the governing equation
for the stationary distribution (29) into the equation for
the size of the lower-tier (21) gives

C−1 = Φn−m
0 (1−Φ0)

m+

∫ Φ0

0

dΦΦn−m(1−Φ)m−1. (33)

Using the relation (32), we arrive at a convenient equa-
tion for the size of the lower tier Φ0

∫ 1

Φ0

dΦΦn−m(1 − Φ)m−1 = Φn−m
0 (1 − Φ0)

m. (34)

We conclude that in general, the size and the strength
of the upper-tier are non-trivial as they are roots of a
polynomial of degree n + 1.

Let us consider the limit n → ∞ and m → ∞ with
the ratio α = m/n kept constant. For example, the case
α = 1/2 corresponds to the situation where the median
player is the winner. To solve the governing equation for
the stationary distribution in the large-n limit, we esti-
mate the combinatorial constant C using Eq. (28) and
the Stirling formula n! ∼ (2πn)1/2(n/e)n. Eq. (29) be-
comes
√

nα

2π(1 − α)

(

Φ

1 − α

)n−m(
1 − Φ

α

)m−1

∼ x. (35)
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Taking the power 1/n on both sides of this equation,
and then the limit n → ∞, we arrive at the very simple
equation,

( Φ

1 − α

)1−α(1 − Φ

α

)α

= 1. (36)

By inspection, the solution is constant, Φ = 1−α. Using
Φ0 = 1 − α and employing the condition 〈x〉 = 1 yields
the location of the condensate

x0 = 1/α, Φ0 = 1 − α. (37)

This result is consistent with the expected behaviors
x0 → ∞ as α → 0 and x0(α = 1) = 1 (see the worst
player wins discussion below). Therefore, the station-
ary distribution contains two steps when the number of
players participating in each game diverges [Fig. 5]

Φ(x) =











0 x < 0

1 − α 0 < x < α−1

1 α−1 < x.

(38)

The stationary distribution corresponding to the num-
ber of wins therefore consists of two delta-functions:
φ(x) = (1 − α)δ(x) + αδ(x − 1/α). Thus, as the number
of players participating in a game grows, the winning
rate of players in the lower tier diminishes, and eventu-
ally, they become indistinguishable.

For example, for n = 10, the quantity Φ0 is roughly
linear in α and the maximal winning rate x0 is roughly
proportional to α−1 [Fig. 4]. Nevertheless, for moder-
ate n there are still significant deviations from the limit-
ing asymptotic behavior. A refined asymptotic analysis
shows that Φ0 − (1 − α) ∼

√

α(1 − α) ln n/n and that
x0 ' (1 − Φ0)

−1 [25]. Therefore, the convergence is slow
and nonuniform (i.e., α-dependent). Despite the slow
convergence, the infinite-n limit is very instructive as it
shows that the structure of the lower-tier becomes trivial
as the number of players in a game becomes very large.
It also shows that the size of the jump becomes propor-
tional to the rank of the winning player.

When the number of players is large, the size and the
strength of the upper tier changes in a continuous fash-
ion. When the top ranked player wins it contains all of
the players, while when the bottom ranked player wins
in contains none of the players. Since the size and the
strength of the top-tier changes in a continuous fashion,
these multi-player dynamics provide a model system in
which one can control the nature of the social structure.

It is also possible to analytically obtain the station-
ary distribution in the limit of small winning rates,
x → 0. Since the cumulative distribution is small, Φ → 0,
the governing equation (29) can be approximated by
CΦn−m = x. As a result, the cumulative distribution
vanishes algebraically

Φ(x) ∼ x
1

n−m , (39)

as x → 0. This behavior holds as long as m < n.

1 1/α
x

1-α

1

Φ

FIG. 5: The infinite-n limit. From Eq. (37), the points
(x0, Φ0) all lie on the curve Φ = (x − 1)/x (dashed line).

Worst player wins (m = n): In this case, the roots of
the polynomial (29) are not physical because they cor-
respond to either monotonically increasing solutions or
they are larger than unity. Thus, the only solution is
a constant and following the same reasoning as above
we conclude that the stationary distribution is the step
function (26). Again, the upper tier disappears and all
players have the same winning rate. In other words, there
is very strong parity.

We note that while the winning rate of all players ap-
proaches the same value, there are still small differences
between players. Based on the behavior for two-player
games, we expect that the distribution of the number of
wins follows a traveling wave form Fk(t) → U(k − t) as
t → ∞ [5]. As the differences among the players are
small, the ranking continually evolves with time. Such
analysis is beyond the scope of the approach above. Nev-
ertheless, the dependence on the number of players may
be quite interesting.

Let us imagine that wins represent wealth. Then, the
strong players are the rich and the the weak players are
the poor. Competitions in which the weakest player wins
mimic a strong welfare mechanism where the poor ben-
efits from interactions with the rich. In such a scenario,
social inequalities are small.

V. CONCLUSIONS

In conclusion, we have studied multi-player games
where the winner is decided deterministically based upon
the ranking. We focused on the long time limit where sit-
uations with two or more tied players are generally irrele-
vant. We analyzed the stationary distribution of winning
rates using scaling analysis of the nonlinear master equa-
tions.

The shape of the stationary distribution reflects three
qualitatively different types of behavior. When the best
player wins, there are clear differences between the play-
ers as they advance at different rates. When an interme-
diate player wins, the standings are organized into two
tiers. The upper tier has the form of a condensate with
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all of the top players winning at the same rate; in con-
trast, the lower tier players win at different rates. In-
terestingly, the same qualitative behavior emerges when
the second player wins as when the second to last player
wins. When the worst player wins, all of the players are
equal in strength.

The size and the strength of the top-tier are the most
significant characteristic of the dynamics. These quan-
tities are found by imposing a condition for the average
winning rate, a quantity that plays the role of an inte-
gral of motion. These quantities are generally nontrivial
as they follow from roots of polynomials of degree n + 1.

The behavior in the limit of an infinite number of play-
ers greatly simplifies. In this limit, the change from upper
tier only standings to lower tier only standings occurs in a
continuous fashion. Moreover, the size of the upper tier is
simply proportional to the rank of the winner while the
maximal winning rate is inversely proportional to this
parameter.

In the context of sports competitions, these results are
consistent with our intuition. We view standings that
clearly differentiate the players as a competitive environ-
ment. Then, having the best player win results in the
most competitive environment, while having the worst
player win leads to the least competitive environment.
As the rank of the winning player is varied from best to
worst, the environment is gradually changed from highly

competitive to non-competitive. This is the case because
the size of the competitive tier decreases as the strength
of the winning player declines.

In the context of social dynamics, these results suggest
a way of controling social structure: by controling the
rank of the agent benefiting from social interactions, one
can control the social structure and in particular, the size
and the strength of the upper class.

Our asymptotic analysis focuses on the most basic
characteristic, the winning rate. However, there are in-
teresting questions that may be asked when tiers of equal-
strength players emerge. For example, the structure of
the upper tier can be further explored by characterizing
relative fluctuations in the strengths of the top players.
Similarly, the dynamical evolution of the ranking when
all players are equally strong may be interesting as well.
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