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Maxwell model of traffic flows
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We investigate traffic flows using the kinetic Boltzmann equations with a Maxwell collision integral. This
approach allows analytical determination of the transient behavior and the size distributions. The relaxation of
the car and cluster velocity distributions towards steady state is characterized by a wide range of velocity-
dependent relaxation scales,R1/2,t(v),R, with R the ratio of the passing and the collision rates. Further-
more, these relaxation time scales decrease with the velocity, with the smallest scale corresponding to the
decay of the overall density. The steady-state cluster size distribution follows an unusual scaling form
Pm;^m&24C(m/^m&2). This distribution is primarily algebraic,Pm;m23/2, for m!^m&2, and is exponential
otherwise.@S1063-651X~98!14812-2#

PACS number~s!: 02.50.2r, 05.40.2a, 89.40.1k, 05.20.Dd
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I. INTRODUCTION

Traffic flows exhibit a variety of collective behaviors typ
cal to nonequilibrium systems@1–5#. The observed phenom
enology is rich and includes shock waves, traffic jams, cl
tering, and synchronized flow@4–7#. A number of models
and theoretical approaches including fluid mechanics@2,6,8#,
cellular automata@9–17#, particle hopping@18–20#, ballistic
motion @21–28#, and optimal velocity@29–31# are used to
describe these observations. Yet different approaches
different virtues, e.g., kinetic theory is more appropriate
dilute flows, while fluid mechanics is more appropriate f
dense flows.

Here, we focus on the kinetic description of traffic. Pr
viously, we introduced a microscopic ballistic motion mod
and used it to derive Boltzmann equations~BE! for traffic on
a one-lane roadway@24#. A generalization to situations
where passing is allowed shows that a transition from a lo
density ‘‘laminar’’ flow to a high-density ‘‘congested’’ flow
generally occurs@25,26#. The resulting BE are technicall
difficult, and a number of important questions remain un
solved including the transient characteristics and the clus
size distribution. Indeed, previous studies addressed
steady-state properties and the results concerned mainl
velocity distributions.

Our goal is to obtain these relevant flow characterist
To this end, we propose an approach inspired by Maxwe
classical model, widely used in kinetic theory@32,33#. This
Maxwell approach uses a velocity-independent collision ra
thereby considerably simplifying the analysis. In fact, up
transforming the kinetic equations from integral into diffe
ential ones, the Maxwell model results infirst-order differ-
ential equations while the Boltzmann approach leads
second-order equations.

We will show that the Maxwell approximation is faithfu
to the nature of the original traffic equations as it quali
tively reproduces transient characteristics for no-pass
zones, as well as steady-state characteristics for pas
zones. We further find that the cluster velocity distributi
approaches its steady state according to a wide spectru
relaxation scales, with the smallest describing decay of
PRE 591063-651X/99/59~1!/88~10!/$15.00
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overall cluster density. Furthermore, the size distribution
characterized by a strong algebraic tail for small and aver
sizes, while it is exponentially small for large size.

II. THE MAXWELL MODEL

The ballistic motion approach models the basic proces
underlying one-lane traffic flows: passing and slowing do
due to clustering. The main assumption is that each dr
has a fixed intrinsic velocity. The driving rules are as fo
lows: A car moves with constant intrinsic velocity on a on
lane road until it overtakes a smaller velocity car or a clus
After such an encounter, or ‘‘collision,’’ the incident car im
mediately adopts this smaller velocity, thereby joining
cluster. Cars may also resume driving with their intrins
velocities, and such passing events are assumed to o
with a constant rate. This model is an idealized description
one-lane traffic flows as several time and length scales
cluding the actual collision time, the passing time, and
car size are neglected.

Let P(v,t) be the density of clusters moving with velocit
v at time t, and letP0(v) be the intrinsic velocity distribu-
tion. Natural initial conditions where cars are randomly d
tributed in space and drive with their intrinsic velocities a
imposed, i.e.,P(v,0)5P0(v). Under the assumption tha
space and velocity remain uncorrelated, a mean-field Bo
mann equation is written,

]P~v,t !

]t
5t0

21@P0~v !2P~v,t !#

2P~v,t !E
0

v
dv8U~v,v8!P~v8,t !. ~1!

The first term on the right-hand side represents cars esca
their respective clusters with a constant ratet0

21. The last
term accounts for the decrease in the cluster density du
collisions. For traffic flows the collision rate should rea
U(v,v8)5v2v8. For such a collision rate, steady-sta
properties of the velocity distributions can be obtained
transforming the rate equation into a second-order nonlin
88 ©1999 The American Physical Society
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PRE 59 89MAXWELL MODEL OF TRAFFIC FLOWS
differential equation@25#. However, a number of importan
characteristics including the size distribution and tim
dependent properties appear to be analytically intractabl

We propose using a constant collision rate,U(v,v8)
5u0 , to simplify the above traffic equations. Similar a
proximations, termed the Maxwell model~MM !, proved
useful in kinetic theory @32,33#. A natural choice for
the constant rateu0 is the average velocity difference
u05^v2v8&}^v&. One may wonder whether such an a
proximation is reasonable for traffic flows. IgnoringP(v8,t)
in the collision integralI (v)5*0

vdv8U(v,v8)P(v8,t), we
haveI (v)}v for the MM, while I (v)}v2 for the BE. Hence,
the integral remains an increasing function of the veloc
Furthermore, cars must slow down before a collision, a
therefore the collision rate should be slower than linear. T
MM can actually be considered as the limiting case of z
deceleration, while the linear rate corresponds to the limi
infinite deceleration.

Let c0 be the initial car concentration,v0 the average
intrinsic velocity, t0

21 the passing rate, andu0 the collision
rate. Introducing the dimensionless velocityv/v0→v, space
xc0→x, and timec0v0t→t variables normalizes the initia
concentration and typical velocity to unity. The master eq
tion ~1! is characterized by two dimensionless numbers,

1

n

]P~v,t !

]t
5

1

R
@P0~v !2P~v,t !#2P~v,t !E

0

v
dv8P~v8,t !.

~2!

The normalized collision rate,n5u0 /v0 , merely rescales
time. Thus, it is set to unity without loss of generality. Th
number R5c0u0t05tesc/tcol equals the ratio of the two
elementary time scales: the escape timetesc5t0 and the col-
lision time tcol5(c0u0)21. This number, termed the ‘‘colli-
sion number,’’ plays an important role in determining t
nature of traffic flows.

We will show below that the Maxwell model is com
pletely solvable. Although quantitative results of the M
may differ from the BE, they faithfully reproduce the qua
tative behavior of the traffic equations.

III. THE CLUSTER VELOCITY DISTRIBUTION

We start with steady-state and time-dependent prope
of the cluster velocity distribution. Let us introduce the au
iliary function

Q~v,t !5R211E
0

v
dv8P~v8,t !, ~3!

which gives the cluster distribution via differentiatio
P(v,t)5]Q(v,t)/]v. This auxiliary function enables us t
reduce the integro-differential Eq.~2! into the differential
equation

]

]t

]Q

]v
5

1

R

]Q0

]v
2Q

]Q

]v
. ~4!

This equation can be integrated overv, and using the bound
ary conditionQuv505R21 we find
-

-

.
d
e
o
f

-

es
-

]Q~v,t !

]t
5

Q0~v !

R
2

Q2~v,t !

2
2

1

2R2 . ~5!

Integrating Eq.~5!, the auxiliary function is obtained explic
itly for arbitrary initial conditions,

Q~v,t !5Q`~v !
11A~v !e2tQ`~v !

12A~v !e2tQ`~v !
, ~6!

with notation A(v)5@Q0(v)2Q`(v)#/@Q0(v)1Q`(v)#.
Here we use the subscript̀ to denote steady state. Th
steady-state auxiliary functionQ`(v)[Q(v,t5`) is given
by

Q`~v !5R21F112RE
0

v
dv8P0~v8!G1/2

. ~7!

Since the concentration is obtained fromQ(v,t) usingc(t)
5 limv→`@Q(v,t)2R21#, and since the cluster velocity dis
tribution is obtained by differentiation, Eq.~6! represents a
complete explicit solution of the Maxwell model.

We first examine steady-state properties of the cluster
locity distribution. Comparing with the corresponding beha
ior emerging from the BE will allow us to test the utility o
the Maxwell model. Evaluating the infinite velocity limit o
the auxiliary function gives the overall cluster density

c`5R21~A112R21!. ~8!

A remarkable feature of the steady-state cluster densit
that it is a function of the collision number only. Such ind
pendence of the initial velocity distribution has been o
served in a few other ballistic aggregation problems@29,34#.
Note thatc`512R/21O(R2) for R!1, i.e., the difference
from the initial density is of orderR in the laminar flow
regime. In this study, we will focus on the complementa
nontrivial limit of congested flows, i.e.,R@1. Here, the clus-
ter concentration is significantly reduced,c`;R21/2, and
large clusters with an average size^m&5c`

21;R1/2 form in
agreement with the BE results.

The cluster velocity distribution is obtained from Eq.~7!
by differentiation

P`~v !5P0~v !F112RE
0

v
dv8P0~v8!G21/2

. ~9!

When R!1, the difference between the initial and th
steady-state distributions is of orderR. This indicates a lami-
nar flow regime when the correction due to collisions
small and can be obtained by expanding the solution per
batively around the initial state. WhenR@1, we use the no-
tation I 0(v)5*0

vdv8P0(v8) and write the leading behavio
of Eq. ~9! as

P`~v !.H P0~v !, v!v*

P0~v !@2RI0~v !#21/2, v@v* .
~10!

The two limiting behaviors match at the threshold veloc

v* , which is found from 1;RI0(v* )5R*0
v* dv P0(v). In

agreement with the Boltzmann approach@25,26#, a boundary
layer structure is found for the velocity distribution, where
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90 PRE 59E. BEN-NAIM AND P. L. KRAPIVSKY
the inner region the original distribution prevails, while
the outer region, the distribution is substantially reduc
The average cluster velocity remains of order unity. Ad
tionally, the suppression of the fastest velocities is prop
tional to the concentration, again in agreement with the
results. We conclude that although the MM differs quanti
tively from the exact BE behavior, it qualitatively reproduc
the steady-state behavior.

We turn now to analyzing the transient properties and
particular the approach towards steady state. The ti
dependent concentration reads

c~ t !5c`

11Be2t/tc

12Be2t/tc
, ~11!

with the constantB5A(`)5(12c`)/(11c`) and the re-
laxation timetc5R/A2R11 corresponding to the concen
tration decay. We see that the cluster concentration expo
tially approaches its steady-state value,

c~ t !.c`~112Be2t/tc!. ~12!

As the distribution changes slightly in the laminar pha
relaxation times remain of order unity whenR!1. However,
for congested flows the relaxation time diverges with
collision numbertc;R1/2.

The explicit time-dependent auxiliary function allows d
termination of relaxation properties of the cluster veloc
distribution. In the long time limit, Eq.~6! reads

Q~v,t !5Q`~v !@112A~v !e2t/t~v !# ~13!

with the velocity-dependent relaxation timet(v)
51/Q`(v). Thus, the steady-state properties are reflecte
the transient characteristics. The velocity dependence of
relaxation time t(v) becomes especially pronounced f
large collision numbers where it exhibits the followin
boundary layer structure:

t~v !;H R, v!v*

@R/I 0~v !#1/2, v@v* .
~14!

For sufficiently small velocities, the collision integral is ne
ligible, and the relaxation timeR, suggested by Eq.~2!,
holds. While small velocities are governed by~almost!
velocity-independent relaxation scales, large velocities
characterized by velocity-dependent decay rates. Furt
more, a large range of relaxation scales existsR1/2,t,R
with the larger relaxation scales corresponding to sma
velocities. This is consistent with dimensional argume
that time and velocity are inversely related. Interestingly,
smallest possible relaxation scale corresponds to the ov
cluster density.

One anticipates that the relaxation timet(v) also governs
the decay of the cluster velocity distributionP(v,t). This is
indeed the case. To obtain explicit expressions we first s
plify Eq. ~13!,

Q~v,t !2Q`~v !.H RI0
2~v !e2t/t~v !, v!v*

2Q`~v !e2t/t~v !, v@v* .
~15!
.
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Differentiating with respect tov gives the cluster velocity
distribution

P~v,t !2P`.H 2RP0~v !I 0~v !e2t/t~v !, v!v**

2RP0~v !I 0
2~v !@ te2t/t~v !#, v** !v!v*

22R21P0~v !@ te2t/t~v !#, v@v*

with t(v) given by Eq.~14!. The expressions match at th
boundary velocities which are determined fromRI0(v* )
;1 and tI 0(v** );1. Only for velocities slower than the
decaying boundary velocityv** (t) is the correction to the
cluster density positive. This is surprising since both t
overall cluster density and the auxiliary function exhib
positive corrections, as one would naively expect sin
P0(v).P`(v).

Since the relaxation times diverge with increasingR, an
intermediate behavior should emerge in the time ran
t!AR. In this regime, the system has not yet ‘‘realized’’ th
passing is allowed, and the behavior should agree with
no-passing case whereR5`. By directly solving Eq.~5!
with R2150, one finds

P~v,t !5
P0~v !

@11 ~ 1
2 ! tI 0~v !#2

. ~16!

For arbitrary intrinsic velocity distribution, a scalin
asymptotic behavior emerges,

P~v,t !.
c~ t !

^v~ t !&
FS v

^v~ t !& D , ~17!

with the cluster concentrationc(t);t21 and the average ve
locity determined bytI 0„^v(t)&…;1. We see that the averag
velocity in the no-passing case is proportional to the tim
dependent boundary velocity:̂v(t)&;v** . When the
leading small velocity behavior of the intrinsic velocity di
tribution is algebraic,P0(v);vm as v→0, the average
velocity decays as a power law in time,^v(t)&;t2b with
b51/(m11). Comparing with the exact behavior in the n
passing limit of the ballistic motion model, we see that t
overall scaling picture is reproduced, while the quantitat
details and in particular the scaling exponents are differe

To summarize, explicit expressions for all cluster prop
ties are possible in the realm of the MM. The relaxati
towards steady state occurs in two stages. The early
t!AR, corresponds to a no-passing intermediate asymp
ics. Then, the passing mechanism comes into play, and
system approaches steady state. This latter relaxation is
trivial in several ways. The decay is nonuniform in time as
wide range of time scales are observed. It is also nonunifo
in velocity as the cluster velocity distribution involves thre
layers of greatly different width, i.e., it exhibits the so-calle
‘‘triple deck’’ structure @35#. The first layerv!v** (t) ~re-
ferred to as the lower deck! shrinks with time and the veloc
ity distribution in this deck approaches the steady state
ponentially from above. In the middle and upper decks,
approach towards steady state is from below and has a li
in time correction to the exponential decay.
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PRE 59 91MAXWELL MODEL OF TRAFFIC FLOWS
IV. THE CAR VELOCITY DISTRIBUTION

The cluster velocity distribution does not provide the o
served distribution of car velocities since all clusters — la
and small — are taken with equal weight. In what follow
we concentrate on the car velocity distribution, which det
mines basic properties such as the flux.

Within the framework of the MM, the car velocity distri
bution satisfies

]G~v,t !

]t
5R21@P0~v !2G~v,t !#2G~v,t !E

0

v
dv8P~v8,t !

1P~v,t !E
v

`

dv8G~v8,t !. ~18!

The escape term is the sum of a gain termR21@P02P# and
a loss term2R21@G2P#. In a collision between two clus
ters, all cars belonging to the faster cluster acquire the slo
cluster velocity. Thus, in both collision terms the argume
of P is smaller than the argument ofG. In contrast with Eq.
~2!, collisions can now lead to a gain in the car veloc
distribution. Although the integration limits resemble tho
of the previous kinetic equations@23#, the collision terms are
different, a reflection of the different treatment of cars a
clusters in this theory. One can verify that Eq.~18! conserves
the car density 15*0

`dv G(v,t). An alternative approach fo
obtainingG(v,t) involves the conditional velocity distribu
tion P(v,v8,t). This more detailed distribution can also b
used to verifyG(v,t), and, for completeness, we detail i
derivation in Appendix A.

Let us introduce the auxiliary function

g~v,t !5E
v

`

dv8 G~v8,t !. ~19!

In terms of the auxiliary functionsg, Q, and Q0 , Eq. ~18!
becomes

]

]t

]g~v,t !

]v
52

]

]vFQ0~v !

R
1g~v,t !Q~v,t !G . ~20!

Integrating over the velocity and usingg0(v)5Q0(`)
2Q0(v) gives the master equation

]g~v,t !

]t
5R21g0~v !2g~v,t !Q~v,t !. ~21!

We first analyze the steady-state properties which are
tained immediately from Eq.~21!,

g`~v !5
g0~v !

RQ`~v !
. ~22!

Interestingly, this auxiliary function and the cluster veloc
distribution experience the same relative reduction at
steady state,g`(v)/g0(v)5P`(v)/P0(v)51/RQ`(v). Dif-
ferentiatingg`(v), we get

G`~v !5P0~v !
11R1RI0~v !

@112RI0~v !#3/2
. ~23!
-
e
,
-

er
t

d

b-

e

In the congested phase,R@1, the car velocity distribution
has the following limiting behaviors:

G`~v !;H RP0~v !, v!v*

R21/2P0~v !I 0
23/2~v !, v@v* .

~24!

Thus, while the fast tail decayR21/2 agrees with the Boltz-
mann equation approach@25#, the slow tail enhancementR is
larger than the Boltzmann result where this enhancemen
of the orderRa with 0<a<1.

The car velocity distribution immediately gives the ave
age size of av cluster,

^m~v !&5
11R1RI0~v !

112RI0~v !
, ~25!

obtained from^m(v)&5G(v)/P(v). As expected, the aver
age cluster size decreases with the velocity. The aver
cluster size obeys the bounds 1<^m(v)&<11R, with the
upper~lower! bound achieved by the slowest~fastest! clus-
ters. An additional quantity, immediately derived from th
car velocity distribution, is the flux,J`5*dv v G`(v). One
can use Eq.~23! to find

J`5E
0

`

dv
12I 0~v !

A112RI0~v !
. ~26!

In the congested phase, the flux is proportional to the thre
old velocity, J`;v* , in agreement with the Boltzman
equation results.

We now focus on the time-dependent behavior. Integ
tion of Eq.~21! gives an explicit expression forg(v,t) ~for a
derivation, see Appendix B!,

g~v,t !

g`~v !
5

Q~v,t !

Q`~v !
1

Q2~v,t !2Q`
2 ~v !

Q`~v ! F 1

I 0~v !
2

t

2G .
~27!

The relaxation ofg follows directly from the relaxation ofQ
since g(v,t)2g`(v)}Q(v,t)2Q`(v) when t→`. Using
Eq. ~15!, we evaluate the leading relaxation behavior
g(v,t),

g~v,t !2g`.H 2Rg0~v !I 0~v !e2t/t~v !, v!v**

2Rg0~v !I 0
2~v !@ te2t/t~v !#, v** !v!v*

22R21g0~v !@ te2t/t~v !#, v@v* .

Interestingly, the relaxation of the~properly normalized!
cluster and auxiliary car velocity distribution are identica
@g(v,t)2g`#/g0(v).@P(v,t)2P`#/P0(v). Relaxation of
the car velocity distribution is obtained fromG52]g/]v,

G~v,t !

G`~v !
21.H 22e2t/t~v !, v!v**

2I 0
2~v !@ t2e2t/t~v !#, v** !v!v*

2I 0~v !R21@ t2e2t/t~v !#, v@v* .

Thus an exponential relaxation with a velocity-depend
time scalet(v) underlies the approach of all velocity distr
butions towards steady state. The car velocity distribut
exhibits the triple deck structure similar to that of the clus
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92 PRE 59E. BEN-NAIM AND P. L. KRAPIVSKY
velocity distribution. Some details change, however; for
ample, in the middle and upper decks the prefactort2 further
slows down the decay ofG(v,t). The car velocity distribu-
tion approaches its steady state always from below.

V. THE SIZE DISTRIBUTION

An important characteristic of traffic flows, the cluste
size distribution, has been determined analytically only in
no-passing limit@24#. We now address this issue in th
framework of the MM. Let us considerPm(t) the cluster-size
distribution which evolves according to the following ra
equation:

]Pm~ t !

]t
5R21@mPm11~v,t !2~m21!Pm~ t !#

1R21dm,1@12c~ t !#

1
1

2 (
i 1 j 5m

Pi~ t !Pj~ t !2c~ t !Pm~ t !. ~28!

Terms proportional toR21 account for escape, while the re
represent collisions. The overall collision rate experienc
by a cluster,c(t), is velocity-independent. These rate equ
tions are reminiscent of an aggregation-fragmentation p
cess@36,37#. Indeed, collisions lead to cluster aggregati
while passing events split clusters.

Since aggregation and fragmentation are opposite me
nisms, their combined effect generally leads to a steady s
We leave the ambitious task of a complete solution for
future, and restrict our attention to the steady state, wh
Eq. ~28! reads

c`Pm5R21@mPm112~m21!Pm#

1R21dm,1~12c`!1
1

2 (
i 1 j 5m

Pi Pj . ~29!

It is useful to introduce the generating function

F~z!5c`
21(

m
zmPm . ~30!

At the steady state, it satisfies the Riccati equation

F 222F1z1
c`

12c`
z~12z!

d

dzSFz D50. ~31!

The identity (12c`)/(Rc̀2 )51 was used in obtaining thi
equation.

Although we could not solve these equations genera
most of the interesting features can be obtained by caref
analyzing the leading terms inR. The asymptotic relation
c`.A2/R suggests that the last term in Eq.~31! is negli-
gible. Solving the resulting quadratic equation subject to
boundary conditionF(1)51 givesF512A12z. Expand-
ing this expression in powers ofz, we arrive at

Pm5c`

G~m2 1
2 !

2G~ 1
2 !G~m11!

, ~32!
-

e

d
-
-

a-
te.
e
re

,
ly

e

which simplifies toPm.(2pR)21/2m23/2 for m@1. How-
ever, this solution does not apply for very largem, or equiva-
lently nearz51. This follows, e.g., from the conservation o
the car density,(mmPm51, which implies that a crossove
from Eq. ~32! to the tail behavior should occur at the cuto
sizemc;^m&2;R.

To investigate the very largem behavior, we have to re
turn to Eq.~31!. Fortunately, in the proximity ofz51, i.e.,
when 12z;R21, the generating function depends on
single scaling variable

12F5c`F~z! with z5
12z

c`
2

. ~33!

This can be seen by balancing the leading terms in Eq.~31!.
The scaling functionF satisfies the Riccati equation

z F8~z!5z2F2 ~34!

subject to the boundary conditionF(0)50. Using the trans-
formationF(z)5f(z)/f8(z) reduces Eq.~34! to a second-
order linear differential equation

z f9~z!5f~z!. ~35!

This is a solvable one-dimensional Schro¨dinger equation for
a particle with zero energy in a repulsive Coulomb potent
Indeed, a solution is found by reducing Eq.~35! to the Bessel
equation. Choosing the solution which satisfies the appro
ate boundary conditions,f50, f8(z)51 at z50, one finds
f(z)5Az I 1(2Az) with I 1(x) the modified Bessel function
of order 1. Returning toF(z), we obtain

F~z!52zF112Az
I 18~2Az!

I 1~2Az!
G21

5Az
I 1~2Az!

I 0~2Az!
. ~36!

The last expression is derived using the identitiesI 18(x)
5I 0(x)2x21I 1(x) and I 08(x)5I 1(x) @38#.

The functionF(z) is the Laplace transform of the prop
erly scaled size distribution. Indeed, Eq.~33! implies
(Pm(12zm)5c`

2 F@c`
22(12z)# whose inversion yields the

scaling formPm(R)5c`
4 C(c`

2 m). Therefore, in the largeR
limit the size distribution follows the scaling form

Pm.
1

^m&4 CS m

^m&2D , ~37!

with ^m&51/c`.AR/2. The scaling functionC(M ) obeys
F(z)5*0

`dM C(M )@12e2zM#. Differentiating both sides
with respect toz shows thatF8(z) is simply the Laplace
transform ofMC(M ),

F8~z!5E
0

`

dM MC~M ! e2zM. ~38!

Consequently, the asymptotic behavior of the size distri
tion can be determined from the corresponding asympto
of F(z). The latter are found from Eq.~36!:

F~z!.H z* ~z1z* !21, z→2z*

Az, z→`.
~39!
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The algebraic behavior ofF(z) at largez implies an alge-
braic behavior ofC(M ) at smallM; similarly, the pole at
z52z* (z* >1.445 796@39#! implies an exponential deca
for largeM:

C~M !.H ~4p!21/2M 23/2, M!1

z* exp~2z* M !, M@1.
~40!

In terms of the original variables, we have

Pm.H ~2pR!21/2m23/2, m!R

4z* R22 exp~22z* m/R!, m@R.
~41!

These two limiting behaviors match atm;R, where Pm
;R22. Additionally, the value of the cutoff size,mc;R,
agrees with our previous findings.

In conclusion, the Maxwell equation approach allows e
plicit calculations of the size distribution. It decays algeb
ically with size for small and average clusters, and expon
ry
h

-
-
n-

tially for very large clusters. The interesting aspect of t
size distribution concerns its scaling form. If the typical a
the average size would be the same, a naive scaling argu
m/^m& would underly the size distribution. However, a di
ferent picture emerges where the scaling variable ism/^m&2.
Indeed, Eq.~41! is consistent with a typical size of orde
unity, in contrast with the growing average size^m&;AR, a
reflection of the anomalous algebraic behavior of the s
distribution below the cutoff size.

VI. THE SIZE-VELOCITY DISTRIBUTION

So far, we have addressed velocity and size distributi
separately. However, size and velocity are coupled in a n
trivial manner, and, for example, slower clusters should
larger than faster ones. We thus considerPm(v,t), the dis-
tribution of clusters of sizem and velocityv. This joint dis-
tribution evolves according to
sum-

x-
]Pm~v,t !

]t
5R21@mPm11~v,t !2~m21!Pm~v,t !#1R21dm,1@P0~v !2P~v,t !#

1E
v

`

dv8 (
i 1 j 5m

Pi~v8,t !Pj~v,t !2c~ t !Pm~v,t !. ~42!

The car and cluster velocity distributions are simply the zeroth and first moment of the size distribution,P(v,t)5M0(v,t) and
G(v,t)5M1(v,t), with Ma(v,t)5(mmaPm(v,t). Consequently, the respective evolution equations are recovered by
mation of Eq.~42! overm. Furthermore, integration over the velocities gives the size distribution and Eq.~28! is recovered by
usingPm(t)5(mPm(v,t).

It proves useful to introduce the auxiliary functionsQm(v,t)5*v
`dv8Pm(v8,t). The cluster-size distribution can be e

pressed through these auxiliary functions,Pm(t)5Qm(0,t). Additionally, the identity Q(v,t)1(mQm(v,t)5R211c(t)
holds. Integrating Eq.~42! over v gives

]Qm~v,t !

]t
5R21@mQm11~v,t !2~m21!Qm~v,t !#1R21dm,1q~v,t !

1
1

2 (
i 1 j 5m

Qi~v,t !Qj~v,t !2c~ t !Qm~v,t ! ~43!
de-
with q(v,t)5*v
`dv8@P0(v8,t)2P(v8,t)# or alternatively

q(v,t)512c(t)1Q(v,t)2Q0(v). In deriving Eq.~43! we
used the following boundary conditions:Qm50, Q051
1R21, andQ5c(t)1R21 at v5`. Since the velocity plays
the role of a parameter, Eq.~43! can be treated as an ordina
differential equation. We again restrict our attention to t
steady state where

c`Qm~v !5R21@mQm11~v !2~m21!Qm~v !#

1R21dm,1q~v !1
1

2 (
i 1 j 5m

Qi~v !Qj~v !,

~44!
e

with q(v)5q`(v)512c`1Q`(v)2Q0(v). Introducing
the generating function

Q~z,v !5c`
21 (

m51

`

zmQm~v ! ~45!

reduces Eq.~44! into a set~parametrized byv! of Riccati
equations forQ5Q(z,v):

Q 222Q1z
q~v !

q~0!
1

c`

12c`
z~12z!

]

]zSQz D50. ~46!

This Riccati equation reduces to Eq.~31! when v50. The
above treatment of the size distribution suggests that the
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rivative term in Eq.~46! is negligible for sufficiently small
sizes. In this case, Eq.~46! simplifies to Q 222Q
1zq(v)/q(0)50, which is solved to giveQ(z,v)51
2A12zq(v)/q(0). Using the largeR behavior,q(v)/q(0)
→11Q(v)2Q0(v) yields

Q~z,v !.12A12z@11Q~v !2Q0~v !#. ~47!

Expanding the expression on the right-hand side in power
z, we arrive at

Qm~v !.Pm@11Q~v !2Q0~v !#m, ~48!

with Pm the size distribution~32!. The cluster size-velocity
distribution is obtained by differentiating the auxiliary distr
bution Qm(v),

Pm~v !.mPm@P0~v !2P~v !#@11Q~v !2Q0~v !#m21.
~49!

Similar to the velocity distribution and the relaxation scal
the size velocity distribution as well can be obtained exp
itly from the auxiliary functionQ(v). Consequently, it is
characterized by a boundary layer structure. The s
velocity distribution is characterized by an exponential d
pendence upon the size, with a velocity-dependent prefa
Additionally, there is an algebraic prefactor that charact
izes the overall size distribution.

The detailed analysis of the cluster-size distribution s
gests that these results apply only for sufficiently small siz
Equations~47!–~49! should hold as long as the~dropped!
term R21@mQm11(v,t)2(m21)Qm(v,t)# is negligible
compared with the~kept! term c`Qm . Using Eq.~48!, the
above approximation is valid when

m!AR@Q0~v !2Q~v !#. ~50!

Hence, the range of validity of Eq.~49! strongly depends on
the cluster velocity. This can be seen using the aver
cluster size ^m(v)&5G(v)/P(v)5(mmPm(v)/(mPm(v),
given by Eq.~25!. Estimating the same quantity from E
~49! gives the correct leading largeR behavior whenv
@v* , while it gives a diverging average size rather th
^m(v)&;R when v→0. Indeed, the condition~50! is satis-
fied by the^m(v)& only outside the boundary layer. Ther
fore the approximate cluster size-velocity distribution is u
ful for small and average sizes whenv@v* , while it holds
only for sufficiently small sizes whenv!v* . Obtaining the
large size tail requires a more detailed analysis similar to
performed for the size distribution.

VII. SUMMARY AND OUTLOOK

In summary, we introduced an approximation method
analyzing the Boltzmann equations for one-dimensional t
fic flows. In analogy with the Maxwell model~MM ! of ki-
netic theory, we assumed a constant collision rate. This
proach results in first-order~in the velocity! differential
equations. Analysis of these equations leads to explicit
pressions for time-dependent velocity distributions. Si
velocity distributions can be determined in the steady stat
well. Although there are some quantitative deviations,
overall qualitative behavior, including a boundary lay
of

,
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structure, existence of laminar and congested phases, et
in agreement with the results of the original Boltzmann eq
tions. Several quantities such as the size growth expone1

2

actually agree with the Boltzmann equation. We conclu
that overall, the Maxwell approach is faithful to the nature
the problem and thus provides a useful approximat
scheme.

The MM allows explicit calculation of several importan
features, which are otherwise difficult to obtain. The a
proach towards the steady state is generally exponential
is characterized by a wide spectrum of velocity-depend
relaxation scales, the smallest of which corresponds to
overall cluster density. The steady-state size distribution
hibits an unusual scaling form with a scaling variab
m/^m&2 rather thanm/^m&, which is naively expected. Ad
ditionally, the typical size which is of order unity is muc
smaller than the average size which grows with the collis
number. This is a consequence of the algebraically diverg
distribution of small sizes. This is an outcome of the no
equilibrium nature of the steady state that does not sat
detailed balance as passing events reduce the cluster siz
only one, while clustering events can increase the cluster
by a large number. This feature is independent of the det
of the collision mechanism and we expect most features
derlying the size distribution to hold generally.

The MM can be refined and systematically improve
Some of the quantitative disagreements between the M
well and Boltzmann equation are rather obvious. For
ample, the correct value of the crossover velocity can
obtained by replacing the integral*0

vdv8P0(v8) with the in-
tegral *0

vdv8(v2v8)P0(v8). This compensates for the ap
proximate kernel taken in the MM and results in the corr
scaling exponents for the crossover velocity in both pass
and no-passing zones.

Furthermore, an appropriate choice of the value of
prefactoru0 reduces the discrepancies between the two
proaches. For example, the MM gives a universal dep
dence of the density upon the collision number,c;R21/2.
However, for the BE if one assumes an algebraic intrin
distribution near the origin,P0(v);vm as v→0, different
behaviors are found for positive and negativem @25#. For
m.0, the density exhibits the universal behavio
c`;R0

21/2, while for m,0 the density becomesm depen-
dent,c`;R0

2(m11)/(m12) . HereR05c0v0t0 is the collision
number within the Boltzmann framework. Choosin
u05^v&5R0

m/(m12) ~the actual BE behavior! implies
R5nR0;R0

(2m12)/(m12) , and hence c`;R0
2(m11)/(m12)

;R21/2. Therefore the BE and MM results are consiste
with each other if the appropriate choice for the collision ra
u05^v& is made.

Additionally, it would be interesting to compare the MM
with the actual traffic process. Although the BE descripti
is plausible at the steady state, it is clearly an approxima
for the transient regime. For example, the BE differs fro
the exact behavior in the no-passing case. Another ave
for further research is inhomogeneous traffic flows wher
hydrodynamic description may prove useful. The hydrod
namic framework should involve a multicomponent flu
parametrized by the cluster sizem. Specifically, the macro-
scopic description requires the densityPm(x,t), the average



e

as
qu
h

e
t

r-
ith

r
K.

as
h

ile

u

re
ti
th
s

-

i-

the

a
led
.

so

m-

,

r-
n-

ns

PRE 59 95MAXWELL MODEL OF TRAFFIC FLOWS
velocity um(x,t)5Pm
21(x,t)*dv vPm(v,x,t), and the ‘‘tem-

perature’’ ~the average velocity square! for each m. Such
infinite-fluid hydrodynamics may be quite different from th
conventional one-fluid hydrodynamics. Indeed, Eq.~25!
shows that the velocity decreases as the mass incre
Similar results apply for the temperature and, thus, the e
partition of ‘‘energy’’ breaks down as well, in contrast wit
usual hydrodynamics.

In conclusion, the MM is a useful approximation to th
kinetic traffic equations. This approach may be applicable
other traffic problems as well. In particular, it will be inte
esting to apply the Maxwell approach to traffic models w
more realistic passing mechanisms.
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APPENDIX A: THE CONDITIONAL
VELOCITY DISTRIBUTION

The car velocity distribution involves the leading car
well as the rest of the slowed down cars in the cluster. T
former is described by the cluster velocity distribution, wh
the latter is represented byP(v,v8,t), the density of cars of
intrinsic velocity v driving with velocity v8. For the Max-
well model, the master equation for this conditional distrib
tion reads

]P~v,v8,t !

]t
52R21P~v,v8,t !1P~v,t !P~v8,t !

1P~v8,t !E
v8

v
dv9P~v,v9,t !

2P~v,v8,t !E
0

v8
dv9P~v9,t !. ~A1!

The first term accounts for loss due to escape, while the
of the terms represent changes due to collisions. Integra
these equations over the first velocity index and using
relation G(v)5P(v)1*v

`dw P(w,v), one indeed recover
the rate equation~18!.

Let us introduce the auxiliary functionQ(v,v8,t)
5*v8

v dw P(v,w) which gives the conditional velocity distri
bution by differentiation P(v,v8,t)52]Q(v,v8,t)/]v8.
This auxiliary function evolves according to

2
]

]t

]Q~v,v8,t !

]v8
5Q~v8,t !

]Q~v,v8,t !

]v8

1P~v,t !
]Q~v8,t !

]v8

1Q~v,v8,t !
]Q~v8,t !

]v8
. ~A2!
es.
i-

o

gy

e

-

st
ng
e

Integrating Eq.~A2! over v8 and using the boundary cond
tion Q(v,v,t)50, we get

2
]Q~v,v8,t !

]t
5Q~v8,t !Q~v,v8,t !

1P~v,t !Q~v8,t !2P~v,t !Q~v,t !.

~A3!

This is a linear inhomogeneous differential equation for
auxiliary functionQ(v,v8,t) which includes already known
cluster velocity distributions. Integrating Eq.~A3!, we arrive
at

Q~v,v8,t !5E
0

t

dt8 P~v,t8!@Q~v,t8!2Q~v8,t8!#

3expF2E
t8

t

dt9 Q~v8,t9!G . ~A4!

The exact solution~A4! can in principle be reduced to
more explicit expression by following the procedure detai
in Appendix B for transforming the formal solution of Eq
~B1! into Eq. ~B2!. Such a solution is very cumbersome
we do not give it here.

The steady-state conditional distribution is obtained i
mediately from Eq. ~A3!, Q(v,v8)5P(v)@Q(v)/Q(v8)
21#. The joint distribution is found by differentiation
P(v,v8)52]Q(v,v8)/]v85P(v)P(v8)Q(v)/Q2(v8), or
explicitly

P~v,v8!5
RP0~v !P0~v8!

@112RI0~v8!#3/2
. ~A5!

In the laminar phase, this conditional distribution is propo
tional to R, while it is algebraically suppressed in the co
gested phase. One can verify that Eq.~A5! is consistent with
the cluster and car distributions using the relatio
P(v)5P0(v)2*0

vdv8P(v,v8) and G(v)5P(v)
1*v

`dw P(w,v), respectively.

APPENDIX B: THE AUXILIARY CAR
VELOCITY DISTRIBUTION

The master equation~20! for g(v,t) can be integrated
formally,



96 PRE 59E. BEN-NAIM AND P. L. KRAPIVSKY
g~v,t !5g0~v !FexpS 2E
0

t

dt8 Q~v,t8! D 1R21E
0

t

dt8 expS 2E
t8

t

dt9 Q~v,t9! D G . ~B1!

To obtain more explicit results, we notice that the velocity plays the role of a parameter in Eq.~B1!. We thus change the
variable fromt8 to q[Q(v,t8) and, for example,

E
0

t

dt8 Q~v,t8!522E
Q0

Q

dq
q

q22Q`
2

5 ln
Q0

22Q`
2

Q22Q`
2

.

This change of variables allows us to perform the integration

g~v,t !5g0FQ22Q`
2

Q0
22Q`

2
22

Q22Q`
2

R E
Q0

Q dq

~q22Q`
2 !2G

5g0FQ22Q`
2

Q0
22Q`

2
1

Q

RQ`
2

2
Q0

RQ`
2

Q22Q`
2

Q0
22Q`

2
1

Q22Q`
2

2RQ`
3

lnS Q2Q`

Q1Q`
Y Q02Q`

Q01Q`
D G

5g0F Q

RQ`
2

1
Q22Q`

2

I 0
2 S 12

Q0

RQ`
2 D 1

Q22Q`
2

2RQ`
3

ln~e2tQ`!G
5

g`

Q`
FQ1~Q22Q`

2 !S 1

I 0
2

t

2D G . ~B2!

In the above derivation we used the identitiesg`5g0 /RQ` , Q0
22Q`

2 5I 0
2 , and@12Q0 /RQ`

2 #5I 0 /RQ`
2 .
,

-
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