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Maxwell model of traffic flows
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We investigate traffic flows using the kinetic Boltzmann equations with a Maxwell collision integral. This
approach allows analytical determination of the transient behavior and the size distributions. The relaxation of
the car and cluster velocity distributions towards steady state is characterized by a wide range of velocity-
dependent relaxation scald®Y’< r(v)<R, with R the ratio of the passing and the collision rates. Further-
more, these relaxation time scales decrease with the velocity, with the smallest scale corresponding to the
decay of the overall density. The steady-state cluster size distribution follows an unusual scaling form
P~ (m)~*¥(m/{m)?). This distribution is primarily algebrai®,,~m~%?, for m<{m)?, and is exponential
otherwise [S1063-651X98)14812-2

PACS numbes): 02.50-r, 05.40—a, 89.40+k, 05.20.Dd

I. INTRODUCTION overall cluster density. Furthermore, the size distribution is
characterized by a strong algebraic tail for small and average
Traffic flows exhibit a variety of collective behaviors typi- sizes, while it is exponentially small for large size.

cal to nonequilibrium systenfd—5]. The observed phenom-
enology is rich and includes shock waves, traffic jams, clus- Il. THE MAXWELL MODEL
tering, and synchronized flop4—7]. A number of models
and theoretical approaches including fluid mechaf2¢8,8,
cellular automat49-17], particle hopping 18—20, ballistic

The ballistic motion approach models the basic processes
underlying one-lane traffic flows: passing and slowing down

motion [21—28, and optimal velocity29—31 are used to due to clustering. The main assumption is that each driver
describe these observations. Yet different approaches ha{&S @ fixed intrinsic velocity. The driving rules are as fol-

different virtues, e.g., kinetic theory is more appropriate forl®Ws: A car moves with constant intrinsic velocity on a one-
dilute flows, while fluid mechanics is more appropriate forlane road until it overtakes a smaller velocity car or a cluster.
dense flows After such an encounter, or “collision,” the incident car im-

Here, we focus on the kinetic description of traffic. Pre-Mediately adopts this smaller velocity, thereby joining a

viously, we introduced a microscopic ballistic motion model €lUSter. Cars may also resume driving with their intrinsic
and used it to derive Boltzmann equatigBE) for traffic on  Velocities, and such passing events are assumed to occur
a one-lane roadway24]. A generalization to situations with a constant rate. This model is an idealized description of

where passing is allowed shows that a transition from a lowoN€-lane traffic flows as several time and length scales in-
density “laminar” flow to a high-density “congested” flow cluding the actual collision time, the passing time, and the

generally occurg25,26. The resulting BE are technically C2r Sizé are neglected. o .
difficult, and a number of important questions remain unre- L€tP(v,t) be the density of clusters moving with velocity
solved including the transient characteristics and the clustef &t timet, and letPq(v) be the intrinsic velocity distribu-
size distribution. Indeed, previous studies addressed on:?o”- Natural initial conditions where cars are randomly dis-

steady-state properties and the results concerned mainly t_lg_buted in_space and drive with their intrinsic velo_cities are
velocity distributions. imposed, i.e.,P(v,0)=Py(v). Under the assumption that

Our goal is to obtain these relevant flow characteristicsSPace and velocity remain uncorrelated, a mean-field Boltz-

To this end, we propose an approach inspired by Maxwell’dn@nn equation is written,
classical model, widely used in kinetic thedi32,33. This

Maxwell approach uses a velocity-independent collision rate, IP(v,) =t5 Y Po(v)—P(v,1)]

thereby considerably simplifying the analysis. In fact, upon at 0 ’

transforming the kinetic equations from integral into differ- .

ential ones, the Maxwell model results finst-order differ- _p(v,t)f dv'U(v,0")P(v’,t). (1
ential equations while the Boltzmann approach leads to 0

secondorder equations.

We will show that the Maxwell approximation is faithful The first term on the right-hand side represents cars escaping
to the nature of the original traffic equations as it qualita-their respective clusters with a constant rgjé. The last
tively reproduces transient characteristics for no-passingerm accounts for the decrease in the cluster density due to
zones, as well as steady-state characteristics for passimgllisions. For traffic flows the collision rate should read
zones. We further find that the cluster velocity distributionU(v,v')=v—uv'. For such a collision rate, steady-state
approaches its steady state according to a wide spectrum pfoperties of the velocity distributions can be obtained by
relaxation scales, with the smallest describing decay of thé&ransforming the rate equation into a second-order nonlinear
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differential equatior{25]. However, a number of important dQ(v,t) Qolv) Q%uv,t) 1
characteristics including the size distribution and time- % - R 2 R )
dependent properties appear to be analytically intractable.

We propose using a constant collision raté(v,v')  Integrating Eq(5), the auxiliary function is obtained explic-
=Up, to simplify the above traffic equations. Similar ap- itly for arbitrary initial conditions,
proximations, termed the Maxwell modéMM), proved
useful in kinetic theory[32,33. A natural choice for 1+A(v)e Q=)
the constant rateu, is the average velocity difference, Qv,1)=Qux(v) ———— (6)
Up=(v—uv')x{v). One may wonder whether such an ap- 1-Alv)e
proximation is reasonable for traffic flows. Ignorifgov’,t) with notation A(v)=[Qo(v) — Qu.(v)1/[Qo(v) + Qu(v)].
in the collision integrall (v) =[odv'U(v,v")P(v’,t), We  Here we use the subscript to denote steady state. The

havel (v) v for the MM, while | (v)=v? for the BE. Hence, steady-state auxiliary functio®..(v)=Q(v,t=%) is given
the integral remains an increasing function of the velocity

Furthermore, cars must slow down before a collision, and

therefore the collision rate should be slower than linear. The 1
MM can actually be considered as the limiting case of zero Q=(v)=R
deceleration, while the linear rate corresponds to the limit of

infinite deceleration. Since the concentration is obtained frd@pfv,t) usingc(t)

Let ¢ be the initial car concentration;, the average =lim,_.[Q(v,t)—R 1], and since the cluster velocity dis-
intrinsic velocity,t, * the passing rate, ang, the collision  tribution is obtained by differentiation, EG6) represents a
rate. Introducing the dimensionless veloaitiv ;—v, space complete explicit solution of the Maxwell model.

XCo— X, and timecgut—t variables normalizes the initial We first examine steady-state properties of the cluster ve-
concentration and typical velocity to unity. The master equaiocity distribution. Comparing with the corresponding behav-
tion (1) is characterized by two dimensionless numbers, ior emerging from the BE will allow us to test the utility of
the Maxwell model. Evaluating the infinite velocity limit of
the auxiliary function gives the overall cluster density

v 1/2
1+2RJ0 dv’Po(v’)} . (7)

1 6P(v,t) 1 v
— =§[Po(v)—P(v,t)]—P(v,t)f dv'P(v’,1).
0

v ot @ c.=R Y(V1+2R-1). ®)

) . A remarkable feature of the steady-state cluster density is
The normalized collision ratey=uo/vo, merely rescales hat it is a function of the collision number only. Such inde-
time. Thus, it is set to unity without loss of_generahty. The pendence of the initial velocity distribution has been ob-
number R=CqUoto=1tes/tco €Quals the ratio of the tWo gerved in a few other ballistic aggregation probldi2@,34.
elementary time scales: the escape timg=to and the col-  Note thate, =1— R/2+ O(R?) for R<1, i.e., the difference
lision time tey=(Colig) ~*. This number, termed the “colli- from the initial density is of ordeR in the laminar flow
sion number,” plays an important role in determining the rggime. In this study, we will focus on the complementary

nature of traffic flows. . nontrivial limit of congested flows, i.eR>1. Here, the clus-
We will show below that the Maxwell model is com- o concentration is significantly reduced,~R~ 2 and

pletely solvable. Although quantitative results of the MM ,
may differ from the BE, they faithfully reproduce the quali-
tative behavior of the traffic equations.

arge clusters with an average si@)=c_ *~RY2 form in
agreement with the BE results.

The cluster velocity distribution is obtained from H@)
by differentiation

Ill. THE CLUSTER VELOCITY DISTRIBUTION 1

l+2RJOUdv’P0(v’) 9

We start with steady-state and time-dependent properties P..(v)=Py(v)
of the cluster velocity distribution. Let us introduce the aux-

lliary function When R<1, the difference between the initial and the

. steady-state distributions is of ord@r This indicates a lami-
Q(v,t)=R_1+J dv’P(v' 1), 3y  nar flow regime when the correction due to collisions is
0 small and can be obtained by expanding the solution pertur-
batively around the initial state. Whd®>1, we use the no-
which gives the cluster distribution via differentiation tation I4(v)=fgdv’Po(v') and write the leading behavior
P(v,t)=0dQ(v,t)/dv. This auxiliary function enables us to of Eq. (9) as
reduce the integro-differential Eq2) into the differential
equation Po(v), v<<p*

Plv)= Po(0)[2RIo(0)] Y2 v>u*. (10

29Q 14Q _aQ

gt ov R v e @ The two limiting behaviors match at the threshold velocity
v*, which is found from 1vRI0(v*)=ng*dv Po(v). In
This equation can be integrated owerand using the bound- agreement with the Boltzmann approd@h,2€|, a boundary
ary conditionQ|,-,=R~* we find layer structure is found for the velocity distribution, where in
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the inner region the original distribution prevails, while in Differentiating with respect taw gives the cluster velocity
the outer region, the distribution is substantially reduceddistribution
The average cluster velocity remains of order unity. Addi-

tionally, the suppression of the fastest velocities is propor- 2RPy(v)lo(v)e V), v <p**
tional to the concentration, again in agreement with the BE 2 —t/7(v) *% *
results. We conclude that although the MM differs quantita- P(v,1) =P=\ ~ RPo(v)lo(v)[te I v <v<v
tively from the exact BE behavior, it qualitatively reproduces — 2R Py(v)[te V™), p>o*

the steady-state behavior.

We turn now to analyzing the transient properties and injth () given by Eq.(14). The expressions match at the
particular the approach towards steady state. The tim&;oundary velocities which are determined froRig(v*)

dependent concentration reads ~1 andtly(v**)~1. Only for velocities slower than the
s decaying boundary velocity** (t) is the correction to the

H=c 1+Be Ve (11) cluster density positive. This is surprising since both the

“1-Be U’ overall cluster density and the auxiliary function exhibit

positive corrections, as one would naively expect since
with the constanB=A(»)=(1-c,)/(1+c,) and the re- Po(v)>P-(v). o ' o
laxation time 7,= R/\2R+1 corresponding to the concen-  Since the relaxation times diverge with increasRgan
tration decay. We see that the cluster concentration exponeffitermediate behavior should emerge in the time range

tially approaches its steady-state value, t<R. In this regime, the system has not yet “realized” that
passing is allowed, and the behavior should agree with the
c(t)=cC,(1+2Be V), (12) no-passing case whem=«. By directly solving Eq.(5)

with R™1=0, one finds
As the distribution changes slightly in the laminar phase,

relaxation times remain of order unity wh&< 1. However, Po(v)
for congested flows the relaxation time diverges with the P(v,t)= — (16)
collision numberr,~ R, [1+ (2)tlo(v)]

The explicit time-dependent auxiliary function allows de-
termination of relaxation properties of the cluster velocity For arbitrary intrinsic velocity distribution, a scaling

distribution. In the long time limit, Eq(6) reads asymptotic behavior emerges,
Q(v,H)=Q..(v)[1+2A(v)e '] (13 o c(t) F( v .
@™y oy 0

with the velocity-dependent relaxation timer(v)
=1/Q..(v). Thus, the steady-state properties are reflected in ) 4
the transient characteristics. The velocity dependence of th&ith the cluster concentratior(t)~t™* and the average ve-
relaxation time 7(v) becomes especially pronounced for l0city determined bylo((v(t)))~1. We see that the average
large collision numbers where it exhibits the following VEOCity in the no-passing case is proportional to the time-

boundary layer structure: dependent boundary veIoc_ity(u(t))~_u*fk . When the
leading small velocity behavior of the intrinsic velocity dis-
R, v<p* tribution is algebraic,Py(v)~v# as v—0, the average
(v)~ [RIG(0)]*2 v 0* (14)  velocity decays as a power law in timé(t))~t~# with
olv , LS>VT.

B=1/(n+1). Comparing with the exact behavior in the no-
passing limit of the ballistic motion model, we see that the
overall scaling picture is reproduced, while the quantitative
details and in particular the scaling exponents are different.
To summarize, explicit expressions for all cluster proper-
s are possible in the realm of the MM. The relaxation

For sufficiently small velocities, the collision integral is neg-
ligible, and the relaxation timdR, suggested by Eq(2),
holds. While small velocities are governed kggimosj)
velocity-independent relaxation scales, large velocities arg,

characterized by velocity-dependent decay rates. Furthefbwards steady state occurs in two stages. The early one,

more, a large range of relaxation scales exiS<r<R t<R, corresponds to a no-passing intermediate asymptot-

with the larger relaxation scales corresponding to smaIIerCS_ Then, the passing mechanism comes into play, and the

velocities. This is consistent with dimensional argumentsSystem approaches steady state. This latter relaxation is non-

hat time and veloci re inversely rel . Interestingly, the 7 °." 7. . . S
tsn?;Itlesf aogsikié)?;?/aia?ion gci?eycgr?ézdoncig E)Stthg )(;,vteret ivial in several ways. The decay is nonuniform in time as a
P P ide range of time scales are observed. It is also nonuniform

clugtﬁ; g?\?iilityétes that the relaxation timg) also governs in velocity as the cluster velocity distribution involves three
P 2 9 layers of greatly different width, i.e., it exhibits the so-called

the decay of the cluster velocity distributié®{v,t). This is “triple deck” structure[35]. The first layero<u** (t) (re-

indeed the case. To obtain explicit expressions we first Simr'erred to as the lower deglshrinks with time and the veloc-

plify Eq. (13), ity distribution in this deck approaches the steady state ex-
RI2 —t/r(v) <p* ponentially from above. In the middle and upper decks, the
olv)e o USU (15  approach towards steady state is from below and has a linear

v,1)—Q.(v)= n . .
QM.H=Qx(v) 2Q.(v)e V™) p>p*, in time correction to the exponential decay.
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IV. THE CAR VELOCITY DISTRIBUTION In the congested phasB>1, the car velocity distribution

The cluster velocity distribution does not provide the ob—has the following limiting behaviors:

served distribution of car velocities since all clusters — large RP,(v) v<v*
and small — are taken with equal weight. In what follows, Go.(v)~1 o112 A . (24)
we concentrate on the car velocity distribution, which deter- R™"Po(v)lo " (v), v>v*.

mines basic properties such as the flux.
Within the framework of the MM, the car velocity distri-
bution satisfies

Thus, while the fast tail decaRR ™2 agrees with the Boltz-

mann equation approa¢B5], the slow tail enhancemeRis

larger than the Boltzmann result where this enhancement is
v of the orderR* with O=a<1.

= R_l[Po(v)—G(v,t)]—G(v,t)f dv'P(v’,t) The car velocity distribution immediately gives the aver-
0 age size of a cluster,

dG(v,t)
ot

+P(v,t)f dv'G(v',t). (19 _ 1+R+RIg(v)
v <m(U)>— 1+2RIO(U) ’ (25)

Thle escape te[rrl1 Is the sum of allgggin tfr‘nl[ Po—P] ar|1d obtained from{m(v))=G(v)/P(v). As expected, the aver-

a loss term—-R" [ G—P]. In a collision between two Clus- 540 ¢jyster size decreases with the velocity. The average
ters, all cars belonging to the faster cluster acquire the Sloweéluster size obeys the boundss{m(v))<1-+R, with the
cluster velocity. Thus, in both collision terms the argumentupper(lower) bound achieved by the slowe(éaétes) clus-

0; Pis If”?a”er than the zlirglément oL I_n qontrr]ast with IIEq._ ters. An additional quantity, immediately derived from the
<(j')’t %O t{SlonsAltchan nr?vtvh e.at to e:_ ga'lf‘ I'I: the carblvet?]cny car velocity distribution, is the flux]..= [dv v G..(v). One
istribution. ough the integration limits resemble those ., | ;se Eq(23) to find

of the previous kinetic equatioh3], the collision terms are

different, a reflection of the different treatment of cars and - ( v)
clusters in this theory. One can verify that Efj8) conserves J., (26)
the car density % [;dv G(v,t). An alternative approach for V1+2R|o(v

obtainingG(v,t) involves the conditional velocity distribu-
tion P(v,v’,t). This more detailed distribution can also be
used to verifyG(v,t), and, for completeness, we detail its
derivation in Appendix A.

Let us introduce the auxiliary function

In the congested phase, the flux is proportional to the thresh-
old velocity, J.,~v*, in agreement with the Boltzmann
equation results.

We now focus on the time-dependent behavior. Integra-
tion of Eq.(21) gives an explicit expression fof(v,t) (for a
derivation, see Appendix )B

9.t _ Q)  Q*(v.H)—Qi(v) ot
In terms of the auxiliary functiong, Q, andQ,, Eq. (18 9-(v)  Qx(v) Q=(v) lo(v) 2]
becomes (27)

The relaxation ofj follows directly from the relaxation o
+9(v,t)Q(v,t)|. (20 since g(v,t) —g..(v)*Q(v,t) —Q.(v) whent—w. Using

g(v,t)= fwdv’ G(v',1). (19

o

g aglvt) 4

gt dv J Eq. (15), we evaluate the leading relaxation behavior of
1),
Integrating over the velocity and usingg(v)=Qq(®) 9(v.1
—Qo(v) gives the master equation 2Rgy(v)o(v)e ™), v<p**
ag(v 1) i g(v,t)—g.= —Rgo(v)lo(v)[te_t”(” 1, v** <v<v*
ot =R go(U)_g(U,t)Q(U,t). (21) _ZR_lgo(U)[te_tlT(U)], v>p*.
We first analyze the steady-state properties which are obdnterestingly, the relaxation of théproperly normalized
tained immediately from Eq21), cluster and auxiliary car velocity distribution are identical,
[g(v,t)—g.1/go(v)=[P(v,t)—P.]/Py(v). Relaxation of
go(v) the car velocity distribution is obtained fro®= —dg/dv,
g.(v)= RO.(0)" (22
(U _2e7t/7(v), v<<y**
Interestingly, this auxiliary function and the cluster velocity Gw.Y —1={ —12 12(v)[t2e Y70, V¥ <p<p*
distribution experience the same relative reduction at the Gu(v) I 2a-t/r(0) N
steady stateg..(v)/go(v) = P..(v)/Po(v) =1/RQ.(v). Dif- —lo(v)R™[te 7], v>v*.

ferentiatingg..(v), we get Thus an exponential relaxation with a velocity-dependent

1+ R+RIy(v) time scaler(v) underlies the approach of all velocity distri-
—O(v_ (23 butions towards steady state. The car velocity distribution
[1+2RIg(v)]3? exhibits the triple deck structure similar to that of the cluster

G.(v)=Py(v)
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velocity distribution. Some details change, however; for exawhich simplifies toP,,=(27R) ~?m~3%? for m>1. How-

ample, in the middle and upper decks the prefatidurther
slows down the decay d&(v,t). The car velocity distribu-
tion approaches its steady state always from below.

V. THE SIZE DISTRIBUTION

An important characteristic of traffic flows, the cluster-

ever, this solution does not apply for very langeor equiva-
lently nearz=1. This follows, e.g., from the conservation of
the car densityx ,mP,=1, which implies that a crossover
from Eq. (32) to the tail behavior should occur at the cutoff
sizem,~(m)>~R.

To investigate the very large behavior, we have to re-
turn to Eq.(31). Fortunately, in the proximity oz=1, i.e.,

no-passing limit[24]. We now address this issue in the
framework of the MM. Let us considét(t) the cluster-size
distribution which evolves according to the following rate
equation:

IPm(t)
at

=R MPp.1(v,)—(M=1)Pp(1)]
+R 16, [1-c(t)]

1
+5 2 PiOP(—c(Py(t). (28

i+j=m

Terms proportional t& ! account for escape, while the rest

represent collisions. The overall collision rate experienced

by a clusterc(t), is velocity-independent. These rate equa-

single scaling variable

1-F=c.®({) with ¢=—".
C

©

(33

This can be seen by balancing the leading terms in(&.
The scaling functionb satisfies the Riccati equation

(D()=(-D?

subject to the boundary conditigh(0)=0. Using the trans-
formation® () = ¢(£)/ ¢’ (£) reduces Eq(34) to a second-
order linear differential equation

L"(D)=¢(0).

(39

(39

tions are reminiscent of an aggregation-fragmentation proT his is a solvable one-dimensional Sctiirger equation for

cess[36,37. Indeed, collisions lead to cluster aggregation
while passing events split clusters.

a particle with zero energy in a repulsive Coulomb potential.
Indeed, a solution is found by reducing Eg5) to the Bessel

Since aggregation and fragmentation are opposite mech&guation. Choosing the solution which satisfies the appropri-

nisms, their combined effect generally leads to a steady stat

ate boundary conditiong)=0, ¢'({)=1 at{=0, one finds

We leave the ambitious task of a complete solution for thep({)= JE11(240) with 15(x) the modified Bessel function
future, and restrict our attention to the steady state, wheref order 1. Returning tab(¢), we obtain

Eq. (28) reads

C.Pn=R ImP,,;—(m—1)P.]

1
+R Y5,,(1-c)+> X PP, (29
i+tj=m
It is useful to introduce the generating function
Fz)=c. > Z"P,. (30)
m

At the steady state, it satisfies the Riccati equation

9

The identity (1-c..)/(Rc2)=1 was used in obtaining this
equation.
Although we could not solve these equations generally

d
2_ © N _
Fe—2F+tz+ 1_sz(1 z)dZ 0.

31

most of the interesting features can be obtained by carefully

analyzing the leading terms iR. The asymptotic relation
C.=V2/R suggests that the last term in E@1) is negli-
gible. Solving the resulting quadratic equation subject to th
boundary condition/(1)=1 givesF=1—1—z. Expand-
ing this expression in powers af we arrive at

r(m-3)
C”zr(%)r(mﬂ)’

(32

HNZH(Z@ 11(2\¢)

1,(270) 1o(2V0)

The last expression is derived using the identitigéx)
=lo(x) —x " 1(x) andl{(x)=1,(x) [38].

The function®(¢) is the Laplace transform of the prop-
erly scaled size distribution. Indeed, E@33) implies
SP(1-2z"=c2®[c,?(1—2z)] whose inversion yields the
scaling formP (R) =c?W¥(c2m). Therefore, in the larg®
limit the size distribution follows the scaling form

-1
D()=2¢ =\t (36)

1 m
o e 0

with (m)=1/c.= JR/2. The scaling function?(M) obeys
®()=[5dM ¥ (M)[1—e ¢M]. Differentiating both sides
with respect tol shows thatd®’(¢) is simply the Laplace
transform ofM¥ (M),

<D’(§)=J?dM MW¥(M)e M, (39

P(:onsequently, the asymptotic behavior of the size distribu-

tion can be determined from the corresponding asymptotics
of ®(¢). The latter are found from Eq36):

)T et

Ve [~ (39

‘I>(§)=[
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The algebraic behavior ab(¢) at large{ implies an alge- tially for very large clusters. The interesting aspect of the
braic behavior of¥’(M) at smallM; similarly, the pole at size distribution concerns its scaling form. If the typical and
{=—0* ({*=1.44579639]) implies an exponential decay the average size would be the same, a naive scaling argument

for large M: m/{m) would underly the size distribution. However, a dif-
B B ferent picture emerges where the scaling variable/ign)?.
M)~ (4m)~YmM32  M<1 “0) Indeed, Eq.(41) is consistent with a typical size of order
| Fexp(— M), M>1. unity, in contrast with the growing average siza)~ R, a
reflection of the anomalous algebraic behavior of the size
In terms of the original variables, we have distribution below the cutoff size.
|(27TR)1’2m3’2, m<R an
= _ 41
™ 4R ?exp(—20*m/R), m=R. VI. THE SIZE-VELOCITY DISTRIBUTION
These two limiting behaviors match at~R, where P, So far, we have addressed velocity and size distributions
~R™2. Additionally, the value of the cutoff sizen.~R, separately. However, size and velocity are coupled in a non-
agrees with our previous findings. trivial manner, and, for example, slower clusters should be

In conclusion, the Maxwell equation approach allows ex-larger than faster ones. We thus consifgy(v,t), the dis-
plicit calculations of the size distribution. It decays algebra-tribution of clusters of sizen and velocityv. This joint dis-
ically with size for small and average clusters, and exponentribution evolves according to

IPm(v,t) 1 1
— R [MPry1(v,t) =(M=1)P(v,t) ]+ R™ "6 1 Po(v) = P(v,1)]
+fxdv’_z Pi(v",))P;j(v,t) = c(t)Ppn(v,1). (42)
v i+j=m

The car and cluster velocity distributions are simply the zeroth and first moment of the size distriBtic) = My(v,t) and
G(v,t)=My(v,t), with My(v,t)==,,m*P(v,t). Consequently, the respective evolution equations are recovered by sum-
mation of Eq.(42) overm. Furthermore, integration over the velocities gives the size distribution an@8dqs recovered by
using P (t) == Pm(v,1).

It proves useful to introduce the auxiliary functio®s,(v,t)= [, dv’'P,(v’,t). The cluster-size distribution can be ex-
pressed through these auxiliary functiom®,(t)=Q,(0t). Additionally, the identity Q(v,t)+=mQm(v,t)=R™1+c(t)
holds. Integrating Eq(42) overv gives

MQu(v.t)

= RTM Qe 10,0~ (M= 1)Qu(v,0]+R 6,00,

1
t5, 2, QDQ )~ c(t)Qn(v ) (43

with q(v,t)=/,dv'[Po(v',t)—P(v',t)] or alternatively with q(v)=0.(v)=1—C.+Q.(v)—Qo(v). Introducing
q(v,t)=1—c(t)+Q(v,t) — Qu(v). In deriving Eq.(43) we the generating function
used the following boundary condition€),=0, Qy=1

+R™1, andQ=c(t)+ R ! atv ==. Since the velocity plays IPR.
the role of a parameter, E(43) can be treated as an ordinary Qzv)=c, mzzl Z"Qm(v) (45)
differential equation. We again restrict our attention to the
steady state where reduces Eq(44) into a set(parametrized by) of Riccati
equations forQ= Q(z,v):
C-Qm(v) =R MQu:1(v)—(M=1)Qm(v)] ) qv) c., FiNe)
Q —ZQ‘FZW‘F]-_—COOZ(:L—Z)E(;)—O. (46)

PRS0 S Q)Y

m,lq(v) 2, <~ Q|(U)QJ(U)’
tri=m This Riccati equation reduces to E@1) whenv=0. The

(44 above treatment of the size distribution suggests that the de-



94 E. BEN-NAIM AND P. L. KRAPIVSKY PRE 59

rivative term in Eq.(46) is negligible for sufficiently small structure, existence of laminar and congested phases, etc., is
sizes. In this case, EQq(46) simplifies to Q°—2Q in agreement with the results of the original Boltzmann equa-
+zq(v)/q(0)=0, which is solved to giveQ(z,uv)=1 tions. Several quantities such as the size growth expchent
—+1-zq(v)/q(0). Using the largeR behavior,q(v)/q(0)  actually agree with the Boltzmann equation. We conclude
—1+Q(v) —Qq(v) yields that overall, the Maxwell approach is faithful to the nature of
the problem and thus provides a useful approximation

Q(z,v)=1-y1-7[1+Q(v)—Qo(v)]. (47 scheme.

Expanding the expression on the right-hand side in powers of The MM gllows explicit cglculaltu_)n of severa! important
z we arrive at features, which are otherwise difficult to obtain. The ap-

proach towards the steady state is generally exponential and
Qm(v)=P,[1+Q(v)—Qu(v)]™, (48) is characterized by a wide spectrum of velocity-dependent
relaxation scales, the smallest of which corresponds to the
with P, the size distribution(32). The cluster size-velocity oyerall cluster density. The steady-state size distribution ex-
dISt.I’IbUtIOH is obtained by differentiating the auxiliary distri- pipits an unusual scaling form with a scaling variable
bution Qn(v), m/(m)? rather thanm/(m), which is naively expected. Ad-
_ _ _ m—1 ditionally, the typical size which is of order unity is much
Prn(v)=mMPu[ Po(v) =Pu)J[1+Q(v) = Qo(v)] ('49) smaller than the average size which grows with the collision
number. This is a consequence of the algebraically diverging
Similar to the velocity distribution and the relaxation scales distribution of small sizes. This is an outcome of the non-
the size velocity distribution as well can be obtained explic-equilibrium nature of the steady state that does not satisfy
ity from the auxiliary functionQ(v). Consequently, it is detailed balance as passing events reduce the cluster size by
characterized by a boundary layer structure. The sizeonly one, while clustering events can increase the cluster size
velocity distribution is characterized by an exponential de-by a large number. This feature is independent of the details
pendence upon the size, with a velocity-dependent prefactoef the collision mechanism and we expect most features un-
Additionally, there is an algebraic prefactor that characterderlying the size distribution to hold generally.
izes the overall size distribution. The MM can be refined and systematically improved.
The detailed analysis of the cluster-size distribution sugSome of the quantitative disagreements between the Max-
gests that these results apply only for sufficiently small sizeswell and Boltzmann equation are rather obvious. For ex-
Equations(47)—(49) should hold as long as th@ropped  ample, the correct value of the crossover velocity can be
term R YImQ.1(v,t)—(m—1)Q.(v,t)] is negligible obtained by replacing the integrffdv’Py(v') with the in-
compared with thekepd term c..Q,. Using Eq.(48), the  tegral [gdv'(v—v')Po(v’). This compensates for the ap-

above approximation is valid when proximate kernel taken in the MM and results in the correct
scaling exponents for the crossover velocity in both passing
m<VR[Qo(v) —Q(v)]. (500 and no-passing zones.

- Furthermore, an appropriate choice of the value of the
Hence, the range of validity of E49) strongly depends on aacioru, reduces the discrepancies between the two ap-

the cluster velocity. This can be seen using the averagByoaches. For example, the MM gives a universal depen-
cluster size (m(v)) =G (v)/P(v) =ZpMPr(v)/ZmPm(v),  gence of the density upon the collision number; R~2,
given by Eq.(25. Estimating the same quantity from EQ. yoyever, for the BE if one assumes an algebraic intrinsic
(49 gives the correct leading largR behavior whenv distribution near the originPy(v)~v* asv—0, different
>p*, while it gives a diverging average size rather thanpahaviors are found for positive and negatjve[25]. For
(m(v))~R whenv—0. Indeed, the conditiof50) is satis- u>0, the density exhibits the universal behavior,

]tied ?ﬁ/ the(m(g)) (t)nlyl outtsidg the ?oqugryt I_%y(te_r. T.here- cw~R51’2, while for £ <0 the density becomeg depen-
ore the approximate cluster size-velocity distribution is use-dem, cm~Rg(“+1)’(‘”z). Here Ry=Cougto is the collision

ful for small and average sizes whesv*, while it holds number within the Bolzmann framework. Choosing
only for sufficiently small sizes when<v*. Obtaining the LT
y y n=<v . aleo:@):Rg’(“”) (the actual BE behavipr implies

large size tail requires a more detailed analysis similar to th b Ry~ R82u+2)/(u+2), and hence c.~ Ra(#+1)/(u+2)

performed for the size distribution.

~R™Y2. Therefore the BE and MM results are consistent
with each other if the appropriate choice for the collision rate
Up=(v) is made.

In summary, we introduced an approximation method for Additionally, it would be interesting to compare the MM
analyzing the Boltzmann equations for one-dimensional trafwith the actual traffic process. Although the BE description
fic flows. In analogy with the Maxwell modéMM) of ki- is plausible at the steady state, it is clearly an approximation
netic theory, we assumed a constant collision rate. This adeor the transient regime. For example, the BE differs from
proach results in first-ordetin the velocity differential  the exact behavior in the no-passing case. Another avenue
equations. Analysis of these equations leads to explicit exfor further research is inhomogeneous traffic flows where a
pressions for time-dependent velocity distributions. Sizehydrodynamic description may prove useful. The hydrody-
velocity distributions can be determined in the steady state asamic framework should involve a multicomponent fluid
well. Although there are some quantitative deviations, theparametrized by the cluster sine@ Specifically, the macro-
overall qualitative behavior, including a boundary layerscopic description requires the dendRy,(x,t), the average

VIl. SUMMARY AND OUTLOOK
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velocity upy,(x,t)= Pr;l(x,t)fdv vP,(v,x,t), and the “tem-  Integrating Eq(A2) overv’ and using the boundary condi-
perature” (the average velocity squaréor eachm. Such  tion Q(v,v,t)=0, we get

infinite-fluid hydrodynamics may be quite different from the

conventional one-fluid hydrodynamics. Indeed, EH@G5)

shows that the velocity decreases as the mass increases.

Similar results apply for the temperature and, thus, the equi- dQ(v,v’ 1)
partition of “energy” breaks down as well, in contrast with o~ QWY
usual hydrodynamics.
In conclusion, the MM is a useful approximation to the +P(v,1)Q(v’',t)—P(v,1)Q(v,t).

kinetic traffic equations. This approach may be applicable to
other traffic problems as well. In particular, it will be inter-
esting to apply the Maxwell approach to traffic models with
more realistic passing mechanisms.

(A3)

This is a linear inhomogeneous differential equation for the
auxiliary functionQ(v,v’,t) which includes already known
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Q(v,v’,t)=f dt’ P(v,t")[Q(v,t")—Q(v',t")]
APPENDIX A: THE CONDITIONAL 0
VELOCITY DISTRIBUTION

t
The car velocity distribution involves the leading car as Xexp{— Ldt Qv )}' (A4)

well as the rest of the slowed down cars in the cluster. The
former is described by the cluster velocity distribution, while
the latter is represented B(v,v’,t), the density of cars of The exact solution(A4) can in principle be reduced to a

intrinsic velocityv driving with velocity v'. For the Max-  yore explicit expression by following the procedure detailed
well model, the master equation for this conditional distribu-;, Appendix B for transforming the formal solution of Eq.

tion reads (B1) into Eq. (B2). Such a solution is very cumbersome so
we do not give it here.
IP(v,v' 1) _ 1 , , The steady-state conditional distribution is obtained im-
— 5~ R7PLuO+PHPELY mediately from Eq.(A3), Q(v,v')=P()[Q(v)/Q(v’)
—1]. The joint distribution is found by differentiation,
+P(v’ ,t)jv do"P(v,v" t) P(v,0")=—3dQ(v,v")dv'=P()P(v")Q(v)/Q%*v'), or
v’ explicitly
—~ P(v,v',t)f” dv"P(v",1). (A1)
0
i i RPy(v)Py(v")
The first term accounts for loss due to escape, while the rest Pv.')= o(v) Po (A5)

of the terms represent changes due to collisions. Integrating
these equations over the first velocity index and using the
relation G(v)=P(v)+ [, dw P(w,v), one indeed recovers

the rate equatiofi1g). N , , In the laminar phase, this conditional distribution is propor-
Let us introduce  the auxiliary functiorQ(v,v",t)  tional to R, while it is algebraically suppressed in the con-
=J,.dw P(v,w) which gives the conditional velocity distri- gested phase. One can verify that B&5) is consistent with

[1+2RlIg(v")]¥?

bution by differentiation P(v,v’,t)=—dQ(v,v',t)/dv’".  the cluster and car distributions using the relations
This auxiliary function evolves according to P(v)=Po(v)— [4dv’P(v,0") and G(v)=P(v)
+ [, dw P(w,v), respectively.
d dQ(v,v’,1) dQ(v,v' 1)
- =QW' ) ————
a gy dv
P dQ(v',t) APPENDIX B: THE AUXILIARY CAR
v o’ VELOCITY DISTRIBUTION
dQ(v',t The master equatiof20) for ,t) can be integrated
QM) Q".Y (A2) quatior20) for g(v.t) 9

w' formally,



96 E. BEN-NAIM AND

exp( - Ltdt’ Q(v,t")

9(v,t)=go(v)

P. L. KRAPIVSKY

+ R‘lftdt’ exp( - ftdt” Q(v,t”)”.
0 t’
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(B1)

To obtain more explicit results, we notice that the velocity plays the role of a parameter iBEqWe thus change the

variable fromt’ to q=Q(v,t’) and, for example,

t (e g  Q-Qi
Jodt Q(v,t )——ZJQOdqqz_Qi—anz_Qi.
This change of variables allows us to perform the integration
Q7-Q%  _Q@?-Q%(Q dq
= -

MU=0 22 2R fQo(qz—Qi)z
_ 'Q2 @, 0 9% Q2—Q5+Q2—Qiln(Q—Qm QO—QW>
go Q2 RQ2 RQ Q3-Q2 2rRQ@ |Q+Q./ Qot+Q.
1 Q Q%3 Q| Q* Qw o,
_gO_RQﬁ,+ IS (1 RQ2> In(e ?)

- (1 t) 5

Qw Q+(Q*-Q%)| - —5]|- (B2)

In the above derivation we used the identities=g,/RQ.., Q5—Q2=13, and[1— Qy/RQ]=1o/RQ%.
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