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We study how the order of N independent random walks in one dimension evolves with time.
Our focus is statistical properties of the inversion number m, defined as the number of pairs that
are out of sort with respect to the initial configuration. In the steady-state, the distribution of the
inversion number is Gaussian with the average 〈m〉 ≃ N2/4 and the standard deviation σ ≃ N3/2/6.
The survival probability, Sm(t), which measures the likelihood that the inversion number remains
below m until time t, decays algebraically in the long-time limit, Sm ∼ t−βm . Interestingly, there is a
spectrum of N(N−1)/2 distinct exponents βm(N). We also find that the kinetics of first-passage in a
circular cone provides a good approximation for these exponents. When N is large, the first-passage
exponents are a universal function of a single scaling variable, βm(N) → β(z) with z = (m − 〈m〉)/σ.
In the cone approximation, the scaling function is a root of a transcendental equation involving
the parabolic cylinder equation, D2β(−z) = 0, and surprisingly, numerical simulations show this
prediction to be exact.

PACS numbers: 05.40.Fb, 02.50.Cw, 02.30.Ey, 05.40.-a

I. INTRODUCTION

Consider the permutation 3142 of the four elements
{1, 2, 3, 4}. Three pairs: (1, 3), (2, 3), and (2, 4) are in-
verted in this permutation. The inversion number, de-
fined as the total number of pairs that are out of sort,
provides a natural measure for how “scrambled” a list
of elements is. This basic combinatorial quantity [1–4] is
helpful in many contexts. In computer science, the inver-
sion number plays an important role in sorting and rank-
ing algorithms [5]. Common on the web (“customers who
like . . . may also like . . .”), recommendations for books,
songs, and movies use inversions to quantify how close
the preferences of two customers are [6].

The number of inversions can also be used to measure
how the order of a group of particles in one dimension
changes with time. Figure 1 illustrates a space-time dia-
gram of four diffusing particles. The number of inversions
changes whenever two trajectories cross. Depending on
the initial order of the two respective particles, a crossing
may either introduce a new inversion or undo an existing
one. Consequently, the inversion number either increases
or decreases by one. Therefore, the inversion number
equals the difference between the number of crossings of
the first kind and the number of crossings of the second
kind.

Mixing dynamics has been extensively studied in the
context of fluids [7, 8] and granular materials [9], but
much less attention has been given to mixing in the con-
text of diffusion [10, 11]. In this study, we consider an
ensemble of N diffusing particles in one-dimension, a sys-
tem that is widely used to model the transport of colloidal
and biological particles in narrow channels [12, 13]. We
use the inversion number to measure the degree to which
particles mix. Clearly, a persistent small inversion num-
ber indicates a poorly mixed system, while a large inver-
sion number implies that the opposite is true.

We first study how the distribution of the inversion
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FIG. 1: Space-time diagram of a four-particle system. The
circled +s and −s indicate whether the inversion number in-
creases or decreases when two trajectories cross. Four out of
the five crossings increase the inversion number, and accord-
ingly, the inversion number increases from m = 0 to m = 3.

number evolves with time. We find that there is a
transient regime in which the average inversion num-
ber as well as the standard deviation in this quantity
both grow as the square-root of time. The distribu-
tion of the inversion number is stationary beyond this
transient regime. When the number of particles is suffi-
ciently large, the probability distribution function is al-
ways Gaussian, whether in the transient regime or in the
steady-state.

Our main focus is first-passage properties [14] of the
inversion number. We ask: what is Sm(t), the probabil-
ity that the inversion number remains smaller than m up
to time t. For small values of m, the survival probabil-
ity Sm measures the likelihood that the particles remain
poorly mixed throughout the evolution. Generally, the
probabilities Sm decay as a power law at large times,
Sm ∼ t−βm . In general, there is a broad spectrum of
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N(N −1)/2 distinct exponents, {β1, β2, · · · , βN(N−1)/2},
that governs the asymptotic decay of the survival prob-
abilities.

We heavily use first-passage kinetics of a single parti-
cle that diffuses inside a circular cone [15–17] to under-
stand the asymptotic behavior of Sm. We first utilize
two-dimensional cones to obtain the first-passage expo-
nents for a three-particle system exactly. Furthermore,
we employ circular cones in N − 1 dimensions and find
good approximate values for the first-passage exponents.

The cone approximation correctly predicts that when
the number of particles is large, the exponents become a
universal function, βm(N) → β(z), of the scaling variable
z = (m − 〈m〉)/σ. Here, 〈m〉 and σ are the average
and standard deviation of the distribution of inversion
number, at the steady-state. Interestingly, our numerical
simulations show that the cone approximation yields the
exact scaling function β(z) as a root of a transcendental
equation involving the parabolic cylinder function.

The rest of this paper is organized as follows. In section
II, we introduce our basic system and define the inversion
number. Stationary and transient properties of the distri-
bution of the inversion number are discussed in sections
III and IV, respectively. In section V, we use the cone
approximation to understand first-passage properties of
the inversion number. Scaling and extremal properties
of the first-passage exponents are the focus of section VI.
We conclude in section VII.

II. THE INVERSION NUMBER

Our goal is to characterize how the order of an ensem-
ble of diffusing particles changes with time. We conve-
niently use an ordinary random walk [18–20] to model
the trajectory of a diffusing particle [21]. Our system in-
cludes N identical particles that move on an unbounded
one-dimensional lattice. The particles are completely in-
dependent: at each step one particle is selected at ran-
dom and it moves, with an equal probability, either to
the left, x → x − 1, or to the right, x → x + 1. After
each elementary step, time is augmented by the inverse
number of particles, t → t + 1/N , so that each particle
moves once per unit time.

We index the particles according to their initial po-
sition with the leftmost particle labeled n = 1 and the
rightmost particle labeled n = N (Figure 1). Let xn(t) be
the position of the nth particle at time t. By definition,

x1(0) < x2(0) < · · · < xN−1(0) < xN (0), (1)

but the initial order unravels with time. Consider, for
example, the four-particle system illustrated in Figure
1. The particles reach a state where x3 < x2 < x1 < x4

with three pairs, (1, 2), (1, 3), and (2, 3) being out of sort
compared with time t = 0. In general, a pair of particles
for which xi(t) > xj(t) and i < j constitutes an inversion.

Formally, the total number of inversions, m, is given by

m(t) =

N
∑

i=1

N
∑

j=i+1

Θ
(

xi(t) − xj(t)
)

. (2)

Here, Θ(x) is the Heaviside step function: Θ(x) = 1 for
x > 0 and Θ(x) = 0 for x ≤ 0. The total number of

pairs is M =
(

N
2

)

, and hence, the variable m is within
the bounds 0 ≤ m ≤ M with

M =
N(N − 1)

2
. (3)

The inversion number is minimal, m = 0, when the order
is exactly the same as in the initial configuration, and it
is maximal, m = M , when the order is the mirror image
of the initial state.

The inversion number changes whenever two trajec-
tories cross (Figure 1). A crossing either adds a new
inversion or removes an existing one. Thus, we may as-
sign a positive or a negative “charge” to each crossing as
illustrated in Figure 1. The inversion number, m(t), is
simply the sum of all of the charges up to time t.

III. THE MAHONIAN DISTRIBUTION

We first discuss basic statistical characteristics of the
inversion number including the average, the variance, and
more generally, the probability distribution function. At
large time t, each random walk explores a region of size√

t, and the probability of finding the particle at any lat-
tice site inside this region is effectively uniform. This
simple fact already implies that memory of the initial
position fades with time. We thus expect that after suffi-
cient time elapses, there is no memory of the initial order,
and the order of the particles is completely random.

To understand statistics of the inversion number for
randomly ordered particles we consider the set of all N !
permutations of the N elements {1, 2, . . . , N}. In the
random state, each permutation of these elements occurs
with probability 1/N !. The probability Pm(N) that the
inversion number equals m for a random permutation is
well known as the Mahonian distribution in probability
theory [1, 2, 5]. We highlight key features of this proba-
bility distribution as it plays a central role in our study.

Let Qm(N) = N !Pm(N) be the number of permuta-
tions of N elements with exactly m inversions. For exam-
ple, when N = 3, one permutation (123) is free of inver-
sions, there are two permutations with one inversion (213,
132), two permutations with two inversions (312, 231),
and a single permutation with three inversions (321).
Hence, Q0(3) = Q3(3) = 1 while Q1(3) = Q2(3) = 2. We
list the distribution of the inversion number for N ≤ 4,

(P0, P1, . . . , PM ) =
1

N !
×



















(1) N = 1,

(1, 1) N = 2,

(1, 2, 2, 1) N = 3,

(1, 3, 5, 6, 5, 3, 1) N = 4.
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Of course, Pm(N) is nonzero if and only if 0 ≤ m ≤ M .
Since the mirror image of a configuration with m inver-

sions necessarily has M − m inversions, the probability
distribution satisfies Pm = PM−m. Hence, the distri-
bution is symmetric about m = M/2, and the average
〈m〉 ≡ ∑

m mPm is simply

〈m〉 =
N(N − 1)

4
. (4)

Therefore, the average grows quadratically with the total
number of particles when N ≫ 1.

The Mahonian distribution satisfies the simple recur-
sion relation

Pm(N) =
1

N

N−1
∑

l=0

Pm−l(N − 1), (5)

with Pm(1) = δm,0. This recursion reflects that every
permutation of N elements can be generated from a per-
mutation of N −1 elements by inserting the Nth element
in any of the N possible positions. Depending on where
this last element is added, the number of inversions in-
creases by an amount ∆m = 0, 1, . . . , N − 1.

Let us now introduce the generating function,

P(s,N) =

M
∑

m=0

Pm(N)sm. (6)

For instance, P(s, 1) = 1, P(s, 2) = (1 + s)/2! and
P(s, 3) = (1+s)(1+s+s2)/3!. In general, the generating
function is given by the product [5]

P(s,N) =
1

N !

N
∏

n=1

(1 + s + s2 + · · · + sn−1), (7)

as also follows from the recursion (5).
We can confirm the average (4) by differentiating the

generating function once, P′(s = 1) = 〈m〉, where
the prime represents differentiation with respect s. By
differentiating the generating function twice and using
P′′(s = 1) = 〈m(m − 1)〉, we obtain the variance [5],
σ2 = 〈m2〉 − 〈m〉2,

σ2 =
N(N − 1)(2N + 5)

72
. (8)

This expression is obtained from σ2 =
∑N

l=1
l2−1
12 . There-

fore, the standard deviation is rather large, σ ≃ N3/2/6,
when N ≫ 1.

The mean (4) and the variance (8) fully specify the
probability distribution function for an asymptotically
large number of particles. The Mahonian distribution
becomes a function of a single variable, Pm(N) → Φ(z),
with the scaling variable

z =
m − 〈m〉

σ
. (9)

The probability distribution function, Φ(z), is normal,
that is, a Gaussian with zero mean and unit variance
[2, 22],

Φ(z) ≃ 1√
2π

exp

(

−z2

2

)

. (10)

To see that the central limit theorem applies, we con-
vert the generating function into a Fourier transform,
and then show that the Fourier transform is Gaussian in
the large-N limit [23].

The variable z is a more transparent measure in the
following sense. A value of z of order one implies fairly
random order. Indeed, according to the normal distribu-
tion (10), the inversion number falls within three stan-
dard deviations from the mean, |z| < 3, with probability
0.997. A large value, |z| ≫ 1, indicates that the parti-
cle order strongly resembles the initial configuration (if
z > 0) or its mirror image (if z < 0).

IV. TRANSIENT BEHAVIOR

By definition, the inversion number is zero initially,
m(0) = 0. At least partially, the initial order is pre-
served in the early stages of evolution, and the number
of inversions must be substantially lower than (4).

We consider the natural initial condition where the
particles occupy N consecutive lattice sites: xi(0) = i,
for all i = 1, 2, . . . , N . Early on, particles “interact”
only within their local neighborhood. The interaction
length, ℓ, grows diffusively with time, ℓ ∼

√
t. On

this length scale, particles are well-mixed, and according
to (4), the number of inversions per particle is propor-
tional to the number of interacting particles, ℓ. Hence,
the average number of inversions grows according to
〈m(t)〉 ∼ Nℓ ∼ N

√
t. As a consequence,

〈m(t)〉 ≃
{

const. × N
√

t 1 ≪ t ≪ N2,

N2/4 N2 ≪ t,
(11)

when N ≫ 1. The two expressions match at t ∼ N2,
a diffusive time scale that can be viewed as the mixing
time. Therefore, there is a transient regime in which
the inversion number grows as the square-root of time,
followed by a steady-state, in which the average is given
by (4).

We obtain the variance using a similar heuristic ar-
gument. According to (8), the variance per parti-
cle is quadratic in the number of interacting particles,
σ2 ∼ Nℓ2. Therefore, σ2 ∼ N t in the transient regime,

σ(t) ≃
{

const ×
√

N t 1 ≪ t ≪ N2,

N3/2/6 N2 ≪ t.
(12)

As expected, the transient behavior matches the steady-
state behavior (8) at the diffusive time scale t ∼ N2.
Like the average, the standard deviation also grows as
the square root of time.
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FIG. 2: (color online) The normalized average 〈m(t)〉/[N(N−
1)/4] versus time t. The results correspond to an average
over 102 independent realizations of a system with N = 103

random walks. Also shown for reference is a line with slope
1/2.

As shown in Figure 2, results of numerical simulations
confirm the scaling behavior (11). Moreover, the numer-
ically measured average matches the steady-state value
corresponding to the Mahonian distribution. We also
verified that the stationary distribution is Gaussian with
the variance (8).

The simulations also show that the time-dependent
distribution of inversion number, pm(N, t), is Gaussian
throughout the transient regime (Figure 3):

pm(N, t) ≃ 1
√

2πσ2(t)
exp

[

− (m − 〈m(t)〉)2
2σ2(t)

]

. (13)

This behavior provides further support for our heuristic
argument. Indeed, if the particles are well-mixed locally,
then the distribution of the number of inversions per par-
ticle is Gaussian, and as the sum of N Gaussian variables,
the total inversion number must also have a Gaussian dis-
tribution.

We used two different algorithms to simulate the diffu-
sion process. In the naive algorithm, we randomly select
a particle and move it to a randomly-chosen neighboring
site. We increase time by 1/N after each jump. To cal-
culate the inversion number, we use the formula (2), but
since this enumeration requires O(N2) operations, this
simulation method is inefficient at large N .

To overcome this difficulty, we introduced a variant
where each lattice site may be occupied by at most one
particle. At each step we pick one particle at random
and attempt to move it by one site. This move is always
accepted if the neighboring site is vacant, but otherwise,
it is accepted with probability 1/2. In the latter case,
we merely exchange the identities of the respective parti-
cles, and as appropriate, update the inversion number by
either +1 or −1. In our implementation, there are two
arrays: the first lists the particle positions, in order, and
the second lists the original position of each particle in

-4 -3 -2 -1 0 1 2 3 4
(m-<m>)/σ

0
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FIG. 3: (color online) The distribution of the inversion
number in the intermediate time regime 1 ≪ t ≪ N2.
Shown is the distribution pm ≡ pm(N, t) versus the variable
`

m − 〈m(t)〉
´

/σ(t). The results are from 105 independent

realizations of a system with N = 103 random walks. The
distribution is shown at times t = 102 (diamonds), t = 103

(squares), and t = 104 (circles). Also shown for reference is
the normal distribution (13).

the first list. This algorithm has a fixed computational
cost per step, and it automatically keeps track of the
inversion number. We rely on the fact that in one di-
mension, noninteracting random walks are equivalent to
random walks that interact by exclusion [24–27]. Still,
we verified that the two algorithms yield essentially the
same results. We utilized the naive algorithm to simulate
small systems with N < 10, but otherwise, we used the
efficient algorithm.

V. FIRST-PASSAGE KINETICS

We have seen that the inversion number, which grows
quadratically with the number of particles, can be quite
large. Yet, if the mixing is poor and the particle trajecto-
ries rarely cross, the inversion number remains small. To
quantify how common such a scenario is, we study first-
passage kinetics [14, 28]. In particular, we ask: what
is the probability, Sm(t), that the inversion number re-
mains smaller than m until time t. This “survival” prob-
ability is closely related to the first-passage probability as
[−dSm/dt]×dt is the probability that the inversion num-
ber reaches m for the first time during the infinitesimal
time interval (t, t + dt).

The quantity S1 is the probability that the original
order is perfectly maintained, or equivalently, the likeli-
hood that none of the trajectories cross. This survival
probability decays as a power law, with a rather large
exponent,

S1 ∼ t−N(N−1)/4, (14)

in the long-time limit [29–34]. Our goal is to understand
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how this asymptotic behavior changes as the threshold
m increases.

When N = 2, the separation between the two random
walks itself undergoes a random walk. Hence, S1 is equiv-
alent to the survival probability of a one-dimensional ran-
dom walk in the vicinity of a trap, and S1 ∼ t−1/2 in
agreement with (14).

When N = 3, we conveniently map the three random
walks onto a single “compound” random walk in three
dimensions with the coordinates (x1, x2, x3). To find S1,
we require that the compound walk remains inside the
region x1 < x2 < x3. We may view the boundary of this
region as absorbing, and then, S1(t) equals the likelihood
that that the compound walk survives at time t. The ab-
sorbing boundary forms a wedge because it is defined by
the intersection of two planes, x1 = x2 and x2 = x3. Gen-
erally, the survival probability of a particle that diffuses
inside an absorbing wedge decays algebraically,

S ∼ t−1/(4V ), (15)

where V = α/π is the normalized opening angle [35].
(The opening angle 0 < α ≤ π is the angle between
the wedge axis and the wedge boundary.) Alternatively,
0 < V ≤ 1 is the fraction of the total solid angle en-
closed by the wedge. The region x1 < x2 < x3 occupies
a fraction V1 = 1

3! = 1
6 of space and hence, S1 ∼ t−3/2,

as also follows from (14). To find S2 and S3, we note
that the regions in which the compound walk is allowed
to move are always wedges (the three planes x1 = x2,
x1 = x3, and x2 = x3 divide space into six equal wedges
[36].) Moreover, the fraction of total solid angle enclosed
by the absorbing boundaries is given by the cumulative
distribution of inversion number: V2 = 1

3! + 2
3! = 1

2 and

V3 = 1
3! + 2

3! + 2
3! = 5

6 . Hence, all three survival proba-
bilities decay algebraically with time [14],

S1 ∼ t−3/2, S2 ∼ t−1/2, S3 ∼ t−3/10, (16)

and there are three distinct first-passage exponents.
The asymptotic behaviors (16) suggest that all of the

survival probabilities decay algebraically,

Sm ∼ t−βm , (17)

in the long-time limit. Moreover, there is a large family
of exponents

β1 > β2 > · · · > βN(N−1)/2, (18)

that characterizes the power-law decay (17). We stress
that the exponents depend on two variables, the thresh-
old m and the number of particles N , β ≡ βm(N). We
already know the exact values β1(3) = 3/2, β2(3) = 1/2,
and β3(3) = 3/10 as well as β1(N) = N(N − 1)/4.

Our numerical simulations confirm that indeed, there
is a large spectrum of exponents. As shown in Figure 4,
there are six decay exponents when N = 4. Table I lists
the numerically measured values βm, obtained from the
local slope d ln Sm/d ln t.
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FIG. 4: (color online) The survival probability Sm(t) ver-
sus t for a four-particle system. Shown are the quantities S2

(bottom curve), S3, . . ., S6 (top curve). The number of in-
dependent Monte Carlo runs varies from 106 for the slowest
decay to 1012 for the fastest decay.

In general, the compound walk is confined to a certain
“allowed” region of space. This region is bounded by mul-
tiple intersecting planes of the type xi = xj with i 6= j,
and generally, this unbounded domain has a complicated
geometry. The boundary of this region encloses a frac-
tion Vm(N) of the total solid angle. On combinatorial
grounds alone, we conveniently deduce that this fraction
is given by the cumulative Mahonian distribution

Vm(N) =

m−1
∑

l=0

Pl(N). (19)

Since the Mahonian distribution is symmetric, we have
Vm + VM+1−m = 1. To evaluate Vm(N), we expand the
generating function (7), and for m ≤ 4, we have [5]

Vm(N)=
1

N !
×



















1 m = 1,

N m = 2,
1
2 (N − 1)(N + 2) m = 3,
1
6 (N + 1)(N2 + 2N − 6) m = 4.

(20)

We have seen that the allowed region is a wedge when
N = 3. To obtain an approximation for the first-passage
exponents, we follow an approach that proved useful in
other first-passage problems involving multiple random
walks and replace the boundary of the allowed region
with a suitably chosen cone in N −1 dimensions [37]. An
unbounded cone with opening angle α occupies a fraction
V (α) of the total solid angle, given by

V (α) =

∫ α

0
dθ (sin θ)N−3

∫ π

0
dθ (sin θ)N−3

. (21)

In d dimensions, we have dΩ ∝ (sin θ)d−2dθ where Ω
is the solid angle and θ is the polar angle in spherical
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m 1 2 3 4 5 6

Vm
1

24

1

6

3

8

5

8

5

6

23

24

αm 0.41113 0.84106 1.31811 1.82347 2.30052 2.73045

βcone

m 2.67100 1.17208 0.64975 0.39047 0.24517 0.14988

βm 3 1.39 0.839 0.455 0.275 0.160

TABLE I: The six first-passage exponents for a four-particle
system. The values βm are from the Monte Carlo simulation
results shown in Figure 4. The values βcone

m were obtained us-
ing the cone approximation, specified in Eqs. (19)-(23). The
cumulative Mahonian distribution, Vm, and the opening an-
gle, αm, are listed as well.

coordinates. In the cone approximation, we require

V (α) = Vm (22)

with Vm given in (19).
In a cone, the first-passage exponent β ≡ β(α) de-

creases as the opening angle α increases. In particular,
β = π/4α in two dimensions, and β = (π−α)/2α in four
dimensions. Generally, however, β is the smallest root of
the following transcendental equation involving the asso-
ciated Legendre functions [38] of degree 2β +γ and order
γ = N−4

2 [17]

Qγ
2β+γ(cos α) = 0 N odd,

P γ
2β+γ(cos α) = 0 N even.

(23)

Regardless of the dimension, the surface of a cone with
α = π/2 is a plane, and hence, β(π/2) = 1/2.

For example, to find β1(4), we first determine the frac-
tion V1(4) = 1

4! = 1
24 using (19). Then, we calculate

the opening angle α = 0.41113 using equations (21)-(22)
and finally determine the exponent β1(4) = 2.67100 as
the appropriate root of equation (23). By construction,
the cone approximation is exact for three particles. This
approach gives a useful approximation to the six first-
passage exponents when N = 4 (Table I). Remarkably,
the cone approximation continues to be a good approxi-
mation as the number of particles increases (Figure 5).

VI. THE SCALING FUNCTION

We are especially interested in the behavior when the
number of particles is large. Let us first evaluate the
cumulative Mahonian distribution in the large-N limit.
Since the Mahonian distribution is normal, the cumula-
tive distribution is given by the error function,

Vm(N) → 1

2
+

1

2
erf

(

z√
2

)

, (24)

when N → ∞. Here, z is the scaling variable defined

in (9) and erf(ξ) = (2/
√

π)
∫ ξ

0
exp(−u2)du. To obtain

Eq. (24), we substitute (10) into (19) and convert the
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FIG. 5: (color online) The first-passage exponent βm versus
m for N = 4, 5, 6, 7. Shown are simulation results (circles)
and the outcome of the cone approximation (squares).

sum into an integral. Equation (24) is relevant in the
limit N → ∞, m → ∞ with the scaling variable z finite.

Next, we evaluate the solid angle enclosed by an un-
bounded cone when the dimension is large. The domi-
nant contribution to the integral in (21) comes from a

narrow region of order 1/
√

N centered on α = π/2 where
the integrand is Gaussian,

(sin θ)N−2 ≃ e−N(π/2−θ)2/2.

Using
∫

∞

−∞
exp

[

−N(π/2 − θ)2/2
]

dθ →
√

2π/N , we find

that the fraction V (α) has the scaling form

V (α,N) → 1

2
+

1

2
erf

(−y√
2

)

, (25)

with y = (cos α)
√

N . In writing this equation, we used
the facts that cos α ≃ π/2 − α and erf(ξ) = −erf(−ξ).
Equation (25) holds in the limit N → ∞, α → π/2, with
the scaling variable y finite.

Asymptotic analysis of equation (23) shows that the
exponent β(α) adheres to the scaling form [17]

β(α,N) → β(y) with y = (cos α)
√

N, (26)

in the limit N → ∞, α → π/2 with the scaling variable
y finite. The scaling function, β(y), is specified by the
transcendental equation D2β(y) = 0, where Dν is the
parabolic cylinder function of order ν [38]. The smallest
root is the appropriate one [17].

By comparing equations (24) and (25), we find our
main result: the first-passage exponent depends on a sin-
gle scaling variable,

βm(N) → β(z) with z =
m − 〈m〉

σ
, (27)
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FIG. 6: (color online) The exponent β versus the scaling vari-
able z, shown using: (a) a linear-linear plot and (b) a linear-
log plot. The simulation results are from Monte Carlo runs
with N = 50 (diamonds), N = 100 (squares), and N = 200
(circles) particles. The number of independent realizations
varies from 104 for slow first-passage processes to 108 for fast
one. The solid line shows the theoretical prediction (28).

in the large-N limit. We reiterate that the average 〈m〉
and the standard-deviation σ correspond to the steady-
state values (4) and (8), respectively. Using y = −z, the
scaling function β(z) is the smallest root of the transcen-
dental equation

D2β(−z) = 0, (28)

involving the parabolic cylinder function. When β is a
half-integer, the parabolic cylinder function is related to
the Hermite polynomials [38] and using this equivalence,

we have β(0) = 1/2, β(−1) = 1, and β(−
√

3) = 3/2.
Our numerical simulations (Figure 6) confirm that the

exponents βm(N) have the scaling form (27). Interest-
ingly, the simulations strongly suggest that the scaling
function predicted by the cone approximation is exact.
We note that the convergence to the infinite-particle limit
is very fast for positive z, but much slower for negative
z [17].

N 3 4 5 6 7 8

β1
3

2
3 5 15

2

21

2
14

βcone

1

3

2
2.67100 4.08529 5.73796 7.62336 9.73686

βcone

M
3

10
0.14988 0.061195 0.019895 0.0050713 0.0010266

TABLE II: The largest exponent, βcone

1 , and the smallest
exponent, βcone

M , obtained using the cone approximation for
N ≤ 8. Also listed for reference, is the exact value β1.

With the power-law decay (17), the mean first-passage
time diverges whenever β < 1, but it is finite otherwise.
Since β(z = −1) = 1, the time required for the inversion
number to reach one standard deviation from the mean
is infinite, on average. Regardless of the threshold z,
there is a considerable chance that the random walks
are poorly mixed because the survival probability decays
algebraically.

The scaling behavior is remarkable for a number
of reasons. First, the form of the scaling variable,
z ≡ (m − N2/4)/(N3/2/6), is quite unusual. Second,
there are roughly N2/2 first-passage exponents and nu-
merical evaluation of this large spectrum is daunting.
Yet, the scaling form (27) gives the range of parame-
ters for which β is of order one, and hence, numerically
measurable. (It is difficult to measure a vanishing expo-
nent, β → 0, or a divergent exponent, β → ∞.) Last,
the emergence of scaling laws for a family of scaling expo-
nents is also intriguing. Typically, in Statistical Physics,
the opposite is true as one or two scaling exponents char-
acterize a scaling law [39].

The extremal behaviors of the roots of the transcen-
dental equation (28) are derived in ref. [17],

β(z) ≃
{

z2/8 z → −∞,
√

z2/8π exp
(

−z2/2
)

z → ∞.
(29)

The first-passage exponent is algebraically large if z is
large and negative, but it is exponentially small if z is
large and positive.

The exponential decay in (29) implies that it is ex-
tremely unlikely that the initial order is perfectly re-
versed. The smallest exponent βM characterizes the
probability SM that the order of the walkers does not
turn into the mirror image of the initial state, that is, the
probability that the compound walk remains in the exte-

rior of the so-called “Weyl chamber” x1 < x2 < · · · < xN

[29–34]. This domain has VM = 1− 1
N ! , and Table II lists

the outcome of the cone approximation for small N . To
find the outcome of the cone approximation at large N ,
we first estimate the opening angle, π−α ≃ e/N by using

Eq. (21) and the Stirling formula N ! ≃
√

2πN(N/e)N .
From the asymptotic behavior for wide cones at large di-
mensions, β ≃

√

N/8π(π − α)N−3 [17], we conclude [37]

βM ≃ N4

2 e3 N !
. (30)

This value is extremely small, decaying roughly as the



8

inverse of a factorial, and it is impossible to measure
such a minuscule quantity using numerical simulations.

The largest exponent describes the probability that the
particles maintain the initial order or that the compound
walk remains in the interior of the Weyl chamber with
V1 = 1

N ! . Table II compares the outcome of the cone ap-
proximation with the exact value β1 = N(N −1)/4. The
quality of the cone approximation worsens as N grows.
Nevertheless, the cone approximation is qualitatively cor-
rect. By substituting the opening angle α ≃ e/N into
the thin-cone asymptotic behavior β(α) ≃ Nα−1/4 [17],
we find β1 ≃ N2/(4e). This expression captures the
quadratic growth of the exponent. Remarkably, the cone
approximation is exact inside the scaling region, but it is
only approximate outside this region.

VII. CONCLUSIONS

In summary, we used the number of pair inversions
to measure the one-dimensional mixing of independent
diffusing trajectories. A high inversion number typifies
strong mixing whereas a persistent small inversion num-
ber indicates poor mixing. In the steady-state, the dis-
tribution of inversion number is given by the well-known
Mahonian distribution, and consequently, it is Gaussian
when the number of particles is large. Preceding the
steady-state is a transient regime in which both the av-
erage inversion number and the standard deviation grow
diffusively with time.

We focused on first-passage statistics and showed that
the probability that the inversion number does not ex-
ceed a certain threshold decays as power law with time.
Moreover, we found that a large spectrum of decay expo-
nents characterizes the asymptotic behavior. When the
number of particles is large, the exponents obey a uni-
versal scaling function. The scaling variable equals the
distance between the threshold inversion number and the
average inversion number, measured in terms of the stan-
dard deviation.

The cone approximation, which replaces the region in
which the compound random walk is allowed to move
with an unbounded circular cone, plays a central role in
our analysis. This approach is exact for three particles, it
produces very good estimates in higher dimensions, and
remarkably, this framework yields the exact scaling func-
tion. The cone approximation gives lower bounds for the
decay exponents because, among all unbounded domains
with the same solid angle, the perfectly circular cone
maximizes the survival probability [37, 40, 41]. The cone
approximation is useful in answering other first-passage
questions such as the probability that the nth rightmost
random walk does not cross the origin and the probability
that the original rightmost particle always remains ahead
of at least n other particles [37]. In both cases, there are
as many exponents as there are particles, and curiously,
the circular cone framework produces the scaling func-
tion governing the first-passage exponents approximately
in the first case and exactly in the second case.

Understanding when the cone approximation is exact
and when it is approximate is an interesting challenge,
with implications well beyond first-passage [42–44]. The
first-passage exponent is directly related to the lowest
eigenvalue of the Laplace operator, and therefore, we con-
clude that the lowest eigenvalue of the Laplacian similarly
obeys scaling laws in high dimensions. The shape of the
scaling function depends on the actual geometry [45].

There are a number of natural generalizations of the
current work. To measure mixing of diffusing particles
in higher dimensions, one may straightforwardly replace
the coordinate x with the radial coordinate r, or alter-
natively, one can introduce a separate inversion number
for each Cartesian coordinate. Furthermore, it will be
interesting to consider anomalous diffusion [46–48] and
investigate kinetics in the transient regime as well as first-
passage statistics.

I thank Paul Krapivsky and Timothy Wallstrom for
useful discussions. This research is supported by DOE
grant DE-AC52-06NA25396.
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