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We investigate segregation and spatial organization in a one-dimensional system of N competing
species forming a cyclic food chain. For N < 5, the system organizes into single-species domains,
with an algebraically growing average size. For N = 3 and N = 4, the domains are correlated
and they organize into “superdomains” which are characterized by an additional length scale. We
present scaling arguments as well as numerical simulations for the leading asymptotic behavior of
the density of interfaces separating neighboring domains. We also discuss statistical properties of
the system such as the mutation distribution and present an exact solution for the case N = 3.
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Coarsening underlies numerous natural processes in-
cluding phase separation, grain growth, soap bubbles,
and species segregation. It is generally believed that
coarsening systems exhibit dynamical scaling [1], i.e.,
the typical domain size grows algebraically with time,
`(t) ∼ tα. The exponent α is usually independent of
many details of the system such as the spatial dimension.
However, much less is known on coarsening in systems
with more than two equilibrium phases. In this Letter,
we show that species segregation can exhibit two-length
scaling rather than ordinary single-length scaling.

The Lotka-Volterra model of interacting populations
“living” on a one-dimensional lattice is a simple system
which exhibits species segregation. The case where N
species form a food chain is especially well suited for
studying segregation. We assume that every species plays
the role of prey and predator simultaneously. The food
chain is arranged in a cyclic manner. For example, when
N = 3, A eats B, B eats C, and C eats A. “Eating”
events involve nearest neighbors and lead to duplication
of the winner and elimination of the loser, corresponding
to the following reaction scheme

A+B → 2A, B + C → 2B, C +A→ 2C. (1)

Here and throughout this study we restrict ourselves to
random and symmetric initial conditions, where the av-
erage initial species densities are all equal 1/N . Despite
the nonconserving nature of the process, the average den-
sities remain constant in the thermodynamic limit.

For a large number of species, most pairs of species do
not interact and the system quickly reaches a frozen state.
Previous studies [2,3] have mainly concentrated on estab-
lishing the upper bound for N above which the system
does not coarsen. It has been proved rigorously that the
marginal chain length is Nc = 5 [2,3]. For N ≥ Nc each
site quickly reaches a final frozen state, while for N < Nc,
the state of each site changes an infinite number of times.
However, theoretical understanding of the kinetic behav-
ior and the coarsening properties of the system is still
incomplete [3,4]. In this study, we illuminate the rich ki-
netic behavior of the system by analyzing the density of
interfaces separating different single-species domains.

For N = 2, this system is equivalent to the voter model
[5,6] which can be solved exactly [7]. In terms of inter-
faces, the N = 2 model is equivalent to an ensemble of
annihilating random walks. The system separates into
single species domains. The average domain size ` ex-
hibits a diffusive growth law 〈`(t)〉 ∼

√
t.

Consider now the N = 3 case. There are two types
of interfaces: right moving (AB, BC, and CA) and left
moving (BA, CB, and AC), denoted by R and L, re-
spectively. The interface dynamics and consequently, the
coarsening kinetics are sensitive to the microscopic real-
ization of the reaction process. For parallel dynamics
(bonds updated simultaneously) opposite moving inter-
faces annihilate, R+L→ ∅, while for sequential dynamics
(bonds updated one at a time) interfaces moving in the
same direction react as well, R + L → ∅, R + R → L,
and L + L → R. Hence, for the 3-species model with
parallel dynamics the interface reaction process is equiv-
alent to the well-known two-velocities ballistic annihila-
tion process [8] and the interface density, M(t), decays
as t−1/2. This behavior can be understood by arguing
that in a linear region of size L, the imbalance between
the number of left and right moving interfaces is of order
∆ ∼

√
c0L. After a time t = L/v0 only this residual fluc-

tuation remains and as a result the concentration decay
M(t) ∼ ∆/L ∼ (c0/v0t)1/2 follows.

The above heuristic picture suggests a special domain
pattern. The system organizes into ballistically grow-
ing superdomains. Each superdomain contains interfaces
moving in the same direction, while neighboring superdo-
mains are separated by opposite moving interfaces. Do-
mains inside each superdomain are arranged cyclically
(ABCABC or CBACBA). In addition to the average
size of superdomains, there is an additional length scale
corresponding to the average distance between two ad-
jacent similar velocity interfaces. We define these two
length scales using an illustrative configuration:

B

L︷ ︸︸ ︷
AABBBCCCC︸ ︷︷ ︸

`

AAABBCCC B. (2)

The corresponding coarsening exponents, α and β, are
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defined via 〈`(t)〉 ∼ tα and 〈L(t)〉 ∼ tβ , respectively. For
N = 3 with parallel dynamics we thus have α = 1/2 and
β = 1.

In the complementary sequential dynamics case, inter-
faces perform a biased random walk and thus, the bal-
listic motion is now supplemented by diffusion. The sys-
tem again organizes into domains of right and left mov-
ing interfaces. Inside a domain, interfaces moving in the
same direction can now annihilate via a diffusive mech-
anism, unlike the case of parallel dynamics (more pre-
cisely, collision of say two right moving interfaces gives
birth to a left moving interface which is soon annihilated
with the nearest right moving interface). Similar single-
species annihilation with convective-diffusive transport
has been investigated in Ref. [9] where the concentration
decay M(t) ∼ t−3/4 has been established. This predic-
tion is consistent with numerical simulations. The sim-
ulations also indicate that the system slowly approaches
the asymptotic behavior 〈`(t)〉 ∼ t3/4 [10].

The resulting spatial structure is thus similar to the
parallel case, Eq. (2). However, while the larger length
scale remains unchanged, 〈L(t)〉 ∼ t, the smaller length
scale is now a geometric average of a diffusive and a bal-
listic scale. We conclude that the coarsening patterns are
characterized by two length scales, and the coarsening ki-
netics are sensitive to the details of the dynamics.

In the N = 4 case, there are static interfaces denoted
by S (AC, BD, CA, and DB), in addition to the right
and left moving interfaces, (AB, BC, CD, DA) and (BA,
CB, DC, AD), respectively. For sequential dynamics,
interfaces react upon collision according to R + L → ∅,
R + S → L, R + R → S, L + L → S, and S + L → R.
Under the assumption that neighboring interfaces are un-
correlated, the interface densities evolve according to the
following rate equations

Ṙ = − 2R2 − 2RL−RS + SL,

L̇ = − 2L2 − 2RL− SL+RS, (3)

Ṡ = R 2 + L2 −RS − SL.

Solving these equations subject to the initial conditions
R(0) = L(0) = S(0) = 1/4 gives

M(t) =
1

4 + 4t
, S(t) =

1√
4 + 4t

− 1
4 + 4t

. (4)

In the above, M(t) = R(t) = L(t) is the density of
moving interfaces. According to the rate equation the-
ory, the average distance between two static interfaces,
〈`(t)〉 ∼ t1/2, grows slower than the average distance
between two moving interfaces, 〈L(t)〉 ∼ t. A nontriv-
ial spatial organization occurs in which large “superdo-
mains” contain many domains of alternating noninteract-
ing (AC or BD) species. Similar to the N = 3 case, there
are two relevant growing length scales as in the following
illustration

B

L︷ ︸︸ ︷
AACCCAAACCCC︸ ︷︷ ︸

`

AACCAAACCC D. (5)

Numerical simulations agree qualitatively with this pic-
ture. However, the quantitative predictions for the coars-
ening exponents fail.
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FIG. 1. The concentrations of stationary (filled symbols)
and moving (open symbols) interfaces as a function of time
for the 4-species model with sequential (diamonds) or parallel
(circles) dynamics in a log-log plot. Lines of slope−1/3 (solid)
and −2/3 (dotted) are shown as a reference. An average over
100 systems of size 106 was taken.

In the following, we use heuristic arguments to ob-
tain the exponent values. Numerical simulations indicate
that parallel and sequential dynamics are asymptotically
equivalent and thus, we restrict ourselves to the former
simpler case. The annihilation reaction R + L → ∅ is
supplemented by the exchange reaction R + S → L and
L + S → R. According to the rate theory as well as
the simulations M(t) � S(t), and thus, we assume an
alternating spatial structure of “empty” regions (with no
more than one moving interface) and “stationary” re-
gions (with many stationary interfaces inside any such re-
gion). If the interface densities obey scaling, then the size
of the empty and the stationary regions should be compa-
rable. The average size of an empty or a stationary region
is therefore of the order of M−1. The number of station-
ary interfaces inside a stationary region is of the order
of S/M . The evolution proceeds as follows: a moving
interface hits the least stationary particle and bounces
back. Then this interface hits the least stationary par-
ticle of the neighboring stationary region, and bounces
back again. This “zig-zag” process continues until one of
these stationary regions “melts”, thereby giving birth to
a larger empty region. If there is a moving particle inside
merging empty region, the two moving particles quickly
annihilate. Otherwise, the moving particle continues to
eliminate stationary interfaces. The typical time τ for a
stationary region to melt is τ = M−1 × S/M = S/M2.
This melting time τ is also the typical time for annihila-
tion of a moving interface and thus,

Ṁ ∼ −M
τ
∼ −M

3

S
. (6)
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Using M(t) ∼ 〈L(t)〉−1 ∼ tα and S(t) ∼ 〈`(t)〉−1 ∼ tβ ,
the exponent relation 2β − α = 1 emerges. A second
independent exponent relation, α + β = 1, will be pre-
sented in the discussion of the mutation distribution be-
low. Combining these two relations we find that α = 1/3
and β = 2/3. These values are in good agreement with
parallel as well as sequential simulations. It is seen that
for N = 4, the coarsening kinetics are independent of
the details of the dynamics, in contrast with the N = 3
behavior.

For the 5-species cyclic Lotka-Volterra model, it is
known that the system approaches a frozen state [2,3].
Nevertheless, it is useful to consider the interface dy-
namics for the N = 5 case, where there are two types
of stationary interfaces, SR (AC,BD,CE,DA,EB) and
SL (AD,BE,CA,DB,EC), in addition to the right and
left moving interfaces, R (AB,BC,CD,DE,EA) and L
(BA,CB,DC,AD,AE). The reaction process is sym-
bolized by R + L → ∅, R + SL → L, R + SR → SL,
SR+L→ R, SL+L→ SR, R+R→ SR, and L+L→ SL.
It is straightforward to generalize the rate equations (3)
to this case as well, and we merely quote the results.
According to these equations, the static interfaces ap-
proach a final nonzero value S(t)→ S∞, and the mobile
interfaces decay exponentially, M(t) ∼ exp(−S∞t), as
t → ∞. Interestingly, the rate equations correctly pre-
dict the marginal number of species Nc = 5.

As in the N = 4 case the qualitative predications of the
rate equations are correct, but the quantitative predic-
tions fail. Since the density of mobile interfaces rapidly
decreases while the density of stationary interfaces re-
mains finite we can ignore collisions between mobile in-
terfaces. We should estimate the survival probability of
a mobile interface in a sea of stationary ones. There are
two reactions in which moving interfaces survive although
they change their type, R + SL → L and L + SR → R.
Thus, a moving interface is long lived in the following
environment: · · ·SRSRSRSRMSLSLSLSL · · ·. Clearly,
in such configurations the zig-zag reaction process takes
place. The moving interface travels to the right during
a time t0 = (c0v0)−1, eliminates a stationary interface
and travels to the left a time of order 2t0, eliminates an
interface and travels back to the right, etc. Thus, to elim-
inate Ns interfaces, the moving interface should spend a
time of order t ' t0

∑Ns
i=1 i = t0Ns(Ns+1)/2. Therefore,

the number of stationary interfaces Ns(t) eliminated by
a moving interface scales with time as Ns(t) ∼

√
c0v0t.

Special configuration of length Ns are encountered with
probability ∝ exp(−Ns), and thus, the density of mov-
ing interfaces exhibits a stretched exponential decay,
M(t) ∝ exp(−

√
c0v0t). Hence, the approach towards the

frozen state is slowed down due to spatial fluctuations.
It was pointed out recently that nontrivial behavior

underlies low-activity or persistent sites in coarsening
systems [11]. It is useful to consider the mutation dis-
tribution, Pn(t), defined as the fraction of sites that have
mutated (changed their state) exactly n times during the

time interval [0 : t]. Mutation kinetics and coarsening ki-
netics are intimately related. Let 〈n(t)〉 =

∑
n nPn(t) ∼

tν be the average number of mutations. Since every mo-
tion of an interface contributes to an increase in the num-
ber of mutations in one site, the mutation rate equals the
density of moving interfaces, d〈n(t)〉/dt = M(t). Using
M(t) ∼ t−µ one has ν = 1−µ. In the closely related voter
model [5–7] (corresponding to N = 2), it was found that
the mutation distribution Pn(t) obeys scaling [6]

Pn(t) =
1

〈n(t)〉
Φ
(

n

〈n(t)〉

)
. (7)

The scaling function has the following limiting behaviors

Φ(z) ∼
{
zγ z � 1;
exp(−zδ) z � 1 (8)

The behavior in the small argument limit reflects the de-
cay of persistent sites. For the voter model P0(t) ∼ t−θ

with θ = 3/8 [11]. If this power-law decay holds gener-
ally, then the exponent relation θ = ν(γ + 1) should be
satisfied. The large z limit describes ultra-active sites. A
convenient way to estimate the fraction of such sites is to
consider sites which make of the order of one mutations
per unit time. At time t, the fraction of these rapidly mu-
tating sites is exponentially suppressed, Pt(t) ∝ exp(−t).
It is therefore natural to assume the exponential form
Φ(z) ∼ exp(−zδ) for the tail of the scaling distribu-
tion, thereby implying an additional exponent relation
δ = 1/(1− ν).

The mutation distribution can be exactly calculated
for the N = 3 case with parallel dynamics. Since the
initial ±v0 interface velocities are uncorrelated, the in-
terface ballistic annihilation process can be mapped into
a random walk problem. As a result, the interface den-
sity is found from first passage properties of a random
walk. Similarly, the mutation distribution can be shown
to be equivalent to the probability that the minimum of
a t-step random walk is exactly n (for details, see [10]).
Using the definition of Eq. (7), and the average number of
mutations 〈n(t)〉 ∼

√
4t/3, the exact scaling distribution

can be written

Φ(z) =
4√
π
e−z

2
Erf(z), (9)

with z = n/〈n(t)〉. The limiting behaviors of this scaling
function agree with the predictions of Eq. (8), and the
scaling exponents θ = 1, ν = 1/2, δ = 2, and γ = 1,
satisfy the predicted scaling relations.

We turn now to the N = 4 case where according to
the above discussion zig-zag reactions R + S → L and
L + S → R dominate over the annihilation reaction
R+ L→ ∅ in the long-time limit. We therefore consider
a simpler solvable case where a single mobile interface is
placed in a regular sea of static interfaces to evaluate the
scaling function Φ(z). This interface moves one site to
the right, two to the left, three to the right etc. Simi-
lar to the above discussion on the survival probability in
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the N = 5 case, at time t this interface has eliminated
Ns ∼ (t/t0)1/2 static interfaces, with t0 = (c0v0)−1. The
origin is visited Nst0 times, site 1 is visited (Ns − 1)t0,
site −1 is visited (Ns − 2)t0, etc. This implies that the
mutation distribution is Pn(t) = 〈n〉−1Φ(n/〈n〉), with
〈n〉 ∼ Nst0 and Φ(z) = 1 for z < 1 and Φ(z) = 0 for
z > 1. Therefore, γ = 0. This approximation is inappro-
priate for predicting the tail of Φ(z) which is sensitive
to annihilation of the moving interfaces. However, in the
small z limit the annihilation process should be negligi-
ble, and thus γ = 0. The fraction of unvisited sites is
equivalent asymptotically to the survival probability of
a stationary interface and thus θ = α. Using the previ-
ously established relations ν = 1 − µ, θ = ν(γ + 1), and
µ = β, we obtain the second independent exponent rela-
tion α+ β = 1 which was used to obtain the asymptotic
behavior of the mobile and the static interfaces.

So far, we investigated the cyclic Lotka-Volterra model
with asymmetric interactions. To learn how the coarsen-
ing kinetics depend on the interaction rules it is also use-
ful to consider a symmetric interaction rule where both of
the reaction channels A+B → 2A and A+B → 2B are
allowed. In this case, asymptotically exact results can
be obtained. We discuss only the N = 4 case since the
N = 2 and N = 3 cases reduce to the voter model (see
[6]). Denote the static interfaces (AC, CA, BD, DB) by
S and moving interfaces by M . The symmetric “eating”
rule implies that moving interfaces perform simple ran-
dom walks. Interfaces react according to M + M → S,
and M + S →M or M + S → S depending on the local
environment. Moving interfaces undergo diffusive anni-
hilation and thus, M(t) ∼ t−1/2. The fraction of surviv-
ing stationary interfaces is proportional asymptotically
to the fraction of sites which have not been visited by
mobile interfaces up to time t, S(t) ∼ P0(t) ∼ t−3/8. We
should also take into account creation of stationary inter-
faces by annihilation of moving interfaces. This process
produces new stationary interfaces with rate of the order
−dM/dt. Thus, the stationary interface density satisfies
the rate equation Ṡ = Ṗ0 − Ṁ . Combining this equa-
tion with P0(t) ∼ t−3/8 [11] and M(t) ∼ t−1/2, we find
that the surviving interfaces provide the dominant con-
tribution while those created in the process M +M → S
contribute only to a correction of the order t−1/8. Thus a
two-scale structure similar to Eq. (5), with 〈`(t)〉 ∼ t3/8

and 〈L(t)〉 ∼ t1/2, emerges. Hence, it is seen that the
coarsening exponents can be sensitive to the details of
the interaction rules.

In conclusion, we investigated coarsening in a one-
dimensional model of competing species. Interestingly,
the coarsening properties of this model may depend on
the details of the dynamics. The spatial patterns are
characterized by the existence of two characteristic length
scales, the average length of the single-species domains,

〈`(t)〉 ∼ tα, and the average length of superdomains,
〈L(t)〉 ∼ tβ (the corresponding coarsening and mutation
exponents are summarized in Table 1). This unusual be-
havior is an example of scaling violation in a system with
a scalar order parameter (similar behavior has been ob-
served in a few one-dimensional systems with vector order
parameter [1,12]). The above results contrasts the mean-
field infinite dimension limit, indicating that fluctuations
play an important role in sufficiently low spatial dimen-
sions. It will be interesting to establish whether similar
behavior underlies other competing population systems
as well.

N α β ν θ
3 (parallel) 1/2 1 1/2 1
3 (sequential) 3/4 1 1/4 1
4 1/3 2/3 1/3 1/3
4 (symmetric) 3/8 1/2 1/2 3/8

Table 1: Coarsening (〈`(t)〉 ∼ tα and 〈L(t)〉 ∼ tβ) and

persistence (〈n(t)〉 ∼ tν and P0(t) ∼ tθ) exponents in 1D.
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