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We investigate segregation and spatial organization in a one-dimensional syst€ntahpeting
species forming a cyclic food chain. Féf < 5, the system organizes into single-species domains,
with an algebraically growing average size. Rér= 3 and N = 4, the domains are correlated and
they organize into “superdomains” which are characterized by an additional length scale. We present
scaling arguments as well as numerical simulations for the leading asymptotic behavior of the density of
interfaces separating neighboring domains. We also discuss statistical properties of the system such as
the mutation distribution and present an exact solution for the ¥ase3. [S0031-9007(96)01000-9]

PACS numbers: 87.10.+e, 02.50.Ga, 05.40.+j, 05.70.Ln

Coarsening underlies numerous natural processes inf the kinetic behavior and the coarsening properties of
cluding phase separation, grain growth, soap bubbles, arile system is still incomplete [3,4]. In this study we
species segregation. It is generally believed that coarseiftuminate the rich kinetic behavior of the system by
ing systems exhibit dynamical scaling [1], i.e., the typi-analyzing the density of interfaces separating different
cal domain size grows algebraically with tim&;) ~ r*.  single-species domains.

The exponentx is usually independent of many details For N = 2, this system is equivalent to the voter
of the system such as the spatial dimension. Howevemodel [5,6] which can be solved exactly [7]. In terms of
much less is known on coarsening in systems with morénterfaces, thev = 2 model is equivalent to an ensemble
than two equilibrium phases. In this Letter, we show thatof annihilating random walks. The system separates into
species segregation can exhibit two-length scaling rathesingle species domains. The average domain €ize
than ordinary single-length scaling. exhibits a diffusive growth law¢(r)) ~ /7.

The Lotka-Volterra model of interacting populations Consider now the&v = 3 case. There are two types of
“living” on a one-dimensional lattice is a simple systeminterfaces: right movingAB, BC, andCA) and left mov-
which exhibits species segregation. The case whére ing (BA, CB, andAC), denoted byR andL, respectively.
species form a food chain is especially well suited forThe interface dynamics and, consequently, the coarsen-
studying segregation. We assume that every species playg kinetics are sensitive to the microscopic realization of
the role of prey and predator simultaneously. The foodhe reaction process. For parallel dynamics (bonds up-
chain is arranged in a cyclic manner. For example, whemlated simultaneously) opposite moving interfaces annihi-
N = 3, A eatsB, B eatsC, andC eatsA. “Eating” events late,R + L — J, while for sequential dynamics (bonds
involve nearest neighbors and lead to duplication of theipdated one at a time) interfaces moving in the same di-
winner and elimination of the loser, corresponding to therection react as wellR + L — J, R + R — L, and
following reaction scheme: L + L — R. Hence for the three-species model with

A+B—24 B+C—2B C+A—2C. IparaIIeI dynamics the interface reaction process is equiva-

ent to the well-known two-velocities ballistic annihila-
(1) tion process [8], and the interface density(r) decays as
Here and throughout this study we restrict ourselves te~!/2. This behavior can be understood by arguing that
random and symmetric initial conditions where the aver4in a linear region of sizeL the imbalance between the
age initial species densities are all eqliaVv. Despite the number of left and right moving interfaces is of order
nonconserving nature of the process, the average densitias~ +/coL . After a timer = L /vy only this residual
remain constant in the thermodynamic limit. fluctuation remains, and as a result the concentration de-

For a large number of species, most pairs of speciesayM(t) ~ A/ L ~ (co/vot)"/* follows.
do not interact and the system quickly reaches a frozen The above heuristic picture suggests a special domain
state. Previous studies [2,3] have mainly concentratedattern. The system organizes into ballistically grow-
on establishing the upper bound for above which the ing superdomains. Each superdomain contains interfaces
system does not coarsen. It has been proved rigoroushpoving in the same direction, while neighboring superdo-
that the marginal chain length i, =5 [2,3]. For mains are separated by opposite moving interfaces. Do-
N = N, each site quickly reaches a final frozen statemains inside each superdomain are arranged cyclically
while for N < N, the state of each site changes an infinite(ABCABC or CBACBA). In addition to the average
number of times. However, theoretical understandingsize of superdomains, there is an additional length scale
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corresponding to the average distance between two adm@nization occurs in which large “superdomains” contain
jacent similar velocity interfaces. We define these twomany domains of alternating noninteractirg or BD)

length scales using an illustrative configuration species. Similar to th& = 3 case, there are two relevant
£ growing length scales as in the following illustration:
BAABBB CCCC AAABBCCC B. (2) ) L .
¢ BAACCCAAACCCCAACCAAACCCD. (5)
The corresponding coarsening exponeatsand 8 are ¢

defined via{{(s)) ~ * and (L (1)) ~ t?, respectively.  Nymerical simulations agree qualitatively with this pic-
For N = 3 with parallel dynamics we thus have=1/2  yre. However, the quantitative predictions for the coars-

andg = 1. _ , _ ening exponents fail.
In the complementary sequential dynamics case, inter- |, the following, we use heuristic arguments to ob-

faces perform a biased random walk, and thus the ballisjn, the exponent values. Numerical simulations indicate
tic motion is now supplemented by diffusion. The systeMyat parallel and sequential dynamics are asymptotically

again organizes into domains of right and left moving in-gquivalent, and thus we restrict ourselves to the former
terfaces. Inside a domain, interfaces moving in the samgimpler case. The annihilation reactién+ L — & is

direction can now annihilate via a diffusive meChanism’supplemented by the exchange reactior- S — L and
unlike the case of parallel dynamics (more precisely coly, - g —, g According to the rate theory as well as the
lision of, say, two right moving interfaces gives birth to a imylationsM(r) <« S(r), and thus we assume an alternat-
left moving interface which is soon annihilated with the jng spatial structure of “empty” regions (with no more than
nearest right moving interface). Similar single-specieg)ne moving interface) and “stationary” regions (with many
.annlhl.latlon Wlth convective-diffusive transport 'has beenstationary interfaces inside any such region). If the inter-
|nvest|gaE(33(/j4 in Ref. [9] where the concentration decayace densities obey scaling, then the size of the empty and
M(z) ~ 1~/* has been established. This predictionis conyhe stationary regions should be comparable. The aver-
sistent with numerical simulations. The simulations alsoage size of an empty or a stationary region is therefore
|nd|cat_e that the sglitem slowly approaches the asymptotigs the order ofM~'. The number of stationary inter-
behavior(((z)) ~ " [10]. _ . faces inside a stationary region is of the orderSg/.

The resulting spatial structure is .thus similar to theTne evolution proceeds as follows: A moving interface
parallel case, Eq. (2). However, while the larger lengthyjts the least stationary particle and bounces back. Then
scale remains unchanged; (1)) ~ 7, the smaller length 5 interface hits the least stationary particle of the neigh-
scale is now a geometric average of a diffusive and @qring stationary region and bounces back again. This
ballistic scale.. We conclude that the coarsening pattemszigzagn process continues until one of these stationary
are characterized by two length scales, and the coarseninggions “melts,” thereby giving birth to a larger empty

kinetics are sensitive to the details of the dynamics. region. If there is a moving particle inside the merging
Inthe N = 4 case there are static interfaces denoted by

S (AC, BD, CA, andDB) in addition to the right and left w | !
moving interfacesAB, BC, CD, DA) and (BA, CB, DC,

AD), respectively. For sequential dynamics, interfaces
react upon collision according t® + L — J, R +

S—LR+R— S, L+L—SandS+L—R. , 2|
Under the assumption that neighboring interfaces ar.g
uncorrelated, the interface densities evolve according t£
the following rate equations:

R = —2R> — 2RL — RS + SL,
L= —-2L* — 2RL — SL + RS, 3)
S=R>+L>— RS — SL.

Solving these equations subject to the initial conditions
R(0) = L(0) = S(0) = 1/4 gives

interface conce

-6

1 1 1 10 10° 162 1c|)4 16"'
M(t) = —— 1) = - . (4
® 4 + 4¢° S A+ 4 4+ 4 () t

In the aboveM(t) = R(t) = L(t) is the density of mov- FIG. 1. The concentrations of stationary (filled symbols) and
ing interfaces. According to the rate equation theory, thf{"o"'”g (open symbols) interfaces as a function of time for

- . z he four-species model with sequential (diamonds) or parallel
average distance between two static interfa¢ég,)) (circles) dynamics in a log-log plot. Lines of slopel/3

112, grows slower than the average distance between tw@olid) and—2/3 (dotted) are shown as a reference. An average
moving interfaces{L (¢)) ~ ¢. A nontrivial spatial or- over 100 systems of siz€°® was taken.
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empty region, the two moving particles quickly annihilate. probability «exp(—N;), and thus the density of moving
Otherwise, the moving particle continues to eliminate stainterfaces exhibits a stretched exponential deksy) o
tionary interfaces. The typical time for a stationary re- exp(—./covof). Hence the approach towards the frozen
giontomeltisr = M~' X S/M = S/M?. This melting state is slowed down due to spatial fluctuations.

time 7 is also the typical time for annihilation of a moving It was pointed out recently that nontrivial behavior

interface and, thus, underlies low-activity or persistent sites in coarsening
. M M3 systems [11]. It is useful to consider the mutation
M~—-—— ~— 5 (6) distributionP,(¢) defined as the fraction of sites that have
T mutated (changed their state) exactlftimes during the
UsingM (1) ~ (L (t))"' ~ t* andS(t) ~ (€(t))"' ~ t#,  time interval [0 : r]. Mutation kinetics and coarsening

the exponent relatio23 — « = 1 emerges. A second kinetics are intimately related. Lét(t)) = >, nP,(t) ~
independent exponent relatian + 8 = 1 will be pre- ¥ pe the average number of mutations. Since every
sented in the discussion of the mutation distribution belowmotion of an interface contributes to an increase in the
Combining these two relations we find that= 1/3 and  number of mutations in one site, the mutation rate equals
B = 2/3. These values are in good agreement with paralthe density of moving interfacesd{n(r))/dr = M().
lel as well as sequential simulations (see Fig. 1). Itis seetWsing M () ~ ¢t * one hasy = 1 — u. In the closely
that for N = 4 the coarsening kinetics are independent ofrelated voter model [5—7] (corresponding b= 2), it
the details of the dynamics, in contrast with tNe=3  was found that the mutation distributioR,(r) obeys

behavior. scaling [6]

For the five-species cyclic Lotka-Volterra model, it is | "
known that the system approaches a frozen state [2,3]. P,(t) = (I)( ) @)
Nevertheless, it is useful to consider the interface dy- (n(1)) (n(1)

namics for theN = 5 case, where there are two types The scaling function has the following limiting behaviors:
of stationary interfacesSg (AC,BD,CE, DA, EB) and 7 <1
S. (AD,BE,CA,DB,EC), in addition to the right and d(z) ~ {éxp(_zg) 2> 1’ (8)
left moving interfacesR (AB,BC,CD,DE,EA) and L ’ ’
(BA,CB,DC,AD,AE). The reaction process is sym- The behavior in the small argument limit reflects the de-
bolized byR + L — &, R + S, — L, R + S —  cay of persistent sites. For the voter modgls) ~ ¢+~
S;,Sg + L—R,S; + L — Sg, R + R — Sg,and with § = 3/8 [11]. If this power-law decay holds gener-
L + L — S;. ltis straightforward to generalize the rate ally, then the exponent relatioh = v(y + 1) should be
equations (3) to this case as well, and we merely quote theatisfied. The large limit describes ultra-active sites. A
results. According to these equations, the static interfacesonvenient way to estimate the fraction of such sites is to
approach a final nonzero val$&r) — S.., and the mo- consider sites which make of the order of one mutations
bile interfaces decay exponentiallyf(r) ~ exp(—S«t),  per unit time. At timer, the fraction of these rapidly mu-
ast — oo, Interestingly, the rate equations correctly pre-tating sites is exponentially suppress@g(s) o« exp(—1).
dict the marginal number of specigs = 5. It is therefore natural to assume the exponential form
As in the N = 4 case the qualitative predications of ®(z) ~ exp(—z%) for the tail of the scaling distribu-
the rate equations are correct, but the quantitative predigion, thereby implying an additional exponent relation
tions fail. Since the density of mobile interfaces rapidlyd = 1/(1 — v).
decreases while the density of stationary interfaces re- The mutation distribution can be exactly calculated for
mains finite, we can ignore collisions between mobile in-the N = 3 case with parallel dynamics. Since the initial
terfaces. We should estimate the survival probability oftv, interface velocities are uncorrelated, the interface
a mobile interface in a sea of stationary ones. There arballistic annihilation process can be mapped into a random
two reactions in which moving interfaces survive althoughwalk problem. As a result, the interface density is found
they change their typeR + S; — L andL + Sz —  from first passage properties of a random walk. Similarly,
R. Thus a moving interface is long lived in the follow- the mutation distribution can be shown to be equivalent to
ing environment: - - SgSrSgrSrMS;S. S, S, ---. Clearly the probability that the minimum of astep random walk
in such configurations the zigzag reaction process takds exactlyn (for details, see [10]). Using the definition
place. The moving interface travels to the right duringof Eqg. (7) and the average number of mutatiéng)) ~
atimery = (covp) !, eliminates a stationary interface and \/47/3, the exact scaling distribution can be written
travels to the left a time of ord&r,, eliminates an inter- 4 )
face and travels back to the right, etc. Thus to eliminate d(z) = —=e ¥ Erf(z), 9)
N, interfaces, the moving interface should spend a time T
of ordert = 1 Zﬁvgli = oNs(N, + 1)/2. Therefore the with z = n/{(n(¢)). The limiting behaviors of this scaling
number of stationary interfaceN(r) eliminated by a function agree with the predictions of Eg. (8), and the
moving interface scales with time a¥,(r) ~ \/covof.  scaling exponent¥ =1, v = 1/2, § =2, andy = 1
Special configurations of lengtN; are encountered with satisfy the predicted scaling relations.
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We turn now to theV = 4 case where according to the TABLE I. Coarsening {((1)) ~ t* and (L (1)) ~ t#] and
above discussion zigzag reactioRs+ S — L andL +  persistence(f(t)) ~ 1 and Py(t) ~ 1] exponents in 1D.
§ — R dominate over the annihilation reactiaR + N o ) v 9
L —  in the long-time limit. We therefore consider 3 (parallel) 12 1 12 1
a simpler solvable case where a single mobile interfac% P

. . LT sequential 3/4 1 1/4 1
is placed in a regular sea of static interfaces to evaluate ( CL ) 1§3 2/3 1% 1/3
the scaling functiond(z). This interface moves one 4 symmetric) 3/8 1/2 1/2 3/8

site to the right, two to the left, three to the right,
etc. Similar to the above discussion on the survival
probability in the N = 5 case, at timer this interface coarsening exponents can be sensitive to the details of the

has eliminatedv, ~ (r/1y)"/? static interfaces, withy = interaction rules.

(covg)~!'. The origin is visitedN,#, times, sitel is In conclusion, we investigated coarsening in a one-
visited (N, — 1)y, site —1 is visited (N; — 2)7y, etc. dimensional model of competing species. Interestingly,
This implies that the mutation distribution iB,(r) =  the coarsening properties of this model may depend on the

(n)~'®(n/{n)), with (n) ~ Nty and®(z) = 1 for z <  details of the dynamics. The spatial patterns are charac-
1 and ®(z) =0 for z > 1. Thereforey = 0. This terized by the existence of two characteristic length scales,
approximation is inappropriate for predicting the tail of the average length of the single-species domaitts)) ~
®(z), which is sensitive to annihilation of the moving %, and the average length of superdomaiu(r)) ~
interfaces. However, in the smalllimit the annihilation  (the corresponding coarsening and mutation exponents are
process should be negligible, and thgs= 0. The summarized in Table I). This unusual behavior is an ex-
fraction of unvisited sites is equivalent asymptoticallyample of scaling violation in a system with a scalar or-
to the survival probability of a stationary interface, andder parameter (similar behavior has been observed in a
thus 6 = a. Using the previously established relationsfew one-dimensional systems with vector order parameter
v=1-—pu,60=v(y+1),andu = B, we obtain the [1,12]). The above results contrast the mean-field infinite
second independent exponent relation+ 8 = 1, which  dimension limit, indicating that fluctuations play an im-
was used to obtain the asymptotic behavior of the mobil@ortant role in sufficiently low spatial dimensions. It will
and the static interfaces. be interesting to establish whether similar behavior under-
So far, we investigated the cyclic Lotka-Volterra modellies other competing population systems as well.
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ing kinetics depend on the interaction rules it is also useS. Redner for discussions. L. F. is supported by the Swiss
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the reaction channeld + B — 24 andA + B— 2B E.B. is supported in part by NSF Award No. 92-08527,
are allowed. In this case, asymptotically exact results caand by the MRSEC Program of the NSF under Award
be obtained. We discuss only thé = 4 case since the No. DMR-9400379.
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