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We investigate segregation and spatial organization in a one-dimensional system ofN competing
species forming a cyclic food chain. ForN , 5, the system organizes into single-species domain
with an algebraically growing average size. ForN ­ 3 and N ­ 4, the domains are correlated and
they organize into “superdomains” which are characterized by an additional length scale. We pr
scaling arguments as well as numerical simulations for the leading asymptotic behavior of the dens
interfaces separating neighboring domains. We also discuss statistical properties of the system s
the mutation distribution and present an exact solution for the caseN ­ 3. [S0031-9007(96)01000-9]
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Coarsening underlies numerous natural processe
cluding phase separation, grain growth, soap bubbles
species segregation. It is generally believed that coa
ing systems exhibit dynamical scaling [1], i.e., the ty
cal domain size grows algebraically with time,,std , ta .
The exponenta is usually independent of many deta
of the system such as the spatial dimension. Howe
much less is known on coarsening in systems with m
than two equilibrium phases. In this Letter, we show t
species segregation can exhibit two-length scaling ra
than ordinary single-length scaling.

The Lotka-Volterra model of interacting populatio
“living” on a one-dimensional lattice is a simple syste
which exhibits species segregation. The case wherN
species form a food chain is especially well suited
studying segregation. We assume that every species
the role of prey and predator simultaneously. The f
chain is arranged in a cyclic manner. For example, w
N ­ 3, A eatsB, B eatsC, andC eatsA. “Eating” events
involve nearest neighbors and lead to duplication of
winner and elimination of the loser, corresponding to
following reaction scheme:

A 1 B °! 2A, B 1 C °! 2B, C 1 A °! 2C .

(1)
Here and throughout this study we restrict ourselve
random and symmetric initial conditions where the av
age initial species densities are all equal1yN. Despite the
nonconserving nature of the process, the average den
remain constant in the thermodynamic limit.

For a large number of species, most pairs of spe
do not interact and the system quickly reaches a fro
state. Previous studies [2,3] have mainly concentr
on establishing the upper bound forN above which the
system does not coarsen. It has been proved rigoro
that the marginal chain length isNc ­ 5 [2,3]. For
N $ Nc each site quickly reaches a final frozen st
while for N , Nc the state of each site changes an infin
number of times. However, theoretical understand
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of the kinetic behavior and the coarsening properties
the system is still incomplete [3,4]. In this study w
illuminate the rich kinetic behavior of the system
analyzing the density of interfaces separating differ
single-species domains.

For N ­ 2, this system is equivalent to the vot
model [5,6] which can be solved exactly [7]. In terms
interfaces, theN ­ 2 model is equivalent to an ensemb
of annihilating random walks. The system separates
single species domains. The average domain siz,
exhibits a diffusive growth lawk,stdl ,

p
t.

Consider now theN ­ 3 case. There are two types
interfaces: right moving (AB, BC, andCA) and left mov-
ing (BA, CB, andAC), denoted byR andL, respectively.
The interface dynamics and, consequently, the coar
ing kinetics are sensitive to the microscopic realization
the reaction process. For parallel dynamics (bonds
dated simultaneously) opposite moving interfaces ann
late,R 1 L °! [, while for sequential dynamics (bond
updated one at a time) interfaces moving in the same
rection react as well,R 1 L °! [, R 1 R °! L, and
L 1 L °! R. Hence for the three-species model w
parallel dynamics the interface reaction process is equ
lent to the well-known two-velocities ballistic annihila
tion process [8], and the interface densityMstd decays as
t21y2. This behavior can be understood by arguing t
in a linear region of sizeL the imbalance between th
number of left and right moving interfaces is of ord
D ,

p
c0L . After a time t ­ L yy0 only this residual

fluctuation remains, and as a result the concentration
cayMstd , DyL , sc0yy0td1y2 follows.

The above heuristic picture suggests a special dom
pattern. The system organizes into ballistically gro
ing superdomains. Each superdomain contains interf
moving in the same direction, while neighboring super
mains are separated by opposite moving interfaces.
mains inside each superdomain are arranged cyclic
(ABCABC or CBACBA). In addition to the averag
size of superdomains, there is an additional length s
© 1996 The American Physical Society 2125
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corresponding to the average distance between two
jacent similar velocity interfaces. We define these tw
length scales using an illustrative configuration

B

Lz }| {
AABBB CCCC| {z }

,

AAABBCCC B . (2)

The corresponding coarsening exponentsa and b are
defined via k,stdl , ta and kL stdl , tb, respectively.
For N ­ 3 with parallel dynamics we thus havea ­ 1y2
andb ­ 1.

In the complementary sequential dynamics case, in
faces perform a biased random walk, and thus the ba
tic motion is now supplemented by diffusion. The syste
again organizes into domains of right and left moving i
terfaces. Inside a domain, interfaces moving in the sa
direction can now annihilate via a diffusive mechanis
unlike the case of parallel dynamics (more precisely c
lision of, say, two right moving interfaces gives birth to
left moving interface which is soon annihilated with th
nearest right moving interface). Similar single-spec
annihilation with convective-diffusive transport has be
investigated in Ref. [9] where the concentration dec
Mstd , t23y4 has been established. This prediction is co
sistent with numerical simulations. The simulations a
indicate that the system slowly approaches the asympt
behaviork,stdl , t3y4 [10].

The resulting spatial structure is thus similar to t
parallel case, Eq. (2). However, while the larger leng
scale remains unchanged,kL stdl , t, the smaller length
scale is now a geometric average of a diffusive and
ballistic scale. We conclude that the coarsening patte
are characterized by two length scales, and the coarse
kinetics are sensitive to the details of the dynamics.

In theN ­ 4 case there are static interfaces denoted
S (AC, BD, CA, andDB) in addition to the right and left
moving interfaces (AB, BC, CD, DA) and (BA, CB, DC,
AD), respectively. For sequential dynamics, interfac
react upon collision according toR 1 L °! [, R 1

S °! L, R 1 R °! S, L 1 L °! S, andS 1 L °! R.
Under the assumption that neighboring interfaces
uncorrelated, the interface densities evolve according
the following rate equations:

ÙR ­ 22R2 2 2RL 2 RS 1 SL ,

ÙL ­ 22L2 2 2RL 2 SL 1 RS , (3)

ÙS ­ R2 1 L2 2 RS 2 SL .

Solving these equations subject to the initial conditio
Rs0d ­ Ls0d ­ Ss0d ­ 1y4 gives

Mstd ­
1

4 1 4t
, Sstd ­

1
p

4 1 4t
2

1
4 1 4t

. (4)

In the above,Mstd ­ Rstd ­ Lstd is the density of mov-
ing interfaces. According to the rate equation theory,
average distance between two static interfaces,k,stdl ,
t1y2, grows slower than the average distance between
moving interfaces,kL stdl , t. A nontrivial spatial or-
2126
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ganization occurs in which large “superdomains” conta
many domains of alternating noninteracting (AC or BD)
species. Similar to theN ­ 3 case, there are two relevan
growing length scales as in the following illustration:

B

Lz }| {
AACCCAAA CCCC| {z }

,

AACCAAACCC D . (5)

Numerical simulations agree qualitatively with this pi
ture. However, the quantitative predictions for the coa
ening exponents fail.

In the following, we use heuristic arguments to o
tain the exponent values. Numerical simulations indic
that parallel and sequential dynamics are asymptotic
equivalent, and thus we restrict ourselves to the form
simpler case. The annihilation reactionR 1 L °! [ is
supplemented by the exchange reactionR 1 S °! L and
L 1 S °! R. According to the rate theory as well as th
simulationsMstd ø Sstd, and thus we assume an alterna
ing spatial structure of “empty” regions (with no more tha
one moving interface) and “stationary” regions (with ma
stationary interfaces inside any such region). If the int
face densities obey scaling, then the size of the empty
the stationary regions should be comparable. The a
age size of an empty or a stationary region is theref
of the order ofM21. The number of stationary inter
faces inside a stationary region is of the order ofSyM.
The evolution proceeds as follows: A moving interfa
hits the least stationary particle and bounces back. T
this interface hits the least stationary particle of the neig
boring stationary region and bounces back again. T
“zigzag” process continues until one of these station
regions “melts,” thereby giving birth to a larger emp
region. If there is a moving particle inside the mergin

FIG. 1. The concentrations of stationary (filled symbols) a
moving (open symbols) interfaces as a function of time
the four-species model with sequential (diamonds) or para
(circles) dynamics in a log-log plot. Lines of slope21y3
(solid) and22y3 (dotted) are shown as a reference. An avera
over 100 systems of size106 was taken.
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empty region, the two moving particles quickly annihila
Otherwise, the moving particle continues to eliminate s
tionary interfaces. The typical timet for a stationary re-
gion to melt ist ­ M21 3 SyM ­ SyM2. This melting
time t is also the typical time for annihilation of a movin
interface and, thus,

ÙM , 2
M
t

, 2
M3

S
. (6)

UsingMstd , kL stdl21 , ta andSstd , k,stdl21 , tb ,
the exponent relation2b 2 a ­ 1 emerges. A secon
independent exponent relationa 1 b ­ 1 will be pre-
sented in the discussion of the mutation distribution bel
Combining these two relations we find thata ­ 1y3 and
b ­ 2y3. These values are in good agreement with pa
lel as well as sequential simulations (see Fig. 1). It is s
that forN ­ 4 the coarsening kinetics are independent
the details of the dynamics, in contrast with theN ­ 3
behavior.

For the five-species cyclic Lotka-Volterra model, it
known that the system approaches a frozen state [
Nevertheless, it is useful to consider the interface
namics for theN ­ 5 case, where there are two typ
of stationary interfaces,SR (AC, BD, CE, DA, EB) and
SL (AD, BE, CA, DB, EC), in addition to the right and
left moving interfaces,R (AB, BC, CD, DE, EA) and L
(BA, CB, DC, AD, AE). The reaction process is sym
bolized by R 1 L °! [, R 1 SL °! L, R 1 SR °!

SL, SR 1 L °! R, SL 1 L °! SR , R 1 R °! SR, and
L 1 L °! SL. It is straightforward to generalize the ra
equations (3) to this case as well, and we merely quote
results. According to these equations, the static interfa
approach a final nonzero valueSstd °! S`, and the mo-
bile interfaces decay exponentially,Mstd , exps2S`td,
ast °! `. Interestingly, the rate equations correctly p
dict the marginal number of speciesNc ­ 5.

As in the N ­ 4 case the qualitative predications
the rate equations are correct, but the quantitative pre
tions fail. Since the density of mobile interfaces rapid
decreases while the density of stationary interfaces
mains finite, we can ignore collisions between mobile
terfaces. We should estimate the survival probability
a mobile interface in a sea of stationary ones. There
two reactions in which moving interfaces survive althou
they change their type,R 1 SL °! L and L 1 SR °!
R. Thus a moving interface is long lived in the follow
ing environment:· · · SRSRSRSRMSLSLSLSL · · ·. Clearly
in such configurations the zigzag reaction process ta
place. The moving interface travels to the right duri
a timet0 ­ sc0y0d21, eliminates a stationary interface an
travels to the left a time of order2t0, eliminates an inter-
face and travels back to the right, etc. Thus to elimin
Ns interfaces, the moving interface should spend a t
of ordert . t0

PNs
i­1 i ­ t0NssNs 1 1dy2. Therefore the

number of stationary interfacesNsstd eliminated by a
moving interface scales with time asNsstd ,

p
c0y0t.

Special configurations of lengthNs are encountered with
.
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probability ~exps2Nsd, and thus the density of movin
interfaces exhibits a stretched exponential decayMstd ~

exps2
p

c0y0td. Hence the approach towards the froz
state is slowed down due to spatial fluctuations.

It was pointed out recently that nontrivial behavi
underlies low-activity or persistent sites in coarsen
systems [11]. It is useful to consider the mutati
distributionPnstd defined as the fraction of sites that ha
mutated (changed their state) exactlyn times during the
time interval f0 : tg. Mutation kinetics and coarsenin
kinetics are intimately related. Letknstdl ­

P
n nPnstd ,

tn be the average number of mutations. Since ev
motion of an interface contributes to an increase in
number of mutations in one site, the mutation rate equ
the density of moving interfaces,dknstdlydt ­ Mstd.
Using Mstd , t2m one hasn ­ 1 2 m. In the closely
related voter model [5–7] (corresponding toN ­ 2), it
was found that the mutation distributionPnstd obeys
scaling [6]

Pnstd ­
1

knstdl
F

µ
n

knstdl

∂
. (7)

The scaling function has the following limiting behavior

Fszd ,
Ω

zg z ø 1,
exps2zdd, z ¿ 1 . (8)

The behavior in the small argument limit reflects the d
cay of persistent sites. For the voter modelP0std , t2u

with u ­ 3y8 [11]. If this power-law decay holds gene
ally, then the exponent relationu ­ nsg 1 1d should be
satisfied. The largez limit describes ultra-active sites. A
convenient way to estimate the fraction of such sites is
consider sites which make of the order of one mutatio
per unit time. At timet, the fraction of these rapidly mu
tating sites is exponentially suppressed,Ptstd ~ exps2td.
It is therefore natural to assume the exponential fo
Fszd , exps2zdd for the tail of the scaling distribu-
tion, thereby implying an additional exponent relatio
d ­ 1ys1 2 nd.

The mutation distribution can be exactly calculated
the N ­ 3 case with parallel dynamics. Since the initi
6y0 interface velocities are uncorrelated, the interfa
ballistic annihilation process can be mapped into a rand
walk problem. As a result, the interface density is fou
from first passage properties of a random walk. Simila
the mutation distribution can be shown to be equivalen
the probability that the minimum of at-step random walk
is exactlyn (for details, see [10]). Using the definitio
of Eq. (7) and the average number of mutationsknstdl ,p

4ty3, the exact scaling distribution can be written

Fszd ­
4

p
p

e2z2

Erfszd , (9)

with z ­ nyknstdl. The limiting behaviors of this scaling
function agree with the predictions of Eq. (8), and t
scaling exponentsu ­ 1, n ­ 1y2, d ­ 2, and g ­ 1
satisfy the predicted scaling relations.
2127
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We turn now to theN ­ 4 case where according to th
above discussion zigzag reactionsR 1 S °! L andL 1

S °! R dominate over the annihilation reactionR 1

L °! [ in the long-time limit. We therefore conside
a simpler solvable case where a single mobile interf
is placed in a regular sea of static interfaces to evalu
the scaling functionFszd. This interface moves on
site to the right, two to the left, three to the righ
etc. Similar to the above discussion on the survi
probability in the N ­ 5 case, at timet this interface
has eliminatedNs , styt0d1y2 static interfaces, witht0 ­
sc0y0d21. The origin is visitedNst0 times, site 1 is
visited sNs 2 1dt0, site 21 is visited sNs 2 2dt0, etc.
This implies that the mutation distribution isPnstd ­
knl21Fsnyknld, with knl , Nst0 and Fszd ­ 1 for z ,

1 and Fszd ­ 0 for z . 1. Therefore g ­ 0. This
approximation is inappropriate for predicting the tail
Fszd, which is sensitive to annihilation of the movin
interfaces. However, in the smallz limit the annihilation
process should be negligible, and thusg ­ 0. The
fraction of unvisited sites is equivalent asymptotica
to the survival probability of a stationary interface, a
thus u ­ a. Using the previously established relatio
n ­ 1 2 m, u ­ nsg 1 1d, and m ­ b, we obtain the
second independent exponent relationa 1 b ­ 1, which
was used to obtain the asymptotic behavior of the mo
and the static interfaces.

So far, we investigated the cyclic Lotka-Volterra mod
with asymmetricinteractions. To learn how the coarse
ing kinetics depend on the interaction rules it is also u
ful to consider asymmetricinteraction rule where both o
the reaction channelsA 1 B °! 2A and A 1 B °! 2B
are allowed. In this case, asymptotically exact results
be obtained. We discuss only theN ­ 4 case since the
N ­ 2 and N ­ 3 cases reduce to the voter model (s
[6]). Denote the static interfaces (AC, CA, BD, DB) by
S and moving interfaces byM. The symmetric eating
rule implies that moving interfaces perform simple ra
dom walks. Interfaces react according toM 1 M °! S,
and M 1 S °! M or M 1 S °! S depending on the
local environment. Moving interfaces undergo diffusi
annihilation, and thusMstd , t21y2. The fraction of sur-
viving stationary interfaces is proportional asymptotica
to the fraction of sites which have not been visited by m
bile interfaces up to timet, Sstd , P0std , t23y8. We
should also take into account creation of stationary in
faces by annihilation of moving interfaces. This proce
produces new stationary interfaces with rate of the or
2dMydt. Thus the stationary interface density satisfi
the rate equationÙS ­ ÙP0 2 ÙM. Combining this equa
tion with P0std , t23y8 [11] and Mstd , t21y2, we find
that the surviving interfaces provide the dominant con
bution while those created in the processM 1 M ! S
contribute only to a correction of the ordert21y8. Thus
a two-scale structure similar to Eq. (5), withk,stdl , t3y8

and kL stdl , t1y2, emerges. Hence it is seen that t
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TABLE I. Coarsening [k,stdl , ta and kL stdl , tb] and
persistence [knstdl , tn andP0std , tu] exponents in 1D.

N a b n u

3 (parallel) 1y2 1 1y2 1
3 (sequential) 3y4 1 1y4 1

4 1y3 2y3 1y3 1y3
4 (symmetric) 3y8 1y2 1y2 3y8

coarsening exponents can be sensitive to the details o
interaction rules.

In conclusion, we investigated coarsening in a on
dimensional model of competing species. Interesting
the coarsening properties of this model may depend on
details of the dynamics. The spatial patterns are cha
terized by the existence of two characteristic length sca
the average length of the single-species domains,k,stdl ,
ta , and the average length of superdomains,kL stdl , tb

(the corresponding coarsening and mutation exponents
summarized in Table I). This unusual behavior is an e
ample of scaling violation in a system with a scalar o
der parameter (similar behavior has been observed
few one-dimensional systems with vector order parame
[1,12]). The above results contrast the mean-field infin
dimension limit, indicating that fluctuations play an im
portant role in sufficiently low spatial dimensions. It wi
be interesting to establish whether similar behavior und
lies other competing population systems as well.
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