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We investigate segregation and spatial organization in a one-dimensional system of N competing
species forming a cyclic food chain. For N < 5, the system organizes into single-species domains,
with an algebraically growing typical size. For N = 3 and N = 4, the domains are correlated
and they organize into “superdomains” which are characterized by an additional length scale. We
present scaling arguments as well as numerical simulations for the leading asymptotic behavior of
the density of interfaces separating neighboring domains. We also discuss statistical properties of
the system such as the mutation distribution and present an exact solution for the case N = 3.
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I. INTRODUCTION

Coarsening underlies numerous natural processes in-
cluding phase separation, grain growth, soap bubbles,
and species segregation. It is generally believed that
coarsening systems exhibit dynamical scaling [1], i.e.,
the typical domain size grows algebraically with time,
`(t) ∼ tα. The exponent α is usually independent of
many details of the system such as the spatial dimen-
sion. However, little is known on coarsening in systems
with more than two equilibrium phases. In this study, we
investigate species segregation and reveal the two-length
scaling instead of the ordinary single-length scaling.

Lotka-Volterra model of interacting populations “liv-
ing” on a one-dimensional lattice is the simplest system
which exhibits species segregation. The case where N
species form a food chain is especially well suited for
studying species segregation. We assume that every
species plays the role of prey and predator simultane-
ously. The food chain is arranged in a cyclic manner.
For example, when N = 3, A eats B, B eats C, and C
eats A. “Eating” events involve nearest neighbors and
lead to duplication of the winner and elimination of the
loser, corresponding to the following reaction scheme

A+B → 2A, B + C → 2B, C +A→ 2C. (1)

Here and throughout this study we restrict ourselves to
random and symmetric initial conditions, where the av-
erage initial species densities are all equal 1/N . Despite
the nonconserving nature of the process, the average den-
sities remain constant in the thermodynamic limit.

II. SEGREGATION IN ONE DIMENSION

For a large number of species, most pairs of species do
not interact and the system quickly reaches a frozen state.
Previous studies [2,3] have mainly concentrated on estab-
lishing the upper bound for N above which the system

does not coarsen. It has been proved rigorously that the
marginal chain length is Nc = 5 [2,3]. For N ≥ Nc each
site quickly reaches a final frozen state, while for N < Nc,
the state of each site changes an infinite number of times.
However, theoretical understanding of the kinetic behav-
ior and the coarsening properties of the system is still
incomplete [3,4]. In this study, we illuminate the rich ki-
netic behavior of the system by analyzing the density of
interfaces separating different single-species domains.

For N = 2, this system is equivalent to the voter model
[5,6] which can be solved exactly [7]. In terms of inter-
faces, the N = 2 model is equivalent to an ensemble of
annihilating random walks. The system separates into
single species domains. The average domain size ` ex-
hibits a diffusive growth law `(t) ∼

√
t.

Consider now the N = 3 case. There are two types
of interfaces: right moving (AB, BC, and CA) and left
moving (BA, CB, and AC), denoted by R and L, re-
spectively. The interface dynamics and consequently, the
coarsening kinetics are sensitive to the microscopic real-
ization of the reaction process. For parallel dynamics (all
bonds are updated simultaneously) only opposite mov-
ing interfaces annihilate, R+L→ ∅, while for sequential
dynamics (bonds are updated one at a time) interfaces
moving in the same direction react as well, R + L → ∅,
R + R → L, and L + L → R. Hence, for the 3-species
model with parallel dynamics the interface reaction pro-
cess is equivalent to the well-known two-velocities bal-
listic annihilation process [8] and the interface density,
M(t), decays as t−1/2. This behavior can be understood
by arguing that in a linear region of size L, the imbalance
between the number of left and right moving interfaces
is of order ∆ ∼

√
c0L. After a time t = L/v0 only this

residual fluctuation remains and as a result the concen-
tration decay M(t) ∼ ∆/L ∼ (c0/v0t)1/2 follows.

The above heuristic picture suggests a special domain
pattern. The system organizes into ballistically grow-
ing superdomains. Each superdomain contains interfaces
moving in the same direction, while neighboring superdo-
mains are separated by opposite moving interfaces. Do-
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mains inside each superdomain are arranged cyclically
(ABCABC or CBACBA). In addition to the average
size of superdomains, one can define the average distance
between two adjacent similar velocity interfaces. We de-
fine these two typical length scales using an illustrative
configuration:

B

L︷ ︸︸ ︷
AABBBCCCC︸ ︷︷ ︸

`

AAABBCCC B. (2)

The corresponding coarsening exponents, α and β, are
defined via ` ∼ tα and L ∼ tβ , respectively. For N = 3
with parallel dynamics we thus have α = 1/2 and β = 1.
Computation of `n(t) = 〈xn〉1/n, the moments of the do-
main distribution, reveals a richer spatial structure than
that anticipated by Eq. (2). Namely, a variety of scales
is found [9]: `n(t) ∼ 1 when n < 1/2 and `n(t) ∼ t1−1/2n

when n > 1/2. However, only the two extreme scales, the
ballistic scale O(t) and the scale O(1) characterizing the
initial conditions seem to be important. All other scales,
including the average length of a domain ` = `1, should
be interpreted as effective scales arising as the result of
the competition between the two extreme scales present
in this system.

In the complementary sequential dynamics case, inter-
faces perform a biased random walk and thus, the ballis-
tic motion is now supplemented by diffusion. The system
again organizes into domains of right and left moving in-
terfaces. Inside a domain, interfaces moving in the same
direction can now annihilate via a diffusive mechanism,
unlike the case of parallel dynamics (more precisely, col-
lision of say two right moving interfaces gives birth to
a left moving interface which is soon annihilated with
the nearest right moving interface). Similar single-species
annihilation with convective-diffusive transport has been
investigated in Ref. [10] where the concentration decay
M(t) ∼ t−3/4 has been established. This prediction
is consistent with numerical simulations. The simula-
tions also indicate that the system slowly approaches the
asymptotic behavior `(t) ∼ t3/4 [11].

The resulting spatial structure is thus similar to the
parallel case, Eq. (2). However, while the larger length
scale remains unchanged, L ∼ t, the smaller length scale
is now a geometric average of a diffusive and a ballis-
tic scale. We conclude that the coarsening patterns are
characterized by two length scales, and the coarsening
kinetics are sensitive to the details of the dynamics. We
anticipate that a variety of scales would appear from the
moments `n(t), and they should be interpreted as effec-
tive scales resulting from the competition between the
ballistic O(t) and diffusive O(

√
t) scales.

In the N = 4 case, there are static interfaces denoted
by S (AC, BD, CA, and DB), in addition to the right
and left moving interfaces, (AB, BC, CD, DA) and (BA,
CB, DC, AD), respectively. For sequential dynamics,
interfaces react upon collision according to R + L → ∅,
R + S → L, R + R → S, L + L → S, and S + L → R.

Under the assumption that neighboring interfaces are un-
correlated, the interface densities evolve according to the
following rate equations

Ṙ = − 2R2 − 2RL−RS + SL,

L̇ = − 2L2 − 2RL− SL+RS, (3)

Ṡ = R 2 + L2 −RS − SL.

Solving these equations subject to the initial conditions
R(0) = L(0) = S(0) = 1/4 gives

M(t) =
1

4 + 4t
, S(t) =

1√
4 + 4t

− 1
4 + 4t

. (4)

In the above, M(t) = R(t) = L(t) is the density of mov-
ing interfaces. According to the rate equation theory, the
typical distance between two static interfaces, ` ∼ t1/2,
grows slower than the distance between two moving in-
terfaces, L ∼ t. A nontrivial spatial organization occurs
in which large “superdomains” contain many domains of
alternating noninteracting (AC or BD) species. Similar
to the N = 3 case, there are two relevant growing length
scales as in the following illustration

B

L︷ ︸︸ ︷
AACCCAAACCCC︸ ︷︷ ︸

`

AACCAAACCC D. (5)

Numerical simulations agree qualitatively with this pic-
ture. However, the quantitative predictions for the coars-
ening exponents fail.

In the following, we use heuristic arguments to ob-
tain the exponent values. Numerical simulations indicate
that parallel and sequential dynamics are asymptotically
equivalent and thus, we restrict ourselves to the former
simpler case. The annihilation reaction R + L → ∅ is
supplemented by the exchange reaction R + S → L and
L + S → R. According to the rate theory as well as
the simulations M(t) � S(t), and thus, we assume an
alternating spatial structure of “empty” regions (with no
more than one moving interface) and “stationary” re-
gions (with many stationary interfaces inside any such
region). If the interface densities obey scaling, then the
size of the empty and the stationary regions should be
comparable. The typical size of an empty or a station-
ary region is therefore of the order of M−1. The typ-
ical number of stationary interfaces inside a stationary
region is of the order of S/M . The evolution proceeds
as follows: a moving interface hits the least stationary
particle and bounces back. Then this interface hits the
least stationary particle of the neighboring stationary re-
gion, and bounces back again. This “zig-zag” process
continues until one of these stationary regions “melts”,
thereby giving birth to a larger empty region. If there
is a moving particle inside merging empty region, the
two moving particles quickly annihilate. Otherwise, the
moving particle continues to eliminate stationary inter-
faces. The typical time τ for a stationary region to melt
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is τ = M−1 × S/M = S/M2. This melting time τ is also
the typical time for annihilation of a moving interface
and thus,

Ṁ ∼ −M
τ
∼ −M

3

S
. (6)

Using M(t) ∼ L(t)−1 ∼ tα and S(t) ∼ `(t)−1 ∼ tβ , the
exponent relation 2β−α = 1 emerges. A second indepen-
dent exponent relation, α+β = 1, will be presented in the
discussion of the mutation distribution below. Combin-
ing these two relations we find that α = 1/3 and β = 2/3.
These values are in good agreement with parallel as well
as sequential simulations.

As in the previously discussed N = 3 case the spatial
organization occurs on two different length scales. On
the other hand, for N = 4, the coarsening kinetics are
independent of the details of the dynamics, in contrast
with the N = 3 behavior.

For the 5-species cyclic Lotka-Volterra model, it is
known that the system approaches a frozen state [2,3].
Nevertheless, it is useful to consider the interface dy-
namics for the N = 5 case, where there are two types
of stationary interfaces, SR (AC,BD,CE,DA,EB) and
SL (AD,BE,CA,DB,EC), in addition to the right and
left moving interfaces, R (AB,BC,CD,DE,EA) and L
(BA,CB,DC,AD,AE). The reaction process is sym-
bolized by R + L → ∅, R + SL → L, R + SR → SL,
SR+L→ R, SL+L→ SR, R+R→ SR, and L+L→ SL.
It is straightforward to generalize the rate equations (3)
to this case as well, and we merely quote the results. Ac-
cording to these equations, the static interfaces approach
a final nonzero value S(t) → S∞, and the mobile inter-
faces decay exponentially, M(t) ∼ exp(−S∞t), as t→∞.

Interestingly, the rate equations correctly predict the
marginal number of species Nc = 5. However, for the 5-
species cyclic Lotka-Volterra model (similarly to the pre-
viously discussed cases of N = 2, 3, 4) only the qualita-
tive predications of the rate equations are correct, but the
quantitative predictions fail. To derive a correct asymp-
totic behavior we first observe that the density of mobile
interfaces rapidly decreases while the density of station-
ary interfaces remains finite. This allows us to ignore col-
lisions between mobile interfaces in the large time limit.
We should estimate the survival probability of a mobile
interface in a sea of stationary ones. There are two re-
actions in which moving interfaces survive although they
change their type, R+ SL → L and L+ SR → R. Thus,
a moving interface is long lived in the following environ-
ment: · · ·SRSRSRSRMSLSLSLSL · · ·. Clearly, in such
configurations the zig-zag reaction process takes place.
The moving interface travels to the right during a time
t0 = (c0v0)−1, eliminates a stationary interface and trav-
els to the left a time of order 2t0, eliminates an interface
and travels back to the right, etc. Thus, to eliminate
Ns interfaces, the moving interface should spend a time
of order t ' t0

∑Ns
i=1 i = t0Ns(Ns + 1)/2. Therefore,

the number of stationary interfaces Ns(t) eliminated by

a moving interface scales with time as Ns(t) ∼
√
c0v0t.

Special configuration of length Ns are encountered with
probability ∝ exp(−Ns), and thus, the density of mov-
ing interfaces exhibits a stretched exponential decay,
M(t) ∝ exp(−

√
c0v0t). Hence, the approach towards the

frozen state is slowed down due to spatial fluctuations.
It was pointed out recently that nontrivial behavior un-

derlies low-activity or persistent sites in coarsening sys-
tems [12,13]. It is useful to consider the mutation distri-
bution, Pn(t), defined as the fraction of sites that have
mutated (changed their state) exactly n times during the
time interval [0 : t]. Mutation kinetics and coarsening ki-
netics are intimately related. Let 〈n(t)〉 =

∑
n nPn(t) ∼

tν be the average number of mutations. Since every mo-
tion of an interface contributes to an increase in the num-
ber of mutations in one site, the mutation rate equals the
density of moving interfaces, d〈n(t)〉/dt = M(t). Using
M(t) ∼ t−µ one has ν = 1−µ. In the closely related voter
model [5–7] (corresponding to N = 2), it was found that
the mutation distribution Pn(t) obeys scaling [6]

Pn(t) =
1

〈n(t)〉
Φ
(

n

〈n(t)〉

)
. (7)

The scaling function has the following limiting behaviors

Φ(z) ∼
{
zγ z � 1;
exp(−zδ) z � 1 (8)

The behavior in the small argument limit reflects the de-
cay of persistent sites. For the voter model P0(t) ∼ t−θ

with θ = 3/8 [14]. If this power-law decay holds gen-
erally, then the exponent relation θ = ν(γ + 1) should
hold. The large z limit describes ultra-active sites. A
convenient way to estimate the fraction of such sites is to
consider sites which make of the order of one mutations
per unit time. At time t, the fraction of these rapidly mu-
tating sites is exponentially suppressed, Pt(t) ∝ exp(−t).
It is therefore natural to assume a quasi-exponential form
Φ(z) ∼ exp(−zδ) for the tail of the scaling distribu-
tion, thereby implying an additional exponent relation
δ = 1/(1− ν).

The mutation distribution can be exactly calculated
for the N = 3 case with parallel dynamics. Since the
initial ±v0 interface velocities are uncorrelated, the in-
terface ballistic annihilation process can be mapped into
a random walk problem. As a result, the interface den-
sity is found from first passage properties of a random
walk. Similarly, the mutation distribution can be shown
to be equivalent to the probability that the minimum of
a t-step random walk is exactly n (for details, see [11]).
Using the definition of Eq. (7), and the average number of
mutations 〈n(t)〉 ∼

√
4t/3, the exact scaling distribution

can be written

Φ(z) =
4√
π
e−z

2
Erf(z), (9)

with z = n/〈n(t)〉. The limiting behaviors of this scaling
function agree with the predictions of Eq. (8), and the
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scaling exponents θ = 1, ν = 1/2, δ = 2, and γ = 1,
satisfy the predicted scaling relations.

The knowledge of the mutation distribution sug-
gests that we can compute the autocorrelation function,
A(t) =

∑
n≥0 P3n(t), as well. Making use of the above

scaling form is not enough – one finds rather trivial long-
time behavior, A(t) → 1/3. To determine a correction
to the final value, a combinatorial approach is somewhat
inconvenient. Thus, we reconsider the problem by as-
suming that interfaces are distributed on a continuous
line; the long-time behavior should be the same both in
this continuum version and in the original lattice version.
The continuum version turns out to be simpler and we
have found exact cumbersome expressions [9] for all Pn(t)
in terms of the modified Bessel functions. This solution is
then used to find that A(t)− 1/3 ' −2/(9πt) as t→∞.
This implies that the autocorrelation exponent λ [15] de-
fined via A(L)− 1/3 ∼ L−λ is given by λ = 1. Note that
this value agrees with bounds on λ, d/2 ≤ λ ≤ d, pro-
posed by Fisher and Huse [15] for phase ordering systems
with nonconservative dynamics in d dimensions.

Having discussed the mutation distribution that quan-
tifies the temporal history of species replacements we
turn to the age distribution P (τ, t) defined as the proba-
bility that an individual which has been born at time τ
and survives up to time t. The average age of the popu-
lation is then given by T = 〈t− τ〉 =

∫ t
0
dτ(t− τ)P (τ, t).

This probability distribution can be calculated for N = 3
[16] and we found that the the average age of the popula-
tion grows linearly with time according to T ' (1−2/π)t.
The age distribution obeys the scaling form P (τ, t) '
t−1Ψ(ξ) in the limit t → ∞ and τ → ∞ with ξ = τ/t.
The scaling function reads Ψ(ξ) = (2/π)(1− ξ2)−1/2.

We now return now to the 4-species Lotka-Volterra
model. According to the above discussion, the zig-zag
reactions R + S → L and L+ S → R dominate over the
annihilation reaction R + L → ∅ in the long-time limit.
We therefore consider a simpler solvable case where a
single mobile interface is placed in a regular sea of static
interfaces to evaluate the scaling function Φ(z) defined in
Eq. (7). This interface moves one site to the right, two
to the left, three to the right etc. Similar to the above
discussion on the survival probability in the N = 5 case,
at time t this interface has eliminated Ns ∼ (t/t0)1/2

static interfaces, with t0 = (c0v0)−1. The origin is visited
Nst0 times, site 1 is visited (Ns − 1)t0, site −1 is visited
(Ns − 2)t0, etc. This implies that the mutation distri-
bution is Pn(t) = 〈n〉−1Φ(n/〈n〉), with 〈n〉 ∼ Nst0 and
Φ(z) = 1 for z < 1 and Φ(z) = 0 for z > 1. Therefore,
γ = 0. This approximation is inappropriate for predict-
ing the tail of Φ(z) which is sensitive to annihilation of
the moving interfaces. However, in the small z limit the
annihilation process should be negligible, and thus γ = 0.
The fraction of unvisited sites is equivalent asymptoti-
cally to the survival probability of a stationary interface
and thus θ = α. Using the previously established rela-
tions ν = 1− µ, θ = ν(γ + 1), and µ = β, we obtain the

second independent exponent relation α + β = 1 which
was used to obtain the asymptotic behavior of the mobile
and the static interfaces.

III. EXTENSIONS

The cyclic lattice Lotka-Volterra model can be gener-
alized in a number of directions. A natural generalization
is to higher dimensions. Two-dimensional case seems to
be especially interesting from the point of view of math-
ematical biology [17]. In the exactly solvable N = 2 case
(the voter model), coarsening occurs for d ≤ 2 [5], for
the marginal dimension d = 2, the density of interfacial
bonds decays logarithmically, c(t) ∼ 1/ ln t [18], while for
d > 2, no coarsening occurs and the system reaches a
reactive steady state. In two dimensions, our numerical
simulations indicate that there is no coarsening, i.e. the
density of reacting interfaces saturates at a finite value.
For sufficiently large number of species the fixation is ex-
pected but we could not determine the threshold value,
at least up to N = 10 we have not seen fixation.

Another extension concerns a different interaction rule.
Previously, we investigated the cyclic Lotka-Volterra
model with asymmetric interactions. To learn how the
coarsening kinetics depend on the interaction rules it
is useful also to consider a symmetric interaction rule
where both of the reaction channels A + B → 2A and
A + B → 2B are allowed. In this case, asymptotically
exact results can be obtained. We discuss only the N = 4
case since the N = 2 and N = 3 cases reduce to the
voter model (see [6]). Denote the static interfaces (AC,
CA, BD, DB) by S and moving interfaces by M . The
symmetric “eating” rule implies that moving interfaces
perform simple random walks. Interfaces react accord-
ing to M + M → S, and M + S → M or M + S → S
depending on the local environment. Moving interfaces
undergo diffusive annihilation and thus, M(t) ∼ t−1/2.
The fraction of surviving stationary interfaces is pro-
portional asymptotically to the fraction of sites which
have not been visited by mobile interfaces up to time
t, S(t) ∼ P0(t) ∼ t−3/8. We should also take into ac-
count creation of stationary interfaces by annihilation of
moving interfaces. This process produces new station-
ary interfaces with rate of the order −dM/dt. Thus,
the stationary interface density satisfies the rate equation
Ṡ = Ṗ0−Ṁ . Combining this equation with P0(t) ∼ t−3/8

[14] and M(t) ∼ t−1/2, we find that the surviving inter-
faces provide the dominant contribution while those cre-
ated in the process M + M → S contribute only to a
correction of the order t−1/8. Thus a two-scale structure
similar to Eq. (5), with ` ∼ t3/8 and L ∼ t1/2, emerges.
Hence, it is seen that the coarsening exponents can be
sensitive to the details of the interaction rules.

We also looked at the cyclic Lotka-Volterra model with
unequal initial concentrations. We have seen rich ki-
netics [11] but mention just one example here: For the
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4-species system with one majority species, say species
A, and other species having the same concentrations,
b0 = c0 = d0, the system approaches a frozen state with
afrozen = 1/4 and cfrozen = 3/4.

IV. SUMMARY

We investigated coarsening in a one-dimensional model
of competing species. Interestingly, the coarsening prop-
erties of this model may depend on the details of the
dynamics. The spatial patterns are characterized by the
existence of two characteristic length scales, the average
length of the single-species domains, `(t) ∼ tα, and the
average length of superdomains, L(t) ∼ tβ (the corre-
sponding coarsening and mutation exponents are sum-
marized in Table 1).

N α β θ
3 (parallel) 1/2 1 1
3 (sequential) 3/4 1 1
4 1/3 2/3 1/3
4 (symmetric) 3/8 1/2 3/8

Table 1: Coarsening (` ∼ tα and L ∼ tβ) and persistence

(P0(t) ∼ tθ) exponents in 1D.

Thus simple dynamical scaling is violated for the one-
dimensional Lotka-Volterra models. Violations of scaling
have been reported in a few recent studies of coarsen-
ing in one- and two-dimensional systems [19–25]. To the
best of our knowledge, however, in previous work viola-
tions of dynamical scaling have been seen only in some
systems with vector and more complex order parameter.
In contrast, Lotka-Volterra models can be interpreted as
systems with scalar order parameter, although the num-
ber of equilibrium states N generally exceeds two, the
characteristic value for Ising-type systems.

Finally we note that presence of only two length scales
exemplifies the mildest violation of classical single-size
scaling. Generally, if scaling is violated one expects the
appearance of an infinite number of independent scales,
i.e., multiscaling [19]. Surprisingly, we found no evidence
of multiscaling. Similar two-length scaling has been ob-
served in the simplest one-dimensional system with vec-
tor order parameter, namely in the XY model [22], and
in the single-species annihilation with combined diffusive
and convective transport [10]. Indications of the three-
length dynamical scaling have been reported in the con-
text of coarsening [24] and chemical kinetics [26].
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