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We study the evolution of a system ofN interacting species which mimics the dynamics of a cyclic food
chain. On a one-dimensional lattice withN,5 species, spatial inhomogeneities develop spontaneously in
initially homogeneous systems. The arising spatial patterns form a mosaic of single-species domains with
algebraically growing average size,^l (t)&;ta, wherea53/4 ~1/2! and 1/3 forN53 with sequential~parallel!
dynamics andN54, respectively. The domain distribution also exhibits a self-similar spatial structure which is
characterized by an additional length scale,^L(t)&;tb, with b51 and 2/3 forN53 and 4, respectively. For
N>5, the system quickly reaches a frozen state with noninteracting neighboring species. We investigate the
time distribution of the number of mutations of a site using scaling arguments as well as an exact solution for
N53. Some relevant extensions are also analyzed.@S1063-651X~96!10612-7#

PACS number~s!: 02.50.Ga, 05.70.Ln, 05.40.1j

I. INTRODUCTION

The classic Lotka-Volterra equations@1–3# mimic the dy-
namics of interacting species such as predator-prey systems.
These equations are rather successful in predicting density
oscillations which are known to exist in nature. For spatially
inhomogeneous situations, Lotka-Volterra equations@4# are
straightforwardly generalized to diffusion-reaction equations
@5#; these equations were widely applied to more complex
ecological processes. However, such an approach ignores
spatial correlations and therefore fails to predict the develop-
ment of spatial heterogeneities in initially homogeneous sys-
tems. For chemical processes, the crucial role that spatial
heterogeneities play in governing the kinetics has been ap-
preciated over the past decade; see, e.g.,@6# and references
therein. Therefore, in low spatial dimensions the mean-field-
like rate equations approach~analog of the Lotka-Volterra
equations in chemical kinetics! fails to provide the correct
asymptotic behavior. Indeed, a homogeneous initial state
evolves to a strongly heterogeneous state, namely, to a coars-
ening mosaic of reactants which confines the actual micro-
scopic reaction to the interfacial regions between domains,
and therefore the kinetics are significantly slowed down.
Similar spatial organization was recently reported in Lotka-
Volterra systems@7–11#. However, theoretical understanding
of these systems is still incomplete.

In this study, we consider the evolution of anN-species
food chain, where every species plays the role of prey and
predator simultaneously. The food chain is thus assumed to
be cyclic; e.g., in the three-species system,A eatsB, B eats
C, andC eatsA. Every ‘‘eating’’ event leads to duplication
of the winner and elimination of the loser; therefore the
three-species food chain is symbolized by the reaction
scheme

A1B→2A, B1C→2B, C1A→2C. ~1!

The corresponding stochastic process is well defined on a
lattice, where the interaction is restricted to nearest neighbor
sites. Initially, every lattice site is assumed to be occupied;
clearly, the lattice then remains fully occupied.

Given the simplicity of the reaction process~1!, one an-
ticipates that it can provide a caricature description of a num-
ber of phenomena in nature and society. One example is the
voter model@12,13#, which is applicable to chemical reac-
tions on catalytic surfaces@14,15#. This model is equivalent
to the two-species model, which is described by the reaction
scheme A1B→2A or A1B→2B ~both channels are
equally probable!. The subsequent cyclicN-species generali-
zation is also called theN-color cyclic voter model@16#.

The rest of this paper is organized as follows. Section II
examines interface dynamics in one dimension. We analyze
the corresponding rate equations and show that spatial orga-
nization into an alternating mosaic of growing domains oc-
curs forN,5 only. While the qualitative predictions made
in Sec. II are correct, the quantitative predictions fail. In Sec.
III, we further analyze the interface dynamics using prima-
rily scaling arguments and numerical simulations for the
most interesting cases,N53 and 4. We consider both se-
quential and parallel dynamics evolution rules, as the system
may be sensitive to such rules. Section IV studies the dynam-
ics of mutations and quantities such as the fraction of persis-
tent sites. In Secs. II–IV we focus on symmetric and uncor-
related initial conditions where allN species have an initial
density of 1/N. In Sec. V, we describe several natural gen-
eralizations of the model to asymmetric initial concentra-
tions, symmetric interaction rules, and reaction-diffusion de-
scriptions. Section VI discusses our results within the general
framework of coarsening phenomena. A summary is pre-
sented in Sec. VII.

II. RATE EQUATIONS FOR ONE-DIMENSIONAL
INTERFACE DYNAMICS

Since we are interested in the role of spatial correlations,
we study primarily the extreme case of one dimension,
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where spatial inhomogeneities are most pronounced. We first
mention the opposite extreme where no correlations are
present, i.e., the cyclic Lotka-Volterra system on a complete
graph. On this structure, all sites are neighbors and the spa-
tial structure is irrelevant, i.e.,d5`. The species concentra-
tions satisfy the Lotka-Volterra equations@2,3,17# ~which
also arise in a number of other topics, e.g., in description of
Langmuir oscillations@18#!:

ċk5ck~ck112ck21!, k51, . . . ,N. ~2!

Here the addition and the subtraction are moduloN, while
the overdot denotes the time derivative. These equations
obey the trivial conservation lawH15( ici5const, that
merely reflects particle conservation. There is an additional
conservation lawH25) ici5const. These useful conserva-
tion laws imply, for example, that a generic solution of the
N53 case is periodic; indeed, such a solution can be ex-
pressed through elliptic functions.

The infinite-dimensional analysis fails to describe the dy-
namics of the actual stochastic process in low dimensions.
For example, while the sumH15( ici is conserved, the
productH25) ici is not a conserved quantity in one dimen-
sion. Furthermore, the structure of Eq.~2! does not address
fluctuations in the spatial distribution of the interacting popu-
lations. ForN,5, we shall see that the spatial structure
evolves forever, single-species domains arise and grow in-
definitely, and the process exhibits coarsening. In other
words, equilibrium is never achieved and instead a network
of domains develops. The domain patterns are self-similar,
i.e., the structures at later times and at earlier times differ
only by a global change of scale. Such a behavior is a sig-
nature ofdynamical scaling.

In the following section, we study the motion of ‘‘domain
walls,’’ namely, interfaces separating domains of different
species. For theN-species process a bond connecting two
sites is an interface bond if the corresponding two sites are
occupied by two different species. Thus, there areN21 in-
dependent types of interfaces, of whichN23 are immobile
and 2 are mobile. For symmetric initial conditions
@ci(0)51/N#, the different types of interface bonds are
present with initial concentration equal to 1/N ~with prob-
ability 1/N that a given bond does not contain an interface!.
Interfaces move and react according toN-dependent rules
defined below. For largeN, most interfaces are immobile and
the system quickly reaches a state where all mobile inter-
faces are eliminated.

A. Two species

Consider the simplest case ofN52, where there are two
equivalent interfaces (AB andBA), denoted byI . An iso-
lated interface performs a random walk, i.e., it hops to one of
its nearest neighbors. When two interfaces meet they annihi-
late. The corresponding reaction scheme is therefore
I1I→B. Assuming that neighboring interfaces are uncorre-
lated, we see that the density of interfaces,I (t), satisfies the
binary reaction equationİ524I 2, where the hopping rate
was taken as unity without loss of generality. Solving this
equation subject to the initial conditionsI (0)51/2 gives
I (t)5(214t)21. The system evolves into a mosaic of alter-

nating domainsAABBBAAABBB. The average size of a
domain grows linearly with time,̂l (t)&;t.

B. Three species

In the caseN53, there are two types of interfaces, right
moving (AB, BC, andCA), and left moving (BA, CB, and
AC), denoted byR andL, respectively. Starting with a sym-
metric initial distribution, all right ~left! interfaces are
equivalent. When a right moving interface meets a left mov-
ing one, they annihilate,R1L→B. When a right moving
interface overtakes another right moving interface, they give
rise to a left moving interface,R1R→L, and similarly,
L1L→R. The corresponding rate equations are

Ṙ522R222RL1L2,

L̇522L222RL1R2. ~3!

The interface concentration is readily found,

R~ t !5L~ t !5
1

313t
. ~4!

The behavior is similar to the caseN52, as the resulting
spatial patterns form a mosaic of single-species domains
whose average size iŝL(t)&;t. The previous analysis im-
plicitly assumes that interfaces hop one at a time, namely,
sequential dynamics. Alternatively, one can consider simul-
taneous hopping, or parallel dynamics. Here interfaces move
ballistically, and thus interfaces moving with the same veloc-
ity do not interact. The reaction scheme isR1L→B, and
the rate equations readṘ5L̇522RL. The resulting inter-
face concentrationsR(t)5L(t)51/(312t) differ only
slightly from Eq.~4!.

C. Four species

In the four-species model there are static interfaces de-
noted byS (AC, BD, CA, andDB), in addition to the pre-
viously defined right moving interfaces (AB, BC, CD, and
DA), and left moving interfaces (BA, CB, DC, andAD).
Interfaces react upon collision according to the rules
R1L→B, R1S→L, R1R→S, L1L→S, andS1L→R,
resulting in the following rate equations:

Ṙ522R222RL2RS1SL,

L̇522L222RL2SL1RS, ~5!

Ṡ5R21L22RS2SL.

Solving these equations subject to the appropriate initial con-
ditions gives

R~ t !5L~ t !5
1

414t
, S~ t !5

1

A414t
2

1

414t
. ~6!

Different rules govern the decay of static and mobile inter-
faces, and consequently, the coarsening process is character-
ized by two intrinsic length scales. The average distance be-
tween two static interfaces,t1/2, grows slower than the
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average distance between two moving interfaces,t. A non-
trivial spatial organization occurs in which large ‘‘superdo-
mains’’ contain many domains of alternating noninteracting
(AC or BD) species,BAAACCAAACCCAAAD. We de-
note the average domain size by^l (t)&;t1/2 and the average
superdomain size bŷL(t)&;t. The average number of non-
interacting domains inside a superdomain grows as
^L&/^l &;t1/2. Such an organization is a consequence of the
existence of noninteracting species, which first occurs at
N54.

It is useful to consider parallel dynamics as well. Again,
the reaction scheme is altered only in that interfaces moving
in the same direction do not interact. The reaction scheme,
R1L→B, R1S→L, andS1L→R, is described by the fol-
lowing rate equations:

Ṙ522RL2RS1SL,

L̇522RL2SL1RS, ~7!

Ṡ52RS2SL.

Solving the rate equations we arrive at

R~ t !5L~ t !5S~ t !5
1

412t
. ~8!

Interestingly, whenN54 coarsening is sensitive to the de-
tails of the dynamics. Parallel dynamics is governed by a
single length scale, in contrast to the two scales underlying
sequential dynamics.

D. Five species

In the five-species case there are two types of stationary
interfaces, SR (AC,BD,CE,DA,EB) and SL
(AD,BE,CA,DB,EC), in addition to the right and left mov-
ing interfaces, R (AB,BC,CD,DE,EA) and L
(BA,CB,DC,AD,AE). The reaction process is symbolized
by R1L→B, R1SL→L, R1SR→SL , SR1L→R,
SL1L→SR , R1R→SR , and L1L→SL . In other words,
when a moving interface hits a stationary interface of the
same kind, the outcome is a stationary interface of the oppo-
site kind; when a moving interface hits a stationary interface
of the opposite kind, a dissimilar moving interface emerges.
Collisions between similar moving interfaces produce sta-
tionary interfaces of the same kind, and thus, the obvious
notationsSL and SR . For the five-species model with se-
quential dynamics, the rate equations read

L̇522RL2LSL2LSR1RSL22L2,

Ṙ522RL2RSL2RSR1LSR22R2,

ṠL52RSL2LSL1RSR1L2,

ṠR52RSR2LSR1LSL1R2. ~9!

The reaction scheme and consequently the rate equations are
invariant under the duality transformation (R,SR)↔(L,SL).
Particularly, forR(0)5L(0) andSR(0)5SL(0), thecorre-

sponding densities remain equal forever. This condition is
certainly satisfied for the symmetric initial conditions
R(0)5L(0)5SL(0)5SR(0)51/5. Therefore, R(t)5L(t)
andSL(t)5SR(t), and in what follows we shall use the no-
tationsM (5R5L) for mobile interfaces andS(5SL5SR)
for stationary interfaces. Thus, the four rate equations reduce
to a pair of rate equations:

Ṁ524M22SM, Ṡ5M22SM. ~10!

These equations can be linearized by introducing a modified
time variable, T(t)5*0

t M (t8)dt8. Using the notation
8[d/dT, we rewrite the governing equations as

M 8524M2S, S85M2S. ~11!

Solving these equations gives

M ~T!5 1
5 ~l1e

2A5l1T2l2e
2A5l2T!,

S~T!5 1
5 ~l1e

2A5l2T2l2e
2A5l1T!, ~12!

with the shorthand notations,l65(A561)/2. Here, the
moving interfaces are depleted atT`52(lnl1)/A5. The den-
sity of static interfaces approaches a finite value,

S(`)5 1
5 (l1

22A52l2
21A5)>0.152 477, so the average do-

main size in the frustrated state isL(`)51/2S(`)
>3.279 18. In terms of the actual timet, the density of mov-
ing interfaces decays exponentially,R(t)}e2S(`)t. Contrary
to the previous cases,N,5, no coarsening occurs and the
system quickly approaches a frozen state of short noninter-
acting same-species domains separated by stationary inter-
faces.

A similar picture is found for parallel dynamics as well.
Here, the reaction process isR1L→B, R1SL→L,
R1SR→SL , SR1L→R, SL1L→SR , and the rate equations
are

L̇522RL2LSL2LSR1RSL ,

Ṙ522RL2RSL2RSR1LSR ,

ṠL52RSL2LSL1RSR ,

ṠR52RSR2LSR1LSL . ~13!

The useful duality relation, (R,SR)↔(L,SL), still applies, so
there are only two independent interface concentrations,M
andS, which evolve according to the following rate equa-
tions

Ṁ522M22MS, Ṡ52MS. ~14!

The calculation is very similar to the sequential case, and we
merely quote the results:M (T)5(2e22T2e2T)/5 and
S(T)5e2T/5. The limit t→` corresponds toT→T`5 ln2.
We find that the density of static interfaces saturates at a
finite value,S(`)51/10, while the density of moving inter-
faces decays exponentially in time,M (t)}e2S(`)t5e2t/10.
The average size of a domain in the frozen state is
L(`)51/2S(`)55.
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To summarize, for both parallel and sequential dynamics
the rate equations predict coarsening when the number of
species is sufficiently small,N,5, and fixation for a large
number of species,N>5. When fixation occurs, each site
attains a final state while forN<4 the state of any site con-
tinues to change, although the frequency of changes de-
creases with time. It is remarkable that the rate equation
approach which neglects spatial correlations between inter-
faces correctly predicts the marginal food chain length for
fixation, Nc55, as has been proved rigorously for both se-
quential dynamics@16# and parallel dynamics@19#.

In the coarsening cases,N,5, both for the two- and
three-species case the average domain size^ l (t)& grows lin-
early with time independent of the dynamics. In the four-
species case, however, the rate equation theory predicts lin-
ear growth ^ l (t)&;t for parallel dynamics, and slower
‘‘diffusive’’ growth ^ l (t)&;At for sequential dynamics. In
the latter case, the larger linear scale still exists and it char-
acterizes the typical distance between two mobile interfaces.

III. COARSENING DYNAMICS IN ONE DIMENSION

The above rate equation theory successfully predicts the
fixation transition atNc55, in agreement with rigorous re-
sults @16,19#. If one assumes that the average concentration
of each species is conserved throughout the process, which is
clearly correct at least in the case of equal initial concentra-
tions, one can find a simple argument for a lower bound on
the marginal food chain lengthNc . A frozen chain consists
of alternating domains of noninteracting species. For
N52,3 such a chain is impossible since all species interact.
ForN54, frozen chains are filled by eitherA andC species
or B andD species thereby violating the conservation of the
densities.~Note, however, that forN54 in finite systems,
density fluctuations could drive the system towards a final
frozen configuration.! For N>5, a frozen chain conserving
the densities is possible and thusNc>5. Given the kinetics
predicted by the mean-field rate equation approach usually
proceeds with afaster rate than the actual kinetics@6#, one
can anticipate that the threshold number of different species
predicted by the mean-field theory provides an upper bound
for the actualNc , Nc<5. This is combined with the lower
bound,Nc>5, to yieldNc55.

For N,5, coarsening occurs and it is quite possible that
the system develops significant spatial correlations. In such a
case, quantitative predictions of the rate equation theory are
inaccurate.

The cyclic N-species Lotka-Volterra model is imple-
mented in the following way. We consider a one-
dimensional lattice of sizeN with periodic boundary condi-
tions. Each sitei of the lattice is in a given stateNi with
Ni5A,B,C, . . . . In sequential dynamics, we choose ran-
domly a site and then one of its two nearest neighbors. If the
neighbor is a predator of the chosen site, the state of the
latter changes to the state of the predator. Otherwise, the
state of the site remains the same. Time is incremented by
1/N after each step. For parallel dynamics, all sites are up-
dated simultaneously and change their state if one of their
nearest neighbors is their predator. This cellular automata
rule has been used in@19# and it should be noted that the
dynamics is fully deterministic. Coarsening behavior of the

system depends on spatial fluctuations present in the initial
state. For both types of dynamics, efficient algorithms keep-
ing trace only of moving interfaces have been implemented.

Below, we present numerical findings accompanied by
heuristic arguments for the coarsening dynamics in one di-
mension@20#. Again, we restrict ourselves to thesymmetric
initial concentration. In this case the average concentration
of each species remains 1/N, despite the nonconserving mi-
croscopic evolution rules.

A. Two species

As mentioned previously, forN52, interfaces perform a
random walk and annihilate upon collision. This exactly
soluble voter model @12# is equivalent to the one-
dimensional Glauber-Ising model at zero temperature
@21,22#. The interface concentration is given by@21#

I ~ t !5e24t@ I 0~4t !1I 1~4t !#/2, ~15!

with I n(x) the nth-order modified Bessel function. In the
limit t→0 correlations are absent; therefore, the interface
densityI (t)>1/22t agrees with prediction of the mean-field
theory,IMFT5(214t)21, in the short time limit. Asymptoti-
cally, the coarsening is much slower in comparison with the
rate equation predictions,I (t).(8pt)21/2. The system sepa-
rates into single species domains as follows:

~16!

The average domain size^l (t)& exhibits a diffusive growth
law ^l (t)&;ta with a51/2. Similar asymptotic behavior
occurs in the parallel case, i.e., when all interfaces move
simultaneously@23#.

B. Three species

It is convenient to consider first the simpler parallel dy-
namics where interfaces move ballistically with velocity
61, and annihilate upon collisions. In this well understood
ballistic annihilation process@19,24–28#, a simple combina-
torial calculation~see Sec. IV C! yields the following inter-
face density:

R~ t !5
1

32t11 F(
i50

t S 2t2i D S 2t22i

t2 i D
1(

i50

t21 S 2t

2i11D S 2t22i21

t2 i D G . ~17!

In the long time limit, the interface concentration decay
R.(6pt)21/2 is much slower than thet21 decay suggested
by the rate equation~4!. The decay law governing the inter-
face density can be simply understood. Consider a finite in-
terval of sizeL containing interfaces with initial concentra-
tion c0. The total number of interfaces isN5c0L. If the
initial conditions are random, the difference between the
number of left and right moving interfaces is roughly
DN5uNR2NLu;AN. At long times, all minority interfaces
are eliminated and thus, the interface concentration ap-
proachesDN/L;(c0 /L)

1/2. By identifying the box size with
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the appropriate ballistic lengthL;v0t, the time dependent
interface concentration for an infinite system is found,
R(t);(c0 /v0t)

1/2.
The system organizes into large ballistically growing su-

perdomains. Each superdomain contains interfaces moving
in the same direction, neighboring superdomains contain in-
terfaces moving in the opposite direction, etc. In addition to
the average size of superdomains, there is an additional
length scale in the problem corresponding to the distance
between two adjacent similar velocity interfaces. We define
these relevant length scales using the following illustrative
configuration:

~18!

The corresponding coarsening exponents,a andb, are de-
fined via ^l (t)&;ta and ^L(t)&;tb, respectively. For
N53 with parallel dynamics we thus finda51/2 and
b51. Starting from an initially homogeneous state, the sys-
tem develops a unique spatially organized state which is a
mosaic of mosaics. Indefinitely growing superdomains con-
tain a growing number̂L&/^l &;t1/2 of cyclically arranged
domains (ABCABCandCBACBA).

We now turn to the complementary case of sequential
dynamics. Interfaces perform a biased random walk and thus
the ballistic motion is now supplemented by superimposed
diffusion. In addition, two parallel moving interfaces can an-
nihilate and give birth to an opposite moving interface. It
proves useful to consider the continuum version of the model
where interfaces move with velocity1v0 and 2v0 with
equal probabilities, and have a diffusivityD. To establish the
long time behavior weassumethat the system organizes into
domains of right and left moving interfaces. Inside a domain,
interfaces moving in the same direction can now annihilate
via a diffusive mechanism, unlike the parallel case. On
slower than ballistic scales, the problem reduces to diffusive
annihilation,X1X→B, whereX is eitherR or L, with a
density decaying ascdiff(t);(Dt)21/2. On ballistic scales the
problem~almost! reduces to the ballistic annihilation process
R1L→B, with the density decaycball(t);(c0 /v0t)

1/2 as
described previously. However, to describe the complete
ballistic-diffusion annihilation, one cannot use the initial
concentrationc0 since it is constantly reduced by diffusive
annihilation. Therefore, we replace the initial concentration
c0 with the time dependent concentrationcdiff(t), and we
find @29,30# c;(Dv0

2t3)21/4, which in particular implies

^l ~ t !&;t3/4. ~19!

This result is quite striking since separately both annihilation
processes, diffusion-controlled and ballistic-controlled, give
the same coarsening exponent 1/2, so one expects that their
combination does not change the behavior while in fact it
enhances the coarsening exponent to 3/4. The resulting spa-
tial structure is similar to the parallel case, Eq.~18!. How-
ever, the smaller length scale is now a geometric average of
a diffusive and a ballistic scale as follows from Eq.~19!,
while the larger scale remains unchanged,^L(t)&;t.

We have performed Monte Carlo simulations for 100 re-
alizations on a lattice of size 106, for times up tot.106.
Results are shown in Fig. 1. The interface concentration de-
cays algebraically,R}t2a, with an exponenta>0.79. A
careful analysis shows that the local slopea(t)
5dlnc(t)/dlnt approaches the asymptotic value23/4. It is
possible that this finite time effect can be attributed to the
recombination reaction (R1R→L), which is not an annihi-
lation reaction. Nevertheless, a singleL interface inside an
R domain is quickly annihilated by the nearestR interface,
and therefore recombination is asymptotically equivalent to
annihilation. We expect that ast→`, the coarsening expo-
nent is indeeda53/4.

To summarize, the spatial patterns in theN53 case con-
sist of superdomains of cyclically arranged domains as in Eq.
~18!. The larger length scale is ballistic,^L(t)&;t, while the
smaller length scale is sensitive to the microscopic details of
the dynamics: ^l (t)&;t1/2 for parallel dynamics and
^l (t)&;t3/4 for sequential dynamics.

C. Four species

For the four-species cyclic Lotka-Volterra model, numeri-
cal simulations indicate that parallel and sequential dynamics
are asymptotically equivalent and that the domain structure
is qualitatively similar to the predictions of the sequential
rate equations,M (t)!S(t). We use heuristic arguments to
obtain the values of the coarsening exponentsa andb, char-
acterizing the density decay of mobileM (t);t2a, and static
S(t);t2b interfaces.

Given the equivalence of parallel and sequential dynam-
ics, we restrict ourselves to the simpler former dynamics.
What is the spatial structure in the long time limit? Since
M (t)!S(t), we assume an alternating spatial structure of
‘‘empty’’ regions ~with no more than one moving interface!
and ‘‘stationary’’ regions~with many stationary interfaces
inside any such region!. If the interface densities obey scal-

FIG. 1. The concentrations of interfaces as a function of time~in
units of Monte Carlo steps! for the three-species model with se-
quential dynamics in a log-log plot. A line of slope 3/4 is shown as
a reference. The inset shows the local exponenta(t) as a function
of 1/lnt. A limiting value of a→3/4 is plausible.
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ing, then the sizes of the empty and the stationary regions
should be comparable. The typical size of an empty or a
stationary region is therefore of the order ofM21. The typi-
cal number of stationary interfaces inside a stationary region
is of the order ofS/M . The evolution proceeds as follows: A
moving interface hits the least stationary particle and
bounces back~sinceR1S→L andS1L→R). Then this in-
terface hits the least stationary particle of the neighboring
stationary region, and bounces back again. This ‘‘zigzag’’
process continues and at some time one of these stationary
regions ‘‘melts,’’ thereby giving birth to a larger empty re-
gion. If there is a moving particle inside the merging empty
region, the two moving particles quickly annihilate. If there
is no such particle, the moving particle continues to elimi-
nate stationary interfaces. This process is illustrated in Fig. 2.

The typical time t for a stationary region to melt is
t5M213S/M5S/M2. This melting timet is also the typi-
cal time for annihilation of a moving interface and thus,

Ṁ;2
M

t
;2

M3

S
. ~20!

SubstitutingS(t)}t2a andM (t)}t2b into Eq. ~20!, we get
the exponent relation

2b2a51. ~21!

In the next section, we introduce the mutation distribu-
tion, and find an equivalence between the fraction of persis-
tent sites and the static interface density. Using this relation
and a simple solvable example, we will find the exponent
relation

a1b51. ~22!

The two exponent relations therefore imply the values
a51/3 andb52/3. We have simulated 100 systems of size
106 up to timest.106. The results are shown in Figs. 3 and
4. We have foundS(t)}t20.34, R(t)5L(t)}t20.69 for paral-
lel dynamics, andS(t)}t20.35, R(t)5L(t)}t20.70 for se-
quential dynamics. We conclude that the simulation results
support the above predictions.

As in the three-species case there are two relevant grow-
ing length scales. The system organizes into domains of al-
ternating noninteracting species with an average size
^l (t)&;t1/3. On the other hand, active interfaces are sepa-
rated by an average distance^L(t)&;t2/3, according to the
following illustration:

~23!

In any finite lattice, density fluctuations drive the system
towards a final frozen or ‘‘poisoned’’ configuration, i.e., con-
figuration filled by eitherA andC, or B andD. This poison-
ing happens when the size of the superdomains becomes of
the order of the lattice size. The poisoning time is therefore
proportional toN 3/2 for anN-site chain.

FIG. 3. The concentrations of the moving interfaces as a func-
tion of time ~MCS! for the four-species cyclic Lotka-Volterra
model with sequential dynamics~diamonds! and with parallel dy-
namics ~circles!. The slope gives the exponentsbseq50.70 and
bpar50.69. A line of slope 2/3 is shown as a reference.

FIG. 4. The concentrations of the stationary interfaces as a func-
tion of time ~MCS! for the four-species model for sequential dy-
namics~diamonds! and parallel dynamics~circles!. The slopes give
the exponentsaseq50.35 andapar50.34. A line of slope 1/3 is
shown as a reference.

FIG. 2. Space-time diagram of the interface motion in the four-
species case with parallel dynamics.
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We stress that the three-velocity ballistic annihilation
model, R1L→B,R1S→B,S1L→B, has been recently
investigated@26–29#, and the symmetric case,R[L, has
been solved exactly@28#. For the special initial condition,
R(0)5L(0)53S(0)/2, a surprisingly similar behavior
R(t);S(t);t22/3 occurs. It would be interesting to establish
a relationship between this solvable ballistic annihilation
model and the interface motion in the four-species process.

D. Five species

For the five-species cyclic Lotka-Volterra model, it is
well known that the system approaches a frozen state
@16,19#. The approach towards saturation has not been estab-
lished, though.

We now present a heuristic argument for estimating the
concentration decay of the mobile interfaces. Since the den-
sity of mobile interfaces rapidly decreases while the density
of stationary interfaces remains finite we can ignore colli-
sions between mobile interfaces. Thus we should estimate
the survival probability of a mobile interface in a sea of
stationary ones. There are two reactions in which moving
interfaces survive although they change their type,
R1SL→L andL1SR→R. Thus, a right moving interface is
long lived in the following environment:

•••SRSRSRSRMSLSLSLSL••• ~24!

Clearly, in such configurations the zigzag reaction process
takes place. The moving interface travels to the right during
a timet0;1/c0v0, eliminates a stationary interface and trav-
els to the left a time of order 2t0, eliminates an interface and
travels back to the right, etc. Thus, to eliminateNs interfaces,
the moving interface should spend a time of order
t.t0( i51

Ns i5t0Ns(Ns11)/2. Therefore, the number of sta-
tionary interfacesNs(t) eliminated by a moving interface
scales with time asNs(t);Ac0v0t. Configurations of the
type ~24! are encountered with probability}e2Ns with Ns
the configuration length, and thus, the density of moving
interfaces exhibits a stretched exponential decay,

M ~ t !}e2const3Ac0v0t. ~25!

The stretched exponential behavior~25! is expected to
appear for arbitraryN>5. When the number of interfaces
exceeds the threshold value,N.5, stationary interfaces of
‘‘intermediate’’ types arise, the crossover from initial expo-
nential behavior to the asymptotic stretched exponential be-
havior is shifted to larger times and therefore harder to ob-
serve numerically. For the threshold number of species,
however, we have found a convincing agreement between
the theoretical prediction of Eq.~25! and numerical results
~see Fig. 5!. Finally we note that the actual kinetics~25! is
slower than the mean-field counterpart,MMFT(t)}e

2t, due
to spatial correlations.

IV. DYNAMICS OF MUTATIONS

Consider a lattice site occupied by some species, sayA.
What is the probability that this site has been occupied by the
same species during the time interval (0,t)? Otherwise, what
is the fraction ofA sites which never ‘‘mutated’’? We denote

the fraction of ‘‘persistent’’A species byA0(t), B0(t),
C0(t), etc. are defined analogously. We can further general-
ize these probabilities to define, e.g.,An(t), the fraction of
sites that have undergone exactlyn mutations during the
time interval (0,t). We start by analyzing these quantities on
the mean-field level and then describe exact, scaling, and
numerical results in one dimension.

A. Mean-field theory

Let us investigate the three-species cyclic Lotka-Volterra
on the complete graph; the generalization to theN-species
case is straightforward. The rate equations describing the
mutation distributionAn(t) read

Ȧ3n5aA3n212cA3n ,

Ȧ3n115cA3n2bA3n11 , ~26!

Ȧ3n125bA3n112aA3n12

with A21(t)[0. Analogous equations can be written for
Bn(t) and Cn(t) by cyclic permutations. These rate equa-
tions form an infinite set of linear equations with
a(t),b(t), andc(t) as ~time-dependent! coefficients. There-
fore, the general case is hardly tractable analytically since the
coefficients, i.e., solutions of Eqs.~2!, are elliptic functions.
We therefore restrict our attention to the symmetric case
a5b5c51/3, and examinePn(t), the total fraction of sites
mutated exactlyn times. The quantityPn(t) evolves accord-
ing to

Ṗn5Pn212Pn , ~27!

with P21[0 to ensureṖ052P0. In Eq. ~27! we absorbed
the concentration factor 1/3 into the time-scale for conve-
nience. Solving ~27! subject to the initial condition
Pn(0)5dn0, one finds a Poissonian mutation distribution

FIG. 5. The concentration of moving interfaces vst1/2 in a
linear-log plot for the five-species cyclic Lotka-Volterra model with
sequential dynamics.
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Pn~ t !5
tn

n!
e2t. ~28!

This mutation distribution is identical to the one found for
the voter model@13# on the mean-field level.

The distribution is peaked around the average^n&5t, and
the width of the distribution,s, is given by s25^n2&
2^n&5t. In the limits, t→`, n→`, and (n2t)/At finite,
Pn(t) approaches a scaling form

Pn~ t !5
1

s
F`S n2^n&

s D , ~29!

where the scaling distribution functionF`(z) is Gaussian,
F`(z)5(2p)21/2exp(2z2/2), and the index̀ indicates that
the solution on the complete graph corresponds to the
infinite-dimensional limit. We also note that the fraction of
persistent sites decreases exponentially,P0(t)5e2t.

Let the initial state of a site beA, without loss of gener-
ality, then the probability that the state isA at timet is given
by R0(t)5(nP3n(t). In general, three such autocorrelation
functions

Rk~ t !5 (
n50

`

P3n1k~ t ! ~30!

correspond to the three possible outcomes at timet, A if
k50,C if k51, andB if k52. The quantityR0(t) is evalu-
ated from equation~28! using the identityet1ezt1ez2t

53(nt
3n/(3n)!, with z5e2p i /3. Generally, we find that

Rk~ t !5
1

3 F112e23t/2cosSA3

2
t1

4pk

3 D G , ~31!

for k50,1,2. The structure of the autocorrelation functions is
rather simple—an exponential approach to the equilibrium
valueRk(`)51/3 is accompanied by oscillations. The three
autocorrelation functions differ only by a constant phase
shift. One can verify that exponential decay occurs for arbi-
trary N, and that temporal modulations occur whenN.2.

In one dimension, in contrast, oscillations do not appear,
and algebraic rather than exponential decay is observed,
Rk(t)21/3;t21 @31#.

B. Scaling behavior

Mutation dynamics and coarsening dynamics are closely
related@13#. For example, the rate of mutation is given by
the density of moving interfaces. Using similar scaling argu-
ments, we study asymptotic properties of the mutation distri-
bution in the one-dimensional case.

The mutation distribution satisfies the normalization con-
dition, (nPn51. Let the average number of mutations be
^n&5(nnPn . Every motion of an interface contributes to an
increase in the number of mutations in one site, and thus the
mutation rate equals the density of moving interfaces,
d^n(t)&/dt5M (t). In the coarsening case,N,5, we found
that the moving interface density decays algebraically,
M (t);t2m. Therefore, the average number of mutations
grows algebraically,̂ n(t)&;tn, with n512m. For N52
and 3, the density of moving interfaces decays inversely pro-

portional to the average domain size,M;^l (t)&21, since
stationary interfaces are absent whenN<3; therefore,
m5a. ForN54, however, the density of moving interfaces
is inversely proportional to the average size of superdomains,
M;^L&21, implying m5b.

In the case ofN52, it has been shown that the mutation
distribution obeys scaling@13#. We assume that this behavior
generally holds when the system coarsens,

Pn~ t !5
1

^n~ t !&
FS n

^n~ t !& D . ~32!

The behavior of the scaling functionF(z) in the limit of
small and large argumentsz reflects the fraction of persistent
and rapidly mutating sites, respectively. Typically, the frac-
tion of persistent sites decays algebraically in time,
P0(t);t2u, with u the persistence exponent. This exponent
has been studied recently in several contexts such as kinetic
spin systems with conservative and nonconservative dynam-
ics and diffusion-reaction systems@32–38#. In the N52
case, the scaling function was found to be algebraic,
F(z);zg, in the limit z→0. Assuming this algebraic behav-
ior for N53 and 4 as well implies the exponent relation

u5n~g11!. ~33!

The largez limit describes ultra-active sites. A convenient
way to estimate the fraction of such sites is to consider sites
which make of the order of one mutations per unit time. At
time t, the fraction of these rapidly mutating sites is expo-
nentially suppressed,Pt(t)}exp(2t). It is therefore natural
to assume the exponential formF(z);exp(2zd) for the tail
of the scaling distribution, thereby implying an additional
exponent relationmd51. To summarize, the scaling func-
tion underlying the mutation distribution has the following
limiting behaviors:

F~z!;H zg, z!1,

exp~2const3zd!, z@1.
~34!

In Sec. III, we obtained the exponentm, characterizing
the decay of moving interfaces. The mutation exponent and
the tail exponent are readily found using the respective ex-
ponent relations,n512m andd51/m. To determineu, we
note the equivalence between the fraction of persistent sites
and the fraction of unvisited sites in the interface picture
@33,37#. For N52, the valueu53/8 has been established
analytically @34#. For N53, different behaviors were found
for parallel and sequential dynamics, and therefore it is nec-
essary to distinguish between the two cases. As mentioned
above, the parallel case reduces to a two-velocity ballistic
annihilation process. The probability that a bond has re-
mained uncrossed from the left by right moving interfaces is
S1(t);t21/2; see Eq.~17!. Analogously,S2(t);t21/2, and
consequentlyP0(t)5S2(t)S1(t);t21 or u51 follows
@26#. In the sequential case, we have not been able to deter-
mine the persistence exponent analytically, and a preliminary
numerical simulation suggests thatu51 as in the parallel
case.

For N54, the number of unvisited sites is equivalent
asymptotically to the survival probability of a static inter-
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face,P0(t);S(t), and using the definitions of Sec. III, we
find u5a, i.e.,u51/3. We now present a heuristic argument
supporting the exponent relation~22!. Substituting the previ-
ously established exponent relationsn512m, m5b, and
u5a in Eq. ~33! yields

a5~12b!~g11!. ~35!

We now argue thatg50 and thus Eq.~35! reduces to
a1b51, i.e., to Eq.~22!. We first recall that interfaces in
the four-species case react according toR1S→L,
L1S→R, andR1L→B. In the long time limit, the zigzag
reactionsR1S→L andL1S→R dominate over the annihi-
lation reactionR1L→B. We therefore consider a simpler
solvable case where a single mobile interface is placed in a
regular sea of static interfaces. This interface moves one site
to the right, two to the left, three to the right, etc. In a time
interval (0,t), this interface eliminatesNs;t1/2 static inter-
faces. The origin is visitedNs times, site 1 is visited
Ns21, site21 is visitedNs22, etc. This implies that the
mutation distribution is Pn(t)5^n&21F(n/^n&), with
^n&;Ns and F(z)51 for z,1 and F(z)50 for z.1.
Hence, ignoring the annihilation reaction leads tog50. This
approximation is inappropriate for predicting the tail of
F(z) which is sensitive to annihilation of the moving inter-
faces. However, in the smallz limit the annihilation process
should be negligible, and thusg50.

Monte Carlo simulations confirm the anticipated scaling
behavior of Eq.~32!. In Fig. 6, the scaled mutation distribu-
tion function ^n&Pn(t) is plotted versus the scaled mutation
numbern/^n&, for a representative caseN54 at different
times t5103,104,105. It is seen that the plots are time inde-
pendent. Furthermore, the scaling function approaches a fi-
nite nonzero value in the limit of smallz5n/^n&, in agree-
ment with the scaling predictions,g50.

In summary, coarsening dynamics can be characterized by
a set of exponentsa,b,g,d,n,u. Table I gives the values of
these exponents, which are believed to be exact, although for
some of the exponents only numerical evidence exists so far.

C. An exactly solvable case

The three-species Lotka-Volterra model with parallel dy-
namics is equivalent to the exactly solvable two-velocity bal-
listic annihilation@24#. We exploit this equivalence to com-
pute analytically the mutation distribution. A species in a
given site mutates each time it is crossed by an interface. As
the fraction of persistent sites is equivalent to the fraction of
uncrossed bonds, the fraction of sites visitedn times equals
the fraction of bonds crossed exactlyn times by the inter-
faces. In the symmetric case, the initial concentration of
moving interfaces of velocity11 or 21 is 1/3 ~interfaces
are initially absent with probability 1/3). Interfaces move
ballistically and the system is deterministic, i.e., any late
configuration is a unique function of the initial configuration.
It is also natural to consider integer timest. The distribution
Pn(t) for a given site is completely determined by the initial
distribution of the interfaces on thet bonds to the left of this
site and on thet bonds to the right of this site since further
interfaces cannot reach the site in a timet. This 2t initial
bond can be mapped onto a random walk with uncorrelated
steps of length61 or zero since interfaces are initially un-
correlated. We setS050 and defineSi recursively via
Si5Si211v i , i51, . . . ,t, wherev i561 is the velocity of
the i th interface to the right of the considered site and
v i50 if the interface is absent. Similarly,S2 i
5S2( i21)2v2 i , i51, . . . ,t. Thus, one has two random
walks starting from the origin, (i ,Si) and
(2 i ,S2 i),i50, . . . ,t, with i being a timelike variable and
Si the displacement. The crucial point is that the number of
interfaces crossing the target site at the origin during the time
interval (0,t) is given by the absolute value of the minimum
of the combined random walk (i ,Si),i52t, . . . ,t ~see
Fig. 7!.

Indeed, the minimum attained by the random walker on
the left~right! gives the excess of interfaces coming from the
left ~right! not destroyed by other left~right! interfaces that
would cross the considered site. Thus,Pn(t) is equal to the
probability that the minimum of two independentt-steps ran-
dom walks starting atS050 is 2n. We have

Pn~ t !52Qn~ t !(
k50

n

Qk~ t !2Qn~ t !
2, ~36!

whereQn(t) is the probability that at-steps random walk
starting at the origin has a minimum at2n. The sum in the
right-hand side of Eq.~36! gives the probability that the
other walker has its minimum at2k, with k<n, the factor 2
reflects the fact that there are two random walkers. We sub-
tract the last quantityQn(t)

2 which has been counted twice

FIG. 6. The mutation distribution scaling function for a repre-
sentative case ofN54 with sequential dynamics. Simulations of 10
realizations of a system of size 106 for time t5103 ~circles!,
t5104 ~squares!, andt5105 ~diamonds!.

TABLE I. Coarsening and mutation exponents in one dimen-
sion.

N a b n d u g

2 1/2 1/2 2 3/8 21/4
3 ~parallel! 1/2 1 1/2 2 1 1
3 ~sequential! 3/4 1 1/4 4 1 1/3
4 1/3 2/3 1/3 3 1/3 0
4 ~symmetric! 3/8 1/2 1/2 2 3/8 21/4
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in the summation. In particular,P0(t)5Q0(t)
2, in agreement

with the argument of the previous section. Also, the density
of moving interfaces can be expressed viaQ0 as
R(t)5Q0(2t)/3, leading to Eq.~17!.

Qn(t) is given by@39#

Qn~ t !5Q̃n~ t !1Q̃n11~ t !, ~37!

with

Q̃n~ t !5
1

3t(i50

t2n
t!

i ! S t1n2 i

2 D ! S t2n2 i

2 D ! . ~38!

The trinomial coefficient in the above sum is set to zero if
(t2n2 i )/2 is not an integer. To determine the asymptotic
behavior ofPn(t) we first computeQ̃n(t). Making use of the
Gaussian approximation for the trinomial coefficients we
find Q̃n(t).(3/4pt)1/2exp(23n2/4t), and then

Pn~ t !.A12

pt
ErfS n

A4t/3D e23n2/4t, ~39!

with Erf(z)52/Ap*0
zdue2u2. The existence of an exact so-

lution is very useful for testing the validity of the scaling
assumptions. Indeed, Eq.~39! agrees with the general scaling
form of Eq. ~32!, and the corresponding scaling function is

F~z!5
4

Ap
e2z2Erf~z!, ~40!

with the scaling variablez5n/A4t/3. The limiting behavior
of this scaling function agrees with the predictions of Eq.
~34! as well,

F~z!;H z, z!1,

e2z2, z@1.
~41!

The corresponding values of exponentsn5m51/2, d52,
u51, andg51, are in agreement with Table I.

V. EXTENSIONS

The cyclic lattice Lotka-Volterra model can be general-
ized in a number of directions. A natural generalization is to
higher dimensions. The two-dimensional case seems to be
especially interesting from the point of view of mathematical
biology. In the exactly solvableN52 case~the voter model!,
coarsening occurs ford<2 @12#, for the marginal dimension
d52, the density of interfacial bonds decays logarithmically,
c(t);1/lnt @15#, while for d.2, no coarsening occurs and
the system reaches a reactive steady state. In two dimen-
sions, our numerical simulations indicate that there is no
coarsening, i.e., the density of reacting interfaces saturates at
a finite value. For sufficiently large number of species the
fixation is expected but we could not determine the threshold
value, at least up toN510 we have seen no evidence for
fixation.

Below, we mention a few other possible generalizations
and outline some of their attendant consequences.

A. Asymmetric initial distribution

We consider uncorrelated initial conditions with unequal
species densities. Even in the two-species situation, the be-
havior is surprisingly nontrivial. In particular, the densities
of both species remain constant; the persistence exponent
uA decreases from 1 to 0 as the initial concentrationa0 in-
creases from 0 to 1@13,34#, with uA5uB53/8 for equal
initial concentrations@34#.

Turn now to the three-species case and consider first par-
allel dynamics. In general, the densities of right and left
moving interfaces are equal as well. However, the initial in-
terface distribution is correlated in the general asymmetric
case and therefore the equivalence to ballistic annihilation is
less useful. We find numerically that the interface density
exhibits the same decay as in the symmetric case,
c(t);t21/2. To illustrate this property let us consider the

FIG. 7. Mapping of the initial distribution of
the species to a random walk. The number of
mutations undergone by the center site is equal to
absolute minimum reached by the corresponding
random walk.
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following example where the initial densities are
a05122e andb05c05e, with e→0. Initially, theA spe-
cies dominates over the two minority species. While isolated
B’s are immediately eaten by the neighboringA’s, C species
domain arise and soon theC’s dominate the system. How-
ever, the ultimate fate of the system is determined by pairs of
nearest neighbors which are dissimilar minorities, i.e.,BC
andCB. Initially, these interfaces are present with density
e2; clearly, they are long-lived right and left moving inter-
faces. These interfaces are uncorrelated and thus their den-
sity decays ast21/2.

We also performed numerical simulations for the three-
species cyclic Lotka-Volterra model with sequential dynam-
ics, and the interface decay,c(t);t23/4, was found similar to
the symmetric case. The interface concentration does not
provide a complete picture of the spatial distribution. The
main difference with the three-opinions voter model is that
the species densities are not conserved, and they exhibit a
more interesting behavior~see Fig. 8!. It is possible that the
limit where one species initially occupies a vanishingly small
volume fraction is tractable analytically, similar to recent
studies@13,35# of Glauber and Kawasaki dynamics.

Consider now the four-species model. Numerically, we
observed a rich variety of different kinetic behaviors. Rather
than giving a complete description, we restrict ourselves to a
few remarks based on simulation results and heuristic argu-
ments. First, the species densities are not conserved globally,
in contrast with the symmetric initial conditions or the ordi-
nary four-opinions voter model. Furthermore, if the initial
densities are different, the system can fixate and thus reach a
state such asAAACCCACCAwhere the evolution is frozen.
In order to illustrate the rich behavior of this system we
consider the following initial conditions;a05123e and
b05c05d05e with e→0. Eaten by the dominantA’s and
with almost no prey,B’s quickly disappear from the system.
TheD ’s are growing because they have much food and al-
most no predators. After a while, theC’s also have some
food and no predators and they overtake theD ’s. TheA’s are
eaten first but once theC’s dominate theD ’s, A’s have fewer
and fewer predators. The concentration ofD species and the

density of the moving interfaces decay exponentially and,
therefore, the system quickly reaches a frozen state where
afrozen51/4 andcfrozen53/4 ~see Fig. 9!. These constants can
be simply understood. Consider only the initial distribution
of C and D. Regions between a pair successiveC ~such
regions are present with probability 1/4! will be filled by
A’s. Regions between a pair ofD as well as regions between
a C and aD ~present initially with probability 3/4! will be-
comeC domains.

B. Symmetric rule

Let us now consider theN-species Lotka-Volterra model
with a symmetriceating rule, namely, we assume that the
i th species can eat speciesi21modN as well as
i11modN.

ForN53, all different species can eat each other without
any restriction. This model is thus equivalent to the three-
opinions voter model~also called the stepping stone model!.
In one dimension, the concentration of interfaces is known to
decay ast21/2; see, e.g.,@13#.

For N54, the situation is more interesting since, e.g.,A
can eat bothB andD but cannot eatC. Thus this model is
different from the four-opinions voter model or the four-
species cyclic Lotka-Volterra model. There are moving in-
terfacesM between speciesA andB, B andC, C andD, and
D andA, and stationary interfacesS between speciesA and
C and speciesB andD. Each moving interface is performing
a random walk. When a moving interface meets a stationary
one, the latter is eliminated,M1S→M ; if two moving in-
terfaces meet, they either produce a stationary interface
M1M→S or annihilateM1M→B according to the state
of the underlying species. On the mean-field level, this pro-
cess is described by the rate equations

Ṁ524M2, Ṡ5M22SM. ~42!

Equations ~42!, supplemented by the initial conditions
M (0)51/2 andS(0)51/4, are solved to yield

M ~ t !5
1

214t
, S~ t !5

7

12

1

~112t !1/4
2

1

316t
, ~43!

FIG. 8. The species densities vs lnt for the three-species cyclic
model with unequal initial densities (a050.9 andb05c050.05).

FIG. 9. The species densities as a function of time~MCS! for
the four-species cyclic model with unequal initial densities
(a050.997 andb05c05d050.001).
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implying the existence of two scales,^l (t)&;t1/4 and
^L(t)&;t.

Fortunately, an exact analysis of the four-species Lotka-
Volterra model with the symmetric eating rule is possible.
Moving interfaces do not feel the stationary ones and they
are undergoing diffusive annihilation. As a result, their con-
centration decays according toM (t);t21/2. Following the
discussion in the previous section, the fraction of stationary
interfaces surviving from the beginning is proportional as-
ymptotically to the fraction of sites which have not been
visited by mobile interfaces up to time t,
S(t);P0(t);t23/8 @34#. We should also take into account
creation of stationary interfaces by the annihilation of mov-
ing interfaces. This process produces new stationary inter-
faces with rate of the order2dM/dt so the density of sta-
tionary interfaces satisfies the rate equation

dS

dt
5
dP0
dt

2
dM

dt
. ~44!

Combining Eq.~44! with P0(t);t23/8 andM (t);t21/2, we
find that interfaces which survive from the beginning provide
the dominant contribution while those created in the process
M1M→S contribute only to a correction of the order
t21/8,

S~ t !;t23/8@11O~ t21/8!#. ~45!

Thus a two-scale structure of the type~23! emerges with the
average lengths,̂l (t)&;t3/8 and ^L(t)&;t1/2. The expo-
nents for the four-species Lotka-Volterra with symmetric
rules are summarized in Table I. These asymptotic results
agree only qualitatively with the rate equations predictions.
Simulation results are in an excellent agreement with these
predictions,M (t);t20.50 andS(t);t20.35 ~see Fig. 10!. Re-
fined analysis which makes use of the expected correction of
the orderO(t21/8) enables a better estimate for the decay of
stationary interfaces, namely,S(t);t20.37.

TheN55 case with symmetric eating rules can be easily
analyzed on the level of the rate equations. We omit the
details as the analysis is similar to the one presented in Sec.
II D for the cyclic model. The conclusion is similar as well,
namely, the system approaches a frozen state consisting of
noninteracting domains. Arguing as in the cyclic case we
conclude that the threshold number of species predicted by
the mean-field rate equation approach is exact,Nc55, in
agreement with our numerical simulations.

We also found that the rate equation approach does not
provide a correct description of the decay of the mobile in-
terfaces:MMFT(t)}e

2t, while in the actual processM (t)
}e2tn with n close to 1/4. An upper bound,n<1/3, can be
established by comparing to the trapping process,
M1T→T @40#. The survival probabilitys(t) for a particle
diffusing in a sea of immobile traps,s(t)}exp(2t1/3) @40#,
provides a lower bound for our original problem,
M (t)>s(t).

C. Diffusion-reaction description: Cyclic models

So far we have studied population dynamics occurring on
a lattice. Although similar descriptions have been used in
several other studies@7–11#, the diffusion-reaction equation
approach is more popular@1,3,4#. It is therefore useful to
establish a relationship between the two approaches.

To this end, consider a three-species system with particles
moving diffusively and evolving according to the reaction
scheme ~1!, supplemented by reproduction and self-
regulation. On the level of a diffusion-reaction approach, this
process is described by the following partial differential
equations:

at5axx1a~12a!1ka~b2c!,

bt5bxx1b~12b!1kb~c2a!, ~46!

ct5cxx1c~12c!1kc~a2b!.

In these equations,a5a(x,t), b5b(x,t), andc5c(x,t) de-
note the corresponding densities at pointx on the line;
a(12a) is the Lotka term describing reproduction and self-
regulation; the diffusion constant and the growth rates of
each species are set equal to unity, and the constantk mea-
sures the strength of the competition between species.

For noninteracting species,k50, and Eqs.~46! decouple
to the well-known single-species Fisher-Kolmogorov equa-
tions @4,5#. This equation has two stationary solutions,
a50 and a51; the former is unstable while the latter is
stable so any initial distribution approaches toward it. Start-
ing from an initial density close to stable equilibrium for
x,0 and to unstable equilibrium forx.0, a wave profile is
formed and moves into the unstable region@4,5,41#. The
width of the front is finite as a result of the competition
between diffusion which widens the front and nonlinearity
which sharpens the front.

Consider now the case of interacting species,k.0. The
initial dynamics is outside the scope of a theoretical treat-
ment and should be investigated, e.g., numerically solely on
the basis of Eqs.~46!. However, as the coarsening proceeds,
single-species domains form. Inside, say, anA domain, the
density of A species is almost at stable equilibrium,

FIG. 10. The concentrations of stationary~diamonds! and mov-
ing ~circles! interfaces as a function of time~MCS! for the four-
species model with a symmetric sequential dynamics. Lines of
slope 1/2 and 3/8 are shown as references. The insert shows
t3/8S(t) as a function oft21/8 where a straight line is expected.
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a(x,t)>1, while the densities ofB andC species are negli-
gible. In the boundary layer between, say, anA and aB
domains, the density ofC species is negligible. Domain sizes
grow while the width of boundary layer remains finite.
Therefore, in the long time limit one can treat boundary lay-
ers as~sharp! interfaces which are expected to move into
‘‘unstable’’ domain.

To determine the velocityv of the interface and the den-
sity profiles we employ a well-known procedure@5,41#. Con-
sider an interface between, say, anA domain to the left and
a B domain to the right. We look for a wavelike solution,

a~x,t !5a~j!, b~x,t !5b~j!, j5x2vt. ~47!

Substituting~47! into Eqs.~46! we arrive at a pair of ordi-
nary differential equations for the density profilesa(j) and
b(j). To determine the interface velocity, let us consider the
densities far from the interface (j50), say forj@1. In this
regiona(j)!1, b(j)>1, and equation fora(j) simplifies to
a91va81(11k)a50, wherea85da/dj, etc. By inserting
an exponential solution,a(j);e2lj, into this equation we
get l22vl1(11k)50. In principle any velocity
v>vmin , with vmin52A11k, is possible. This resembles the
situation with the Fisher-Kolmogorov equation@4,5#. Ac-
cording to the ‘‘pattern selection principle’’@4,5#, the mini-
mum velocity is in fact realized for most initial conditions.
The pattern selection principle is atheoremfor the Fisher-
Kolmogorov equation~where the precise description of nec-
essary initial conditions is known! @41# while for many other
reaction-diffusion equations the pattern selection principle
has been verified numerically@4,5#.

Thus, for the three-species cyclic Lotka-Volterra model in
one dimension we established an asymptotic equivalence be-
tween the diffusion-reaction approach and the lattice one
with the parallel dynamics. Given that the density of inter-
faces decays ast21/2, one can anticipate the same behavior
for the diffusion-reaction model. This result may be difficult
to observe directly from numerical integration of the nonlin-
ear partial differential equations~46!, and establishing the
complete relationship between lattice and diffusion-reaction
approaches remains a challenging task.

D. Diffusion-reaction description: Symmetric models

Consider the three-speciessymmetricLotka-Volterra on
the level of the diffusion-reaction description. Rate equations
like Eqs.~46! are useless in this case since they do not con-
tain terms describing interactions among species. Neverthe-
less it proves useful to consider a similar symmetric system
where interacting species mutually annihilate upon collision.
The governing equations read

at5axx1a~12a!2ka~b1c!,

bt5bxx1b~12b!2kb~c1a!, ~48!

ct5cxx1c~12c!2kc~a1b!.

We again restrict ourselves to the late stages where a
well-developed domain structure has already been formed
@42,43#. To simplify the analysis further we assume that the
competition is strong,k→`, so neighboring domains act as

absorbing boundaries. We employ a quasistatic approxima-
tion, i.e., we neglect time derivatives and perform a station-
ary analysis in a domain of fixed size, and then make use of
those results to determine the~slow! motion of the interfaces.
Inside, say, anA domain the densitya(x) satisfies
a91a(12a)50, which should be solved on the interval
(0,L) subject to the boundary conditionsa(0)5a(L)50.
The size of the domain,L, is assumed to be large compared
to the width of the interface, i.e.,L@1. In this limit, the flux
of A species through the interface is equal to@43#
F(L)>(1/A3)2const3e2L. Clearly, if we have neighbor-
ing L1 domain andL2 domain, then the smallest of the two
domains shrinks while the largest grows, and the interface
moves with velocityF(L1)2F(L2)}e

2L22e2L1. Thus the
average size grows according to

d

dt
^L&}exp~2^L&!, ~49!

which is solved to yield̂ L&; lnt. We see that coarsening
still takes place, but it is logarithmically slow.

Moreover, the determination of the complete domain size
distribution can be readily performed, at least numerically.
Clearly, in the late stage all sizes are large,L@1. Thus, only
the smallest domain shrinks and the two neighboring do-
mains grow while other domains hardly move at all. This
provides an extremal algorithm:~i! The smallest domain
Lmin is identified; ~ii ! if the nearest domains,L1 and L2,
containsimilar species, both interfaces are removed and a
domain of lengthL11Lmin1L2 is formed;~iii ! if the nearest
domains containdissimilarspecies, the two interfaces merge
and form a new interface at the midpoint, and thus domains
of sizeL11Lmin/2 andL21Lmin/2 are formed. This process
is identical to the three-state Potts model with extremal dy-
namics@36#. Similar one-dimensional models with extremal
dynamics have been investigated in a number of recent stud-
ies @44–47#.

Thus, in the symmetric case the reaction-diffusion ap-
proach provides very different results compared to the lattice
process and theextremaldynamics provides an effective way
to analyze the long time behavior.

VI. DISCUSSION

We investigated one-dimensional Lotka-Volterra systems
and found that they coarsen when the number of species is
sufficiently small,N<4. Typically, coarsening systems ex-
hibit dynamical scaling with a single scale@48#. When scal-
ing holds, analysis of the system is greatly simplified, e.g.,
the single scale grows as a power law,^l (t)&;ta, with the
exponenta independent of many details of the dynamics,
usually even independent of the spatial dimension@48#. In
contrast, for the Lotka-Volterra models we found that the
coarseningdependson the details of the dynamics. There are
two characteristic length scales: the average length of the
single-species domains,^l (t)&;ta, and the average length
of superdomains,̂L(t)&;tb. Precise definition of superdo-
mains depends on the number of speciesN: ForN53 inter-
faces between neighboring domains move ballistically and
superdomains are formed by strings of interfaces moving in
the same direction; forN54, neighboring domains are typi-
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cally noninteracting, and superdomains are separated by ac-
tive interfaces. The length scale of the single-species do-
mains should also be considered carefully. Defining the
moments of the domain size distribution,
l n(t)5^l n(t)&1/n, one observes a variety of different scales.
For the three-species model with parallel dynamics, one can

show analytically@31# that l n(t) remain finite whenn, 1
2b

and l n(t);t121/2n when n. 1
2 . We have argued@31# that

only the extreme scales, the ballistic one and the scale
O(1) characterizing initial data are fundamental while other
scales, including the average domain length
l 1(t)5^l (t)&;At, arise as a result of competition between
these extreme scales. It is quite possible that similar behavior
underlies the four-species model as well.

Dimensional analysis provides additional insight into the
existence of more than one scale. Consider for simplicity
parallel dynamics, where the relevant parameters are the ini-
tial interface concentrationc0, the interface velocityv0, and
time t. There are only two independent length scales,c0

21

andv0t, and using dimensional analysis one expects

^ l ~ t !&5vtc~c0v0t !, ^L~ t !&5vtC~c0v0t !. ~50!

If simple scaling holds, the lengthc0
21 set by the initial con-

ditions should be irrelevant asymptotically. Thus, the scaling
functionsc(z) andC(z) should approach constant values as
z5c0v0t→` implying ^ l (t)&;^L(t)&;v0t. In contrast, for
the three-species Lotka-Volterra model we found
c(z);z21/2 when z→`. For the four-species Lotka-
Volterra model both scaling functions exhibit asymptotic be-
havior different from the naive scaling predictions,
c(z);z22/3 andC(z);z21/3. For the Lotka-Volterra model
with symmetric eating rule interfaces diffuse and thus the
relevant length scales arec0

21 and ADt. Here,
^ l (t)&5ADtc(c0

2Dt) and L(t)5ADtC(c0
2Dt). When

N54, the two-scale structure impliesc(z);z21/8 asz→`.
Thus simple dynamical scaling is violated for one-

dimensional Lotka-Volterra models. Violations of scaling
have been reported in a few recent studies of coarsening in
one- and two-dimensional systems@48–54#. To the best of
our knowledge, however, in previous work violations of dy-
namical scaling have been seen only in systems with vector
and more complex order parameter. In contrast, Lotka-
Volterra models can be interpreted as systems withscalar
order parameter, although the number of equilibrium states
N generally exceeds two, the characteristic value for Ising-
type systems.

Finally, we note that presence of only two length scales
exemplifies the mildest violation of classical single-size scal-
ing. Generally, if scaling is violated one expects the appear-
ance of an infinite number of independent scales, i.e., multi-
scaling @49,55#. Similar two-length scaling has been
observed in the simplest one-dimensional system with vector
order parameter, namely, in theXY model @51#, and in the
single-species annihilation with combined diffusive and con-
vective transport@30#. Indications of the three-length dy-
namical scaling have been reported in the context of coars-
ening @53# and chemical kinetics@56,6#.

VII. SUMMARY

In this study, we addressed the dynamics of competitive
immobile species forming a cyclic food chain. We first ex-
amined a cyclic model with asymmetric rules and symmetric
initial conditions and have observed a drastic difference be-
tween the two extremes, corresponding to the complete
graph~‘‘infinite-dimensional’’! and to one-dimensional sub-
strates. In the latter case, spatial inhomogeneities develop,
and the resulting kinetic behavior is very sensitive to the
number of species. For a sufficiently small number of spe-
cies, the system coarsens and is described by a set of expo-
nents summarized in Table I. These exponentsdependon the
number of species and on the type of dynamics~parallel or
sequential!. Thus, to describe coarsening in systems with
nonconservativedynamics it is necessary to specify the de-
tails of the dynamics.

The time distribution of the number of mutations has also
been investigated and we presented scaling arguments as
well as an exact result for a particular case. We also treated
symmetric interaction rules. This system is especially inter-
esting whenN54 as it provides a clear realization of the
recently introduced notion of ‘‘persistent’’ spins in terms of
the stationary interfaces. Finally, we discussed a relationship
to the alternative reaction-diffusion equations description.
While for the cyclic version both the lattice and the reaction-
diffusion approaches have been found to be closely related,
for the symmetric version very different results have
emerged and a relationship with extremal dynamics has been
established.
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