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We study the evolution of a system bf interacting species which mimics the dynamics of a cyclic food
chain. On a one-dimensional lattice with<<5 species, spatial inhomogeneities develop spontaneously in
initially homogeneous systems. The arising spatial patterns form a mosaic of single-species domains with
algebraically growing average size;(t))~t“, wherea=3/4 (1/2) and 1/3 forN= 3 with sequentia(paralle)
dynamics andN=4, respectively. The domain distribution also exhibits a self-similar spatial structure which is
characterized by an additional length sc#lé(t))~t#, with =1 and 2/3 forN=3 and 4, respectively. For
N=5, the system quickly reaches a frozen state with noninteracting neighboring species. We investigate the
time distribution of the number of mutations of a site using scaling arguments as well as an exact solution for
N=3. Some relevant extensions are also analyeti063-651X96)10612-7

PACS numbsgps): 02.50.Ga, 05.70.Ln, 05.40j

[. INTRODUCTION The corresponding stochastic process is well defined on a
lattice, where the interaction is restricted to nearest neighbor

The classic Lotka-Volterra equatiofis—3] mimic the dy-  sites. Initially, every lattice site is assumed to be occupied;
namics of interacting species such as predator-prey systemgearly, the lattice then remains fully occupied.
These equations are rather successful in predicting density Given the simplicity of the reaction proce§b, one an-
oscillations which are known to exist in nature. For spatiallyficipates that it can provide a caricature description of a num-

inhomogeneous situations, Lotka-Volterra equatipfisare  Per of phenomena in nature and society. One example is the
straightforwardly generalized to diffusion-reaction equationg/Oter model[12,13, which is applicable to chemical reac-
[5]; these equations were widely applied to more comple |onhs on catalyt[c surfe:jcel[i4,r];fjh Thljs mo%el d|sbeq;]uvalent.
A : the two-species model, which is described by the reaction
ecological processes. However, such an approach 'gnors%heme A+B—2A or A+B—2B (both channels are

spatial correlations and therefore fails to predict the deveIOpéqually probable The subsequent cycli-species generali-

tme;n; olf:c?rpitrl]igr:iec t:lroggrggeeg;(aess|ntr|]r:a|t|2rllal(:ih;|)rrrl8|gee?ﬁ;u§ S{;?glation is also called thdl-color cyclic voter mode[16].
’ P ' P The rest of this paper is organized as follows. Section I

heterogeneities play in governing the kinetics has been 3Rxamines interface dynamics in one dimension. We analyze

preciated over the past decade; see, €6J.and references ho corresponding rate equations and show that spatial orga-
t_hereln. Theref(_)re, in low spatial dimensions the mean-fieldy;,ation into an alternating mosaic of growing domains oc-
like rate equations approadlanalog of the Lotka-Volterra s forN<5 only. While the qualitative predictions made
equations in chemical kinetiggails to provide the correct n Sec. Il are correct, the quantitative predictions fail. In Sec.
asymptotic behavior. Indeed, a homogeneous initial statf|, we further analyze the interface dynamics using prima-
evolves to a strongly heterogeneous state, namely, to a coafigty scaling arguments and numerical simulations for the
ening mosaic of reactants which confines the actual micromost interesting case$=3 and 4. We consider both se-
scopic reaction to the interfacial regions between domaingyuential and parallel dynamics evolution rules, as the system
and therefore the kinetics are significantly slowed downmay be sensitive to such rules. Section IV studies the dynam-
Similar spatial organization was recently reported in Lotka-ics of mutations and quantities such as the fraction of persis-
Volterra system§7—11]. However, theoretical understanding tent sites. In Secs. II-IV we focus on symmetric and uncor-
of these systems is still incomplete. related initial conditions where aNl species have an initial

In this study, we consider the evolution of hispecies density of 1N. In Sec. V, we describe several natural gen-
food chain, where every Species p|ays the role of prey angralizations of.th_e model to asymmetric |n|t|aI _con(_:entra-
predator simultaneously. The food chain is thus assumed t$0NS, symmetric interaction rules, and reaction-diffusion de-
be cyclic; e.g., in the three-species systéeatsB, B eats ~ SCriptions. Section VI discusses our results within the general
C, andC eatsA. Every “eating” event leads to duplication framework of coarsening phenomena. A summary is pre-
of the winner and elimination of the loser; therefore theSented in Sec. VII.
three-species food chain is symbolized by the reaction

Il. RATE EQUATIONS FOR ONE-DIMENSIONAL
scheme

INTERFACE DYNAMICS

Since we are interested in the role of spatial correlations,
A+B—2A, B+C—2B, C+A—-2C. (1) we study primarily the extreme case of one dimension,
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where spatial inhomogeneities are most pronounced. We firstating domainsAABBBAAABBB The average size of a
mention the opposite extreme where no correlations ardomain grows linearly with time(/'(t))~t.

present, i.e., the cyclic Lotka-Volterra system on a complete

graph. On this structure, all sites are neighbors and the spa- B. Three species

tial structure is irrelevant, i.ed=c0. The species concentra-
tions satisfy the Lotka-Volterra equatiof,3,17 (which
also arise in a number of other topics, e.g., in description o
Langmuir oscillationg§18]):

In the caseN=3, there are two types of interfaces, right
fnoving (AB, BC, andCA), and left moving BA, CB, and
AC), denoted byR andL, respectively. Starting with a sym-
metric initial distribution, all right (left) interfaces are
equivalent. When a right moving interface meets a left mov-
ing one, they annihilateR+L—. When a right moving
interface overtakes another right moving interface, they give
rise to a left moving interfaceR+R—L, and similarly,
"P+L-R. The corresponding rate equations are

ék:Ck(Ck+l_Ck—1)a k=1,... N. (2)

Here the addition and the subtraction are modilowhile
the overdot denotes the time derivative. These equatio
obey the trivial conservation lavH,;=ZX;c;=const, that
merely reflects particle conservation. There is an additional R= — 2R2— 2RL+ L2
conservation lawH,=II;c;=const. These useful conserva- ’
tion laws imply, for example, that a generic solution of the
N=3 case is periodic; indeed, such a solution can be ex-
pressed through elliptic functions. _ The interface concentration is readily found,

The infinite-dimensional analysis fails to describe the dy-
namics of the actual stochastic process in low dimensions.
For example, while the suni;=3;c; is conserved, the RO=LMO= 373 (4)
productH,=1I;c; is not a conserved quantity in one dimen-
sion. Furthermore, the structure of H®) does not address The behavior is similar to the cagé=2, as the resulting
fluctuations in the spatial distribution of the interacting popu-spatial patterns form a mosaic of single-species domains
lations. ForN<5, we shall see that the spatial structurewhose average size {€(t))~t. The previous analysis im-
evolves forever, single-species domains arise and grow irplicitly assumes that interfaces hop one at a time, namely,
definitely, and the process exhibits coarsening. In othesequential dynamics. Alternatively, one can consider simul-
words, equilibrium is never achieved and instead a networkaneous hopping, or parallel dynamics. Here interfaces move
of domains develops. The domain patterns are self-similatallistically, and thus interfaces moving with the same veloc-
i.e., the structures at later times and at earlier times diffeity do not interact. The reaction schemeRs-L—J, and
only by a global change of scale. Such a behavior is a sigme rate equations red@=L=—2RL. The resulting inter-

nature ofdynamical scaling , ~ face concentrationsR(t)=L(t)=1/(3+2t) differ only
In the following section, we study the motion of “domain slightly from Eq.(4).

walls,” namely, interfaces separating domains of different
species. For thé\-species process a bond connecting two
sites is an interface bond if the corresponding two sites are
occupied by two different Species_ Thus, there Mrel in- In the four-species model there are static interfaces de-
dependent types of interfaces, of whish-3 are immobile noted byS (AC, BD, CA, andDB), in addition to the pre-
and 2 are mobile. For symmetric initial conditions Viously defined right moving interface\, BC, CD, and
[ci(0)=1/N], the different types of interface bonds are DA), and left moving interfacesBA, CB, DC, andAD).
present with initial concentration equal toNL(with prob-  Interfaces react upon collision according to the rules
ability 1/N that a given bond does not contain an intejace R+L—J, R+S—L, R+R—S, L+L—S, andS+L—R,
Interfaces move and react accordingNedependent rules resulting in the following rate equations:

defined below. For largh, most interfaces are immobile and . )

the system quickly reaches a state where all mobile inter- R=—-2R*-2RL-RS+SL,

faces are eliminated.

L=—-2L2-2RL+R2 3

C. Four species

L=-2L2-2RL-SL+RS (5

A. Two species . 5. 12
_ ) S=R°+L“-RS-SL

Consider the simplest case Nf=2, where there are two
equivalent interfacesAB and BA), denoted byl. An iso-  Solving these equations subject to the appropriate initial con-
lated interface performs a random walk, i.e., it hops to one oflitions gives
its nearest neighbors. When two interfaces meet they annihi-
late. The corresponding reaction scheme is therefore 1 1
I +1—&. Assuming that neighboring interfaces are uncorre- R(=L(1)= 4+41° S(t) = T A+4t ©®)

) . o 4+ 4t

lated, we see that the density of interfadds), satisfies the
binary reaction equatioh=—412, where the hopping rate Different rules govern the decay of static and mobile inter-
was taken as unity without loss of generality. Solving thisfaces, and consequently, the coarsening process is character-
equation subject to the initial conditiorif0)=1/2 gives ized by two intrinsic length scales. The average distance be-
| (t)=(2+4t) 1. The system evolves into a mosaic of alter- tween two static interfaces?, grows slower than the
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average distance between two moving interfate#, non-  sponding densities remain equal forever. This condition is
trivial spatial organization occurs in which large “superdo- certainly satisfied for the symmetric initial conditions
mains” contain many domains of alternating noninteractingR(0)=L(0)=S,(0)=Sg(0)=1/5. Therefore, R(t)=L(t)
(AC or BD) speciesBAAACCAAACCCAAADWe de- andS;(t)=Sg(t), and in what follows we shall use the no-
note the average domain size @§(t))~t? and the average tationsM(=R=L) for mobile interfaces an®(=S, = Sg)
superdomain size byC(t))~t. The average number of non- for stationary interfaces. Thus, the four rate equations reduce
interacting domains inside a superdomain grows ag$o a pair of rate equations:
(L)I{/y~12, Such an organization is a consequence of the ) i
existence of noninteracting species, which first occurs at M=-4M?-SM, S=M?-SM. (10
N=4.

It is useful to consider parallel dynamics as well. Again, 1 N€S€ equations can b? linearized by introducing a modified
the reaction scheme is altered only in that interfaces movin§me variable, T(t)=[oM(t")dt’. Using the notation
in the same direction do not interact. The reaction scheme,=d/dT, we rewrite the governing equations as
R+L—J, R+S—L, andS+L—R, is described by the fol- . .
lowing rate equations: =—-4M-5 §'=M-S. (1D

R= - 2RL—RStSL Solving these equations gives

. M(T)= % (\ ew‘EMT_)\iefE}\_T ,
[=—2RL-SL+RS ) (D=5 )

- T)=t(n,e B -T—x_e BTy, 12
A SM=30n ) (12
with the shorthand notations, . =(y/5+1)/2. Here, the
moving interfaces are depleted®t=2(In\.)/y/5. The den-
1 sity of static interfaces approaches a finite value,
412t 8 S(e0) = é()\i“’g—)\zf" )=0.152 477, so the average do-
main size in the frustrated state i£(o)=1/25(x)
Interestingly, wherN=4 coarsening is sensitive to the de- =3.279 18. In terms of the actual tinbethe density of mov-
tails of the dynamics. Parallel dynamics is governed by dng interfaces decays exponential(t)<e~ ). Contrary
single length scale, in contrast to the two scales underlyingo the previous case®y<5, no coarsening occurs and the
sequential dynamics. system quickly approaches a frozen state of short noninter-
acting same-species domains separated by stationary inter-
D. Five species faces.

) ) . A similar picture is found for parallel dynamics as well.
In the five-species case there are two types of stationaryjere  the reaction process i®R+L—@, R+S —L

interfaces, Sz (AC,BD,CE,DAEB) and S Rig .5 S.+L—R,S +L—Ss, and the rate equations
(AD,BE,CA,DB,EC), in addition to the right and left mov- are

ing interfaces, R (AB,BC,CD,DE,EA) and L

Solving the rate equations we arrive at

R()=L()=S(t)=

(BA,CB,DC,AD,AE). The reaction process is symbolized L=—2RL-LS —LSg+RS,
by R+L—C, R+S —L, R+Sz—S, SgtL—R,
S . +L—Sg, R+R—Sg, andL+L—S, . In other words, R=-2RL—RS —~ RS+ LSg,

when a moving interface hits a stationary interface of the
same kind, the outcome is a stationary interface of the oppo- .

site kind; when a moving interface hits a stationary interface S =-RS-LS +R%,
of the opposite kind, a dissimilar moving interface emerges. .
Collisions between similar moving interfaces produce sta- Sr=~"R&R-LSR+LS.. (13

tionary interfaces of the same kind, and thus, the obviou
notationsS, and Sg. For the five-species model with se-
guential dynamics, the rate equations read

ﬁ'he useful duality relation,R,Sg) < (L,S,), still applies, so
there are only two independent interface concentratibhs,
and S, which evolve according to the following rate equa-

[=—2RL-LS —LSg+RS —2L2 tions

R=—2RL-RS — RS+ LSg—2R? M=-2M2-MS, S=-MS. (14)

The calculation is very similar to the sequential case, and we

S.=—RS -LS +R&K+L? merely quote the resultsM(T)=(2e ?"—e ")/5 and
S(T)=e "/5. The limitt— corresponds t&@ —T.,=In2.
.SR:_RSQ_LSR"_ LS, +R2. 9) We find that the density of static interfaces saturates at a

finite value,S(«)=1/10, while the density of moving inter-
The reaction scheme and consequently the rate equations deees decays exponentially in tim#](t)cce™ S(*)t=g~ V10,
invariant under the duality transformatioR,Sg)<(L,S.). @ The average size of a domain in the frozen state is
Particularly, forR(0)=L(0) andSg(0)=S,(0), thecorre-  L(«)=1/25(x)=5.
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To summarize, for both parallel and sequential dynamicsystem depends on spatial fluctuations present in the initial
the rate equations predict coarsening when the number aftate. For both types of dynamics, efficient algorithms keep-
species is sufficiently smalN <5, and fixation for a large ing trace only of moving interfaces have been implemented.
number of speciedN=5. When fixation occurs, each site ~ Below, we present numerical findings accompanied by
attains a final state while fdd<4 the state of any site con- heuristic arguments for the coarsening dynamics in one di-
tinues to change, although the frequency of changes dewnension[20]. Again, we restrict ourselves to tlsymmetric
creases with time. It is remarkable that the rate equatioinitial concentration. In this case the average concentration
approach which neglects spatial correlations between intelof each species remainsNL/despite the nonconserving mi-
faces correctly predicts the marginal food chain length forcroscopic evolution rules.
fixation, N.=5, as has been proved rigorously for both se-
guential dynamic$16] and parallel dynamicgl9]. A. Two species

In the coarsening case<5, both for the two- and As mentioned previously, foN=2, interfaces perform a
three-species case the average domain{$iz¢) grows lin- P usly, R Pe
random walk and annihilate upon collision. This exactly

early with time independent of the dynamics. In the four-Soluble voter model[12] is equivalent to the one-

species case, however, the rate equation theory predicts lii- . :
. dimensional Glauber-Ising model at zero temperature
ear growth (I(t))~t for parallel dynamics, and slower

“diffusive” growth (I(t))~\t for sequential dynamics. In [21,23. The interface concentration is given /1]

the latter case, the larger linear scale still exists and it char- L(t)y=e *[I(4t)+1,(4t)]/2, (15)
acterizes the typical distance between two mobile interfaces.
with 1,(x) the nth-order modified Bessel function. In the
limit t—0 correlations are absent; therefore, the interface
densityl (t) = 1/2—t agrees with prediction of the mean-field
The above rate equation theory successfully predicts théheory, | yer=(2+4t) 2, in the short time limit. Asymptoti-
fixation transition atN.=5, in agreement with rigorous re- cally, the coarsening is much slower in comparison with the
sults[16,19. If one assumes that the average concentratiomate equation predictions(t)=(8t) “Y2. The system sepa-
of each species is conserved throughout the process, whichiates into single species domains as follows:
clearly correct at least in the case of equal initial concentra-

IIl. COARSENING DYNAMICS IN ONE DIMENSION

tions, one can find a simple argument for a lower bound on AAABBBBAAAABBAAA. (16)
the marginal food chain lengtN.. A frozen chain consists P

of alternating domains of noninteracting species. For

N=2,3 such a chain is impossible since all species interactfhe average domain siZe’(t)) exhibits a diffusive growth
ForN=4, frozen chains are filled by eithérandC species law (/(t))~t* with a=1/2. Similar asymptotic behavior
or B andD species thereby violating the conservation of theoccurs in the parallel case, i.e., when all interfaces move
densities.(Note, however, that foN=4 in finite systems, simultaneoushf23].

density fluctuations could drive the system towards a final

frozen configuration.For N=5, a frozen chain conserving B. Three species

the densities is possible and thhNg=5. Given the kinetics
predicted by the mean-field rate equation approach usuallx
proceeds with dasterrate than the actual kineti¢§], one a
can anticipate that the threshold number of different specie
predicted by the mean-field theory provides an upper boun
for the actualN., N.<5. This is combined with the lower

It is convenient to consider first the simpler parallel dy-
mics where interfaces move ballistically with velocity
£ 1, and annihilate upon collisions. In this well understood
allistic annihilation procesgl9,24—-2§8, a simple combina-
torial calculation(see Sec. IV Cyields the following inter-

bound,N.=5, to yieldN.=5. face density:
For N<5, coarsening occurs and it is quite possible that 1 U ot\ [ 2t—2i
the system develops significant spatial correlations. In such a R(t)= W{ > ( ) ( _ )
case, quantitative predictions of the rate equation theory are 3 =0\ 2i t—I
inaccurate. t—1 .
The cyclic N-species Lotka-Volterra model is imple- " 2t 2t-2i _1) 17)
mented in the following way. We consider a one- i=o\2i+1 t—i '

dimensional lattice of siz&/ with periodic boundary condi-

tions. Each sité of the lattice is in a given stathl; with In the long time limit, the interface concentration decay
N,=A,B,C, ... . In sequential dynamics, we choose ran-R=(6t) *?is much slower than the™* decay suggested
domly a site and then one of its two nearest neighbors. If th®y the rate equatiofd). The decay law governing the inter-
neighbor is a predator of the chosen site, the state of théce density can be simply understood. Consider a finite in-
latter changes to the state of the predator. Otherwise, thigrval of sizeL containing interfaces with initial concentra-
state of the site remains the same. Time is incremented b§jon co. The total number of interfaces N=ciL. If the
1/N after each step. For parallel dynamics, all sites are uptnitial conditions are random, the difference between the
dated simultaneously and change their state if one of theifumber of left and right moving interfaces is roughly
nearest neighbors is their predator. This cellular automatAN=|NR—NL|~\/N. At long times, all minority interfaces
rule has been used i19] and it should be noted that the are eliminated and thus, the interface concentration ap-
dynamics is fully deterministic. Coarsening behavior of theproaches\N/L~ (cy/L)Y2 By identifying the box size with
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the appropriate ballistic length~uvt, the time dependent
interface concentration for an infinite system is found,
R(t)~(co/vot) Y2

The system organizes into large ballistically growing su-
perdomains. Each superdomain contains interfaces moving 1¢®
in the same direction, neighboring superdomains contain in-
terfaces moving in the opposite direction, etc. In addition to
the average size of superdomains, there is an additional |
length scale in the problem corresponding to the distances 10
between two adjacent similar velocity interfaces. We define
these relevant length scales using the following illustrative
configuration:

10 T T

10 1
c
BAABBBCCCCAAABBCCCB, (18) 10° . ‘ ‘
— 10° 10° 10 10°

7

The Cor_reSandmg coarsening exponemsand,[.%, are de- FIG. 1. The concentrations of interfaces as a function of {iime
fined via (/(t))~t* and <_£(t)>~tﬂ7 respectively. For nits of Monte Carlo stepsfor the three-species model with se-
N=3 with parallel dynamics we thus finde=1/2 and  guential dynamics in a log-log plot. A line of slope 3/4 is shown as
B=1. Starting from an initially homogeneous state, the sysx reference. The inset shows the local expone(t} as a function
tem develops a unique spatially organized state which is af 1/int. A limiting value of a—3/4 is plausible.

mosaic of mosaics. Indefinitely growing superdomains con-

tain a growing numbe(L)/(/)~t"? of cyclically arranged We have performed Monte Carlo simulations for 100 re-
domains ABCABCandCBACBA. alizations on a lattice of size $0for times up tot=10F.

We now turn to the complementary case of sequentiakegylts are shown in Fig. 1. The interface concentration de-
dynamics. Interfaces perform a biased random walk and thus,ys algebraicallyRect ™%, with an exponentz=0.79. A

the bgllistic mot.ic_m is now supplementeq by superimposeq arefyl analysis shows that the local slope(t)
diffusion. In addition, two parallel moving interfaces can an- — dginc(t)/dint approaches the asymptotic value3/4. It is
nihilate and give birth to an opposite moving interface. Ithogsible that this finite time effect can be attributed to the
proves useful to consider the continuum version of the modelaompination reactionR+R—L), which is not an annihi-
where interfaces move with velocity vy and —voe With  |51i0n reaction. Nevertheless, a singleinterface inside an
equal probabilities, and have a diffusiviy. To establishthe R 4omain is quickly annihilated by the neardtinterface,

long time behavior waissuméhat the system organizes into 5 therefore recombination is asymptotically equivalent to
domains of right and left moving interfaces. Inside a domaingnnihilation. We expect that @s-o, the coarsening expo-
interfaces moving in the same direction can now annihilatg,an is indeedy = 3/4. '

via a diffusive mechanism, unlike the parallel case. On 14 summarize. the spatial patterns in fiie-3 case con-
slovx'/e.r than ballistic scales, the prob!em reduces to_ diffusiv<=$iSt of superdomains of cyclically arranged domains as in Eq.
annihilation, X+X—J, whereX is eitherR or L, with @ (1) The larger length scale is ballisticZ(t))~t, while the

i i ~ -12 isti . - . . :
density decaying asyi(t)~(Dt) 7. On ballistic scales the  gmgqler length scale is sensitive to the microscopic details of
problem(almos} reduces to the ballistic annihilation process o dynamics: (/(t))~t¥2 for parallel dynamics and

R+L—, with the density decay,(t)~(co/vot)Y? as é/’(t)>~t3’4 for sequential dynamics.

described previously. However, to describe the complet

ballistic-diffusion annihilation, one cannot use the initial

concentratiornc, since it is constantly reduced by diffusive C. Four species

annihilation. Therefore, we replace the initial concentration For the four-species cyclic Lotka-Volterra model, numeri-
Co with the time dependent concentratieg(t), and we  cal simulations indicate that parallel and sequential dynamics

find [29,30 ¢~ (Dv§t) "% which in particular implies are asymptotically equivalent and that the domain structure
‘ is qualitatively similar to the predictions of the sequential
</(t)>~t3/4- (19 rate equationsM (t)<S(t). We use heuristic arguments to

obtain the values of the coarsening exponentnd g, char-
This result is quite striking since separately both annihilatioracterizing the density decay of mobl&(t)~t™ ¢, and static
processes, diffusion-controlled and ballistic-controlled, giveS(t)~t~# interfaces.
the same coarsening exponent 1/2, so one expects that their Given the equivalence of parallel and sequential dynam-
combination does not change the behavior while in fact itics, we restrict ourselves to the simpler former dynamics.
enhances the coarsening exponent to 3/4. The resulting sp#that is the spatial structure in the long time limit? Since
tial structure is similar to the parallel case, Ef8). How- M (t)<S(t), we assume an alternating spatial structure of
ever, the smaller length scale is now a geometric average 6empty” regions (with no more than one moving interfgce
a diffusive and a ballistic scale as follows from EHG9), and “stationary” regions(with many stationary interfaces
while the larger scale remains unchangefi(t))~t. inside any such regionlf the interface densities obey scal-
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(24 \Z 7
<
W 10" b oo 1

10° r 7
&
10° .
t
FIG. 2. Space-time diagram of the interface motion in the four- )
species case with parallel dynamics. 10 10° 162 1(‘)4 1(')e

ing, then the sizes of the empty and the stationary regions '

should be comparable. The typical size of an empty or & Fg 4. The concentrations of the stationary interfaces as a func-
stationary region is therefore of the orderMf *. The typi-  tion of time (MCS) for the four-species model for sequential dy-
cal number of stationary interfaces inside a stationary regioRamics(diamonds and parallel dynamictcircles. The slopes give
is of the order ofS/M. The evolution proceeds as follows: A the exponentsree=0.35 andap,—0.34. A line of slope 1/3 is
moving interface hits the least stationary particle andshown as a reference.
bounces backsinceR+ S—L andS+L—R). Then this in-
terface hits the least stationary particle of the neighboringsubstitutingS(t)t~* andM(t)=t~# into Eq. (20), we get
stationary region, and bounces back again. This “zigzag"the exponent relation
process continues and at some time one of these stationary
regions “melts,” thereby giving birth to a larger empty re- 2B—a=1. (21
gion. If there is a moving particle inside the merging empty
region, the two moving particles quickly annihilate. If there In the next section, we introduce the mutation distribu-
is no such particle, the moving particle continues to elimi-tion, and find an equivalence between the fraction of persis-
nate stationary interfaces. This process is illustrated in Fig. 2ent sites and the static interface density. Using this relation
The typical time r for a stationary region to melt is and a simple solvable example, we will find the exponent
=M~ 1X S/M=S/M?2. This melting timer is also the typi- relation
cal time for annihilation of a moving interface and thus,
a+pB=1. (22
M~——~— —. (20) : :
The two exponent relations therefore imply the values
a=1/3 andB=2/3. We have simulated 100 systems of size
10° 10° up to timest=1CP. The results are shown in Figs. 3 and
4. We have found(t) ot~ %34 R(t)=L(t) <t~ % for paral-
lel dynamics, andS(t)ect™ %35 R(t)=L(t)xt %0 for se-
quential dynamics. We conclude that the simulation results
support the above predictions.
. As in the three-species case there are two relevant grow-
ing length scales. The system organizes into domains of al-
ternating noninteracting species with an average size
(/(t))~t¥3 On the other hand, active interfaces are sepa-
rated by an average distan¢é(t))~t%3, according to the
] following illustration:

M(t)

L

BAACCCAAACCCCAACCAAACCCD. (23
——

10‘6100 [2 |4 I6 4

In any finite lattice, density fluctuations drive the system
FIG. 3. The concentrations of the moving interfaces as a funciowards a final frozen or “poisoned” configuration, i.e., con-
tion of time (MCS) for the four-species cyclic Lotka-Volterra figuration filled by eithe’A andC, or B andD. This poison-

model with sequential dynamigsiiamond$ and with parallel dy-  ing happens when the size of the superdomains becomes of
namics (circles. The slope gives the exponenB.~0.70 and the order of the lattice size. The poisoning time is therefore

Bpa=0.69. A line of slope 2/3 is shown as a reference. proportional toA” %2 for an A-site chain.
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We stress that the three-velocity ballistic annihilation
model, R+L—JJ,R+S—J,S+L—J, has been recently
investigated[26—29, and the symmetric cas&®=L, has
been solved exactly28]. For the special initial condition,
R(0)=L(0)=35(0)/2, a surprisingly similar behavior 10° ]
R(t) ~S(t)~t~?® occurs. It would be interesting to establish
a relationship between this solvable ballistic annihilation
model and the interface motion in the four-species process. SRURE _

10 T T

D. Five species

For the five-species cyclic Lotka-Volterra model, it is 10° .
well known that the system approaches a frozen state
[16,19. The approach towards saturation has not been estab-
lished, though. } ‘

We now present a heuristic argument for estimating the 0.0 10.0 20.0 30.0
concentration decay of the mobile interfaces. Since the den- t
sity of mobile interfaces rapidly decreases while the density . N .
of stationary interfaces remains finite we can ignore colli-. FIG. 5. The concentration of moving interfaces ¥’ in a

. o - linear-log plot for the five-species cyclic Lotka-Volterra model with
sions between mobile interfaces. Thus we should estimate . .

. . I ) sequential dynamics.
the survival probability of a mobile interface in a sea of

stationary ones. There are two reactions in which moving[he fraction of “persistent” A species byAo(t), Bo(t)
0 y 0 y

interfaces survive although they change their type, .

R+S,—L andL+Se—R. Thus, a right moving interface is po(t), etc. are de'fl.r!ed analogously. We can furthe'r general-

long lived in the following environment: ize these probabilities to define, e.@n(t),.the fracpon of
sites that have undergone exactlymutations during the

-+ - SRSRSRSRM S, S, S\ S, - - - (24)  time interval (Ot). We start by analyzing these quantities on

the mean-field level and then describe exact, scaling, and

Clearly, in such configurations the zigzag reaction procesaumerical results in one dimension.

takes place. The moving interface travels to the right during

a timetg~ 1/cqu, eliminates a stationary interface and trav-

els to the left a time of ordertg, eliminates an interface and

travels back to the right, etc. Thus, to eliminatginterfaces, Let us investigate the three-species cyclic Lotka-Volterra

the moving interface should spend a time of orderon the complete graph; the generalization to Mwpecies

t:toﬁi’\‘fli:toNs(Nﬁ 1)/2. Therefore, the number of sta- Case is stralghtfqrward. The rate equations describing the

tionary interfacesNg(t) eliminated by a moving interface mutation distributionA,(t) read

scales with time as\4(t)~+/cougt. Configurations of the

type (24) are encountered with probabilitge™Ns with Ng

the configuration length, and thus, the density of moving _

interfaces exhibits a stretched exponential decay, Azn+1=CAz,—bAg 11, (26)

A. Mean-field theory

Azn=aAg,_1—CAgy,

oc @ CONS \Cougt .

Mit)=e . 9 Azn2=bAsni1—aAgny2
The stretched exponential behavi®5) is expected to
appear for arbitraryN=5. When the number of interfaces with A_;(t)=0. Analogous equations can be written for
exceeds the threshold valud>5, stationary interfaces of B,(t) and C,(t) by cyclic permutations. These rate equa-
“intermediate” types arise, the crossover from initial expo-tions form an infinite set of linear equations with
nential behavior to the asymptotic stretched exponential bea(t),b(t), andc(t) as (time-dependentcoefficients. There-
havior is shifted to larger times and therefore harder to obfore, the general case is hardly tractable analytically since the
serve numerically. For the threshold number of speciesgoefficients, i.e., solutions of Eg&2), are elliptic functions.
however, we have found a convincing agreement betweeWe therefore restrict our attention to the symmetric case
the theoretical prediction of Eq25) and numerical results a=b=c=1/3, and examin®,(t), the total fraction of sites
(see Fig. 3 Finally we note that the actual kineti€85) is  mutated exactly times. The quantity,(t) evolves accord-
slower than the mean-field counterpa yer(t)=<e", due ing to
to spatial correlations.
Ph=Pn_1—Py, (27)
IV. DYNAMICS OF MUTATIONS

Consider a lattice site occupied by some species,Asay with P_;=0 to ensurePy=—P,. In Eq. (27) we absorbed
What is the probability that this site has been occupied by théhe concentration factor 1/3 into the time-scale for conve-
same species during the time intervalt]@,0Otherwise, what nience. Solving (27) subject to the initial condition
is the fraction ofA sites which never “mutated”? We denote P,(0)= 6,9, one finds a Poissonian mutation distribution
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n portional to the average domain siz2d,~(/(t)) "1, since

Pn(t)= nr € g (28) stationary interfaces are absent whéh<3; therefore,
u=ca. ForN=4, however, the density of moving interfaces
This mutation distribution is identical to the one found for is inversely proportional to the average size of superdomains,
the voter mode[13] on the mean-field level. M~(L)"1, implying u= 8.

The distribution is peaked around the average=t, and In the case oN=2, it has been shown that the mutation
the width of the distribution,o, is given by o?=(n?)  distribution obeys scalinpl3]. We assume that this behavior
—(n)=t. In the limits, t—o%, n—c, and h—t)/\t finite,  generally holds when the system coarsens,

P,(t) approaches a scaling form

1 n
1 n—(n)) Pn(t)=—<1>( ) (32

Po(t)= .

29 (n() | (n(0))

The behavior of the scaling functich(z) in the limit of
where the scaling distribution functio®..(z) is Gaussian, small and large argumentsreflects the fraction of persistent
.. (2)=(2m) Y%exp(~2/2), and the index: indicates that and rapidly mutating sites, respectively. Typically, the frac-
the solution on the complete graph corresponds to th&on of persistent sites decays algebraically in time,
infinite-dimensional limit. We also note that the fraction of Po(t)~t~?, with # the persistence exponent. This exponent
persistent sites decreases exponentidy(t) =e . has been studied recently in several contexts such as kinetic

Let the initial state of a site bA, without loss of gener- spin systems with conservative and nonconservative dynam-
ality, then the probability that the stateAsat timet is given  ics and diffusion-reaction systeni82—38. In the N=2
by Ro(t)==,P3,(t). In general, three such autocorrelation case, the scaling function was found to be algebraic,

o

functions ®(z2)~2z7, in the limitz— 0. Assuming this algebraic behav-
ior for N=3 and 4 as well implies the exponent relation
Re()= 2, Pansi() (30) 6= v(y+1). (33

The largez limit describes ultra-active sites. A convenient
way to estimate the fraction of such sites is to consider sites
which make of the order of one mutations per unit time. At
time t, the fraction of these rapidly mutating sites is expo-
nentially suppressed?,(t)=<exp(—t). It is therefore natural
to assume the exponential fordn(z) ~exp(—2°) for the tail
, (31) of the scaling distribution, thereby implying an additional
exponent relationué=1. To summarize, the scaling func-

_ . . . tion underlying the mutation distribution has the following
for k=0,1,2. The structure of the autocorrelation functions 'Slimiting behaviors:

rather simple—an exponential approach to the equilibrium

value R, ()= 1/3 is accompanied by oscillations. The three

autocorrelation functions differ only by a constant phase (I>(z)~[

shift. One can verify that exponential decay occurs for arbi-

trary N, and that temporal modulations occur whek-2. . .
In one dimension, in contrast, oscillations do not appear In Sec. Ill, we obtained the exponep, characterizing

and algebraic rather than exponential decay is observe{ﬂe df?cay of moving interf_aces. The ”_‘“‘a“O” exponent and
Ry(t) — 1/3~t~ 1 [31]. e tail exponent are readily found using the respective ex-

ponent relationsy=1—u and §=1/u. To determined, we
note the equivalence between the fraction of persistent sites
and the fraction of unvisited sites in the interface picture
Mutation dynamics and coarsening dynamics are closely33,37. For N=2, the valued=3/8 has been established
related[13]. For example, the rate of mutation is given by analytically[34]. For N=3, different behaviors were found
the density of moving interfaces. Using similar scaling argu-for parallel and sequential dynamics, and therefore it is nec-
ments, we study asymptotic properties of the mutation distriessary to distinguish between the two cases. As mentioned
bution in the one-dimensional case. above, the parallel case reduces to a two-velocity ballistic
The mutation distribution satisfies the normalization con-annihilation process. The probability that a bond has re-
dition, £,P,=1. Let the average number of mutations bemained uncrossed from the left by right moving interfaces is
(ny==,nP,. Every motion of an interface contributes to an S, (t)~t~*% see Eq.(17). Analogously,S_(t)~t~*? and
increase in the number of mutations in one site, and thus theonsequently Po(t)=S_(t)S,(t)~t™* or =1 follows
mutation rate equals the density of moving interfaces[26]. In the sequential case, we have not been able to deter-
d{n(t))/dt=M(t). In the coarsening casbl<5, we found mine the persistence exponent analytically, and a preliminary
that the moving interface density decays algebraicallynumerical simulation suggests that1 as in the parallel
M(t)~t~#. Therefore, the average number of mutationscase.
grows algebraically(n(t))~t*, with v=1—u. For N=2 For N=4, the number of unvisited sites is equivalent
and 3, the density of moving interfaces decays inversely proasymptotically to the survival probability of a static inter-

correspond to the three possible outcomes at timA if
k=0, C if k=1, andB if k=2. The quantityRy(t) is evalu-
ated from equation(28) using the identitye!+ eft+ et
=33,t%"/(3n)!, with ;=e?>""3, Generally, we find that

1 3 47k
+0p 32 \/:
1+2e 005( 2t + 3

3

Ri(t)=

z¥, z<1,

4
exp(—constxz%), z>1. (39

B. Scaling behavior
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08 ‘ TABLE I. Coarsening and mutation exponents in one dimen-
sion.
N a B v o 0 y
0.6 - .
2 1/2 1/2 2 3/8 -—1/4
3 (paralle) 1/2 1 1/2 2 1 1
g X 3 (sequential 3/4 1 14 4 1 1/3
504 ] 4 U3 23 U3 3 13 0
A 4 (symmetrig 3/8 1/2 1/2 2 3/8 -—1/4
028 -
C. An exactly solvable case
The three-species Lotka-Volterra model with parallel dy-
0.0 namics is equivalent to the exactly solvable two-velocity bal-

0.0 4.0 5.0

listic annihilation[24]. We exploit this equivalence to com-
pute analytically the mutation distribution. A species in a
FIG. 6. The mutation distribution scaling function for a repre- 9iVen site mutates each time it is crossed by an interface. As
sentative case df =4 with sequential dynamics. Simulations of 10 the fraction of persistent sites is equivalent to the fraction of
realizations of a system of size ®ldor time t=10° (circles, uncrossed bonds, the fraction of sites visitetimes equals
t=10" (squarel andt=10" (diamonds. the fraction of bonds crossed exactiytimes by the inter-
faces. In the symmetric case, the initial concentration of
face, Po(t)~S(t), and using the definitions of Sec. lll, we moving interfaces of velocity+ 1 or —1 is 1/3 (interfaces
find =a, i.e., 6=1/3. We now present a heuristic argumentare initially absent with probability 1/3). Interfaces move
supporting the exponent relatig®2). Substituting the previ- ballistically and the system is deterministic, i.e., any late
ously established exponent relations=1—u, u=p8, and  configuration is a unique function of the initial configuration.

n/<n>

6=« in Eq. (33 yields It is also natural to consider integer timesThe distribution
P,(t) for a given site is completely determined by the initial
a=(1-B)(y+1). (35) distribution of the interfaces on thebonds to the left of this

site and on the bonds to the right of this site since further

We now argue thaty=0 and thus Eq(35) reduces to interfaces cannot reach the site in a timerhis 2t initial
a+B=1, i.e., to Eq.(22). We first recall that interfaces in Pond can be mapped onto a random walk with uncorrelated
the four-species case react according B+ S—L, steps of |ength"_'l or zero since interfaces are |n|t|a”y un-
L+S—R, andR+L—. In the long time limit, the zigzag Correlated. We se§,=0 and defineS; recursively via
reactionsR+S—L andL +S—R dominate over the annihi- Si=Si-1tvi, i=1,...t, wherev;=*1 is the velocity of
lation reactionR+L— . We therefore consider a simpler the ith interface to the right of the considered site and
solvable case where a single mobile interface is placed in &i=0 if the interface is absent. Similarly,S_;
regular sea of static interfaces. This interface moves one site S-(-1)~v-i, i=1,...t. Thus, one has two random
to the right, two to the left, three to the right, etc. In a timewalks  starting  from  the  origin, i(S) and
interval (0f), this interface eliminatedl,~t*? static inter- (—1,S-),i=0,... t, with i being a timelike variable and
faces. The origin is visited\g times, site 1 is visited S the displacement. The crucial point is that the number of
N—1, site—1 is visitedNg— 2, etc. This implies that the interfaces crossing the target site at the origin during the time
mutation distribution is P,(t)=(n)"®(n/(n)), with interval (0t) is given by the absolute value of the minimum
(nN)~Ng and ®(z)=1 for z<1 and ®(z)=0 for z>1. of the combined random walki,§),i=—t,...t (see
Hence, ignoring the annihilation reaction leadgyte 0. This ~ Fig. 7).
approximation is inappropriate for predicting the tail of Indeed, the minimum attained by the random walker on
®(z) which is sensitive to annihilation of the moving inter- the left(right) gives the excess of interfaces coming from the
faces. However, in the smalllimit the annihilation process l€ft (right) not destroyed by other leftight) interfaces that
should be negligible, and thug=0. would cross the considered site. Th&s,(t) is equal to the

Monte Carlo simulations confirm the anticipated scalingProbability that the minimum of two independersteps ran-
behavior of Eq(32). In Fig. 6, the scaled mutation distribu- dom walks starting a,=0 is —n. We have
tion function(n)P,(t) is plotted versus the scaled mutation n
numbern/{n), for a representative cad¢=4 at different _ _ 2
timest=10%10"1C. It is seen that the plots are time inde- Pa(t 2Q"(t)g'o Qu) = Qu(V)%, (39
pendent. Furthermore, the scaling function approaches a fi-
nite nonzero value in the limit of smat=n/(n), in agree- where Qy(t) is the probability that &-steps random walk
ment with the scaling predictions;,=0. starting at the origin has a minimum atn. The sum in the

In summary, coarsening dynamics can be characterized byght-hand side of Eq(36) gives the probability that the
a set of exponenta, 3,7y, d,v,6. Table | gives the values of other walker has its minimum atk, with k<n, the factor 2
these exponents, which are believed to be exact, although foeflects the fact that there are two random walkers. We sub-
some of the exponents only numerical evidence exists so fatract the last quantitf,(t)? which has been counted twice
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..ACCACCACBBBCABAACBABACBCCCACESGB... FIG. 7. Mapping of the initial distribution of
7 e ~ M g WV the species to a random walk. The number of

mutations undergone by the center site is equal to
absolute minimum reached by the corresponding
random walk.

R e T -

in the summation. In particulaPy(t) = Qq(t)?, in agreement The corresponding values of exponenmts u=1/2, §=2,
with the argument of the previous section. Also, the densityy=1, andy=1, are in agreement with Table I.
of moving interfaces can be expressed w3, as
R(t) =Qq(2t)/3, leading to Eq(17).
Q,(t) is given by[39] V. EXTENSIONS
~ _ The cyclic lattice Lotka-Volterra model can be general-
Qn(t)=Qnx(t) +Qp1(1), (37 ized in a number of directions. A natural generalization is to
higher dimensions. The two-dimensional case seems to be
with especially interesting from the point of view of mathematical
biology. In the exactly solvabld =2 caseg(the voter mode)|
t! coarsening occurs fai<2 [12], for the marginal dimension
) . (38) d=2, the density of interfacial bonds decays logarithmically,
|

t—n—i
2

t+n—i
2

1t7n

Q) =512
T ! c(t)~1/Int [15], while for d>2, no coarsening occurs and

the system reaches a reactive steady state. In two dimen-
. : - . . .Sions, our numerical simulations indicate that there is no
The ””.‘0””“?' coefﬂmgnt in the above sum is set to zero .'fcoarsening, i.e., the density of reacting interfaces saturates at
(t—n—.l)/2 IS not anllnteger. T0~determ|ng the asymptoticy, finite value. For sufficiently large number of species the
behavior ofP,(t) we first compute,(t). Making use of the  fixation is expected but we could not determine the threshold

Gaussian approximation for the trinomial coefficients Weyalue, at least up tdi=10 we have seen no evidence for

find Qp(t) = (3/4mt) Y%exp(—3n%/4t), and then fixation.
Below, we mention a few other possible generalizations
12 n an2a and outline some of their attendant consequences.
Pa(t)=\/— Erf e, (39
mt V4t/3

A. Asymmetric initial distribution

with Erf(2)=2/\/m[Zdue " The existence of an exact So-  We consider uncorrelated initial conditions with unequal
lution is very useful for testing the validity of the scaling species densities. Even in the two-species situation, the be-
assumptions. Indeed, E(9) agrees with the general scaling havior is surprisingly nontrivial. In particular, the densities
form of Eq.(32), and the corresponding scaling function is of both species remain constant; the persistence exponent
0 decreases from 1 to O as the initial concentratigrin-
4 > creases from 0 to 113,34, with 6,=6g=3/8 for equal
®(2)= I e “Erf(2), (40 initial concentrationg34].

Turn now to the three-species case and consider first par-
allel dynamics. In general, the densities of right and left
moving interfaces are equal as well. However, the initial in-
terface distribution is correlated in the general asymmetric
case and therefore the equivalence to ballistic annihilation is
less useful. We find numerically that the interface density
(41) exhibits the same decay as in the symmetric case,

c(t)~t~Y2 To illustrate this property let us consider the

with the scaling variable=n/+/4t/3. The limiting behavior
of this scaling function agrees with the predictions of Eq.
(34) as well,

Z, z<1,

P(7)~
(2) e’zz, z>1.
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t FIG. 9. The species densities as a function of tifhkCS) for
the four-species cyclic model with unequal initial densities

FIG. 8. The species densities vg for the three-species cyclic (2,=0.997 andby= cy=do=0.001).

model with unequal initial densities§=0.9 andby=cy,=0.05).
density of the moving interfaces decay exponentially and,
following example where the initial densities are therefore, the system quickly reaches a frozen state where
ag=1—2€ andby=cy=¢, with e—0. Initially, the A spe-  @sozen= 1/4 andCs,er= 3/4 (see Fig. 9. These constants can
cies dominates over the two minority species. While isolatede simply understood. Consider only the initial distribution
B's are immediately eaten by the neighboritig, C species 0f C and D. Regions between a pair success@e(such
domain arise and soon th@'s dominate the system. How- regions are present with probability 1/4ill be filled by
ever, the ultimate fate of the system is determined by pairs of’s. Regions between a pair &f as well as regions between
nearest neighbors which are dissimilar minorities, iBG @ C and aD (present initially with probability 3/4will be-
and CB. Initially, these interfaces are present with densitycomeC domains.
€?; clearly, they are long-lived right and left moving inter-
faces. These interfaces are uncorrelated and thus their den-

H —-1/2
sity decays as ™. . . . Let us now consider thal-species Lotka-Volterra model
We also performed numerical simulations for the three-

) lic Lotka-\Volt del with tial d with a symmetriceating rule, namely, we assume that the
SPecies cyclic Lotka-vollerra mode) with sequential dynam- g, species can eat species-1modN as well as

ics, and the interface decay(t) ~t % was found similarto .
the symmetric case. The interface concentration does n(IJtJr LmoaN.

rovige a complete . icture of the spatial distribution. The ForN=3, all different species can eat each other without
b b P P ) any restriction. This model is thus equivalent to the three-

main difference with the three-opinions voter model is that inions voter modefalso called the stepping stone madel

the species densities are not conserved, and the exhibitofﬁp
morepinterestin behavidsee Fig. 8. It is 'ossible tgat the In one dimension, the concentration of interfaces is known to
9 9. & P decay as~'2 see, e.g.[13].

limit where one species initially occupies a vanishingly small For N=4, the situation is more interesting since, 4y,

volume fraction is tractable analytlcally, S|mllar to recent can eat botf8 andD but cannot ea€. Thus this model is
studies[ 13,35 of Glauber and Kawasaki dynamics. . N
different from the four-opinions voter model or the four-

Consider now the four-species model. Numerically, Wespecies cyclic Lotka-Volterra model. There are moving in-
observed a rich variety of different kinetic behaviors. Rathererfacesvl between species andB, B andC, C andD, and

than giving a complete description, we restrict ourselves to andA, and stationary interfaceS between specied and

few remark n simulation results and heuristic arguz . o ) X
ew remarks based on simulation results and heuristic arg and specie8 andD. Each moving interface is performing

ments. First, th i nsiti ren nservi loball L .
ents. First, the species densities are not conserved globa 'random walk. When a moving interface meets a stationary

in contrast with the symmetric initial conditions or the ordi- the latter is eliminatedyl + S M: if ¢ S0
nary four-opinions voter model. Furthermore, if the initial one, the fatter 1s eliminate — M, 1T wo moving In-

densities are different, the system can fixate and thus reacht rfaces meet, they either produce a s'tat|onary interface
state such a8AACCCACC Avhere the evolution is frozen. ™ ~M—S or annihilateM + M —(J according to the state

In order to illustrate the rich behavior of this system we Of the underlying species. On the mean-field level, this pro-
consider the following initial conditionsag=1—3¢ and cess is described by the rate equations

by=co=dy=€ with e—0. Eaten by the dominamA’s and M=—4M2 S=MZ2—SM 42)
with almost no preyB’s quickly disappear from the system. ' '

The D’s are growing because they have much food and alEquations (42), supplemented by the initial conditions
most no predators. After a while, thé’s also have some M (0)=1/2 andS(0)=1/4, are solved to yield
food and no predators and they overtakelhie. TheA's are

eaten first but once th&’s dominate théD’s, A’s have fewer M () = 1 S(t) = 11
and fewer predators. The concentratiorDokpecies and the 2+4t° 12 (1+2t)¥* 3+6t’

B. Symmetric rule

(43
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. TheN=5 case with symmetric eating rules can be easily
analyzed on the level of the rate equations. We omit the
details as the analysis is similar to the one presented in Sec.
Il D for the cyclic model. The conclusion is similar as well,
namely, the system approaches a frozen state consisting of
noninteracting domains. Arguing as in the cyclic case we
conclude that the threshold number of species predicted by
the mean-field rate equation approach is exdkt=5, in
agreement with our numerical simulations.

We also found that the rate equation approach does not
provide a correct description of the decay of the mobile in-
10° + ' ] terfaces:M yer(t)<e !, while in the actual procesM (t)

«e~ " with n close to 1/4. An upper bound,<1/3, can be
established by comparing to the trapping process,
s | i b ‘ M +T—T [40]. The survival probabilityo(t) for a particle
diffusing in a sea of immobile traps;(t)=exp(t'%) [40],

t provides a lower bound for our original problem,
M(t)=o(t).

M@, St

-
(=]

0.015

FIG. 10. The concentrations of stationddiamond$ and mov-
ing (circles interfaces as a function of tim@MCS) for the four-
species model with a symmetric sequential dynamics. Lines of
slope 1/2 and 3/8 are shown as references. The insert shows Sgo far we have studied popu|ation dynamics Occurring on
t%%5(t) as a function ot~ *® where a straight line is expected. g |attice. Although similar descriptions have been used in
_ _ ) , U4 several other studidg—11], the diffusion-reaction equation
implying the existence of two scaleg/(t))~t"" and  approach is more populdd,3,4. It is therefore useful to
(L(1))~t. ) ] establish a relationship between the two approaches.

Fortunately, an exact analysis of the four-species Lotka- Tq this end, consider a three-species system with particles
Volterra model with the symmetric eating rule is possible.moving diffusively and evolving according to the reaction
Moving interfaces do not feel the stationary ones and theycheme (1), supplemented by reproduction and self-
are undergoing diffusive annihilation. As a result, their con-regulation. On the level of a diffusion-reaction approach, this

centration decays according M (t)~t~*2 Following the  process is described by the following partial differential
discussion in the previous section, the fraction of stationaryquations:

interfaces surviving from the beginning is proportional as-

C. Diffusion-reaction description: Cyclic models

ymptotically to the fraction of sites which have not been a;=ayta(l—a)+kalb—c),

visited by mobile interfaces up to timet,

S(t)~ Po(t)~t %8 [34]. We should also take into account by=byy+b(1—b)+kb(c—a), (46)
creation of stationary interfaces by the annihilation of mov-

ing interfaces. This process produces new stationary inter- Ci=CxxtC(1—c)+kc(a—b).

faces with rate of the order dM/dt so the density of sta-

tionary interfaces satisfies the rate equation In these equationg=a(x,t), b=b(x,t), andc=c(x,t) de-

note the corresponding densities at poxton the line;
dS dP, dM a(1—a) is the Lotka term describing reproduction and self-
FT TR TR (44)  regulation; the diffusion constant and the growth rates of

each species are set equal to unity, and the conktamta-

Combining Eq.(44) with Po(t)~t~ 38 andM(t)~t Y2 we  Sures the strength of the competition between species.

find that interfaces which survive from the beginning provide ~For noninteracting speciek=0, and Eqgs(46) decouple

the dominant contribution while those created in the procest the well-known single-species Fisher-Kolmogorov equa-
M+M—S contribute only to a correction of the order ONS [4,5]. This equation has two stationary solutions,
{18 a=0 anda=1; the former is unstable while the latter is

stable so any initial distribution approaches toward it. Start-
S(t)~t ¥ 1+0(t18]. (45) ing from an initial density close to stable equilibrium for

x<<0 and to unstable equilibrium for=0, a wave profile is
Thus a two-scale structure of the ty(#8) emerges with the formed and moves into the unstable regieh5,41. The
average lengths(/(t))~t%® and (£(t))~tY2 The expo- width of the front is finite as a result of the competition
nents for the four-species Lotka-Volterra with symmetricbetween diffusion which widens the front and nonlinearity
rules are summarized in Table |. These asymptotic resulteshich sharpens the front.
agree only qualitatively with the rate equations predictions. Consider now the case of interacting specles0. The
Simulation results are in an excellent agreement with thesmitial dynamics is outside the scope of a theoretical treat-
predictionsM (t) ~t~ %0 andS(t) ~t %% (see Fig. 1D Re-  ment and should be investigated, e.g., numerically solely on
fined analysis which makes use of the expected correction dhe basis of Eq946). However, as the coarsening proceeds,
the orderO(t~®) enables a better estimate for the decay ofsingle-species domains form. Inside, say,Aadomain, the
stationary interfaces, namelg(t)~t =237, density of A species is almost at stable equilibrium,
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a(x,t)=1, while the densities dB andC species are negli- absorbing boundaries. We employ a quasistatic approxima-
gible. In the boundary layer between, say, Anand aB  tion, i.e., we neglect time derivatives and perform a station-
domains, the density & species is negligible. Domain sizes ary analysis in a domain of fixed size, and then make use of
grow while the width of boundary layer remains finite. those results to determine tf®ow) motion of the interfaces.
Therefore, in the long time limit one can treat boundary lay-Inside, say, anA domain the densitya(x) satisfies

ers as(sharp interfaces which are expected to move intoa”+a(1—a)=0, which should be solved on the interval
“unstable” domain. (O,L) subject to the boundary conditiorsg§0)=a(L)=0.

To determine the velocity of the interface and the den- The size of the domairi,, is assumed to be large compared
sity profiles we employ a well-known procedy&41]. Con-  to the width of the interface, i.el,>1. In this limit, the flux
sider an interface between, say, Ardomain to the left and of A species through the interface is equal [43]

a B domain to the right. We look for a wavelike solution, F(L)=(1/y/3)—constxe . Clearly, if we have neighbor-
ing L, domain and_, domain, then the smallest of the two
a(x,t)=a(¢), b(x,t)=b(¢§), &=x-vt. (47  domains shrinks while the largest grows, and the interface
moves with velocityF(L,) —F(L,)xe “2—e ‘1. Thus the

Substituting(47) into Egs.(46) we arrive at a pair of ordi- average size grows according to

nary differential equations for the density profile&f) and

b(&). To determine the interface velocity, let us consider the d

densities far from the interfac&€0), say foré>1. In this a(L)ocexp(—(L)), (49
regiona(§)<<1,b(£)=1, and equation foa(¢) simplifies to
a”"+va'+(1+k)a=0, wherea’ =da/d¢, etc. By inserting
an expzonential solutiora(§)~e‘“§., iqto this equation WE  still takes place, but it is logarithmically slow.

get A —v.)\+(1+k)=O. I.n prmmple any velocity Moreover, the determination of the complete domain size
V=0 in, With v yin=2V1+K, is possible. This resembles the yisiribution can be readily performed, at least numerically.
situation with the Fisher-Kolmogorov equatigh,5]. AC-  ciearly, in the late stage all sizes are large; 1. Thus, only
cording to the “pattern selection principle[4,5], the mini- the smallest domain shrinks and the two neighboring do-
mum velocity is in fact realized for most initial conditions. ..o grow while other domains hardly move at all. This

Th? pattern selection phrincip:]e istaeoremfor the Fisher-  oovides an extremal algorithn(i) The smallest domain
Kolmogorov equatioriwhere the precise description of nec- | " "{dentified: (i) if the nearest domaind., and L,

essary initial conditions is knowri41] while for many other s similar species, both interfaces are removed and a
reaction-diffusion equations the pattern selection principleyymain of length_ , + L ..+ L, is formed:(iii ) if the nearest

has been verified numericaligh,5]. domains contaimissimilar species, the two interfaces merge

ThL.’S’ for_the three-spe_cies cyclic Lotka-\_/olterr_a model inand form a new interface at the midpoint, and thus domains
one dimension we established an asymptotic equivalence bgf sizeL,+L,/2 andL,+L /2 are formed. This process

tween the dlffu3|on—rea_ct|on gpproach and the. Iattlcg ONEs identical to the three-state Potts model with extremal dy-
with the parallel dynamics. Given that the density of Inter'namics[S.G]. Similar one-dimensional models with extremal

<172 . ;
faces depay; as ~*, one can anticipate the same be.hav'ordynamics have been investigated in a number of recent stud-
for the diffusion-reaction model. This result may be difficult ;¢ [44-47

to observe directly from numerical integration of the nonlin- Thus, in the symmetric case the reaction-diffusion ap-

ear partial differential equation§l6), and establishing the -1 provides very different results compared to the lattice

complete relationship between lattice and diffusion-reactiorﬁrOCess and thextremaldynamics provides an effective way
approaches remains a challenging task. to analyze the long time behavior.

which is solved to yieldL)~Int. We see that coarsening

D. Diffusion-reaction description: Symmetric models V1. DISCUSSION

Consider the three-specisymmetricLotka-Volterra on ) . , ,
the level of the diffusion-reaction description. Rate equations W€ investigated one-dimensional Lotka-Volterra systems
like Egs.(46) are useless in this case since they do not con@nd found that they coarsen when the number of species is
tain terms describing interactions among species. Neverthgufficiently small,N<4. Typically, coarsening systems ex-
less it proves useful to consider a similar symmetric systenfiiit dynamical scaling with a single scglé8]. When scal-

where interacting species mutually annihilate upon collisionin@ holds, analysis of the system is greatly simplified, e.g.,

The governing equations read the single scale grows as a power lgw(t))~t*, with the
exponenta independent of many details of the dynamics,
a;=ay,t+a(l—a)—ka(b+c), usually even independent of the spatial dimendié8]. In
contrast, for the Lotka-Volterra models we found that the
b;=by+b(1—b)—kb(c+a), (48)  coarseninglependn the details of the dynamics. There are
two characteristic length scales: the average length of the
Ci=Cy+Cc(1—c)—kc(a+b). single-species domaing/(t))~t®, and the average length

of superdomains{L(t))~t?. Precise definition of superdo-
We again restrict ourselves to the late stages where mains depends on the number of spedies-or N=3 inter-
well-developed domain structure has already been formethces between neighboring domains move ballistically and
[42,43. To simplify the analysis further we assume that thesuperdomains are formed by strings of interfaces moving in
competition is strongk— o, so neighboring domains act as the same direction; foN=4, neighboring domains are typi-
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cally noninteracting, and superdomains are separated by ac- Finally, we note that presence of only two length scales
tive interfaces. The length scale of the single-species doexemplifies the mildest violation of classical single-size scal-
mains should also be considered carefully. Defining theng. Generally, if scaling is violated one expects the appear-
moments of  the domain size distribution, ance of an infinite number of independent scales, i.e., multi-
/() =(/"(1))* one observes a variety of different scales.scaling [49,55. Similar two-length scaling has been

For the three-species model with parallel dynamics, one canbserved in the simplest one-dimensional system with vector

show analytically{31] that /() remain finite whem<3b Ofdelr parameter, n'z;]l_rre.ly, in.tL)éY mtc)).deloﬁl'# and in tc?e
and /() ~t1-12 whenn>1. We have argued31] that Sngle-species anni ilation with combined diffusive and con-

. vective transpor{30]. Indications of the three-length dy-
only the extreme scales, the ballistic one and the scal por(30] d y

NN ) fiamical scaling have been reported in the context of coars-
O(1) characterizing initial data are fundamental while Otherening[SS] and chemical kineticis6,6].

scales, including the average domain length
/1(t)=(/(t))~\l, arise as a result of competition between
these extreme scales. It is quite possible that similar behavior VIl. SUMMARY

underlies the four-species model as well. : : .
Dimensional analysis provides additional insight into the. In this study, we addressed the dynamics of competitive

existence of more than one scale. Consider for simplicit jmmobile species forming a cyclic food chain. We first ex-
arallel dynamics, where the releva.nt arameters are &e ir{?_mined a cyclic model with asymmetric rules and symmetric
pare y ’ . ; P : initial conditions and have observed a drastic difference be-
tial interface concentrationy, the interface velocity,, and

. . _ tween the two extremes, corresponding to the complete
time t. There are only twq mdepende_nt length scalgs, graph(“infinite-dimensional”) and to one-dimensional sub-
anduv,t, and using dimensional analysis one expects

strates. In the latter case, spatial inhomogeneities develop,
and the resulting kinetic behavior is very sensitive to the
(I(t))=vt(couet), (L(t))=vtW(couet). (50 number of species. For a sufficiently small number of spe-
cies, the system coarsens and is described by a set of expo-
If simple scaling holds, the lengtty * set by the initial con- NeNts summarized in Table I. These exponelefsendon the
ditions should be irrelevant asymptotically. Thus, the scalin?umber of species and on the type of dynanijarallel or
functionsy(z) and¥ (z) should approach constant values asSeduential Thus, to describe coarsening in systems with
2= cougt— e implying {1(t))~(L£(t))~wvt. In contrast, for nqnconservanveiy_namms it is necessary to specify the de-
the three-species Lotka-Volterra model we found!@ils of the dynamics. _
W(z)~z Y2 when z—=. For the four-species Lotka- Thg time Q|str|but|on of the number of mqtatlons has also
Volterra model both scaling functions exhibit asymptotic be-2€€n investigated and we presented scaling arguments as
havior different from the naive scaling predictions, well as an exact rgsult for a pa_rt|cular case. We a_lso tr_eated
1//(z)~z*2’3 andq,(z)wzle_ For the Lotka-Volterra model Symmetric interaction rules. This system is especially inter-

with symmetric eating rule interfaces diffuse and thus thefSting whenN=4 as it provides a clear realization of the
relevant length scales arecgl and Dt. Here recently introduced notion of “persistent” spins in terms of

_ 2 s 2 the stationary interfaces. Finally, we discussed a relationship
ﬂg?}ﬂﬁé?ﬁaﬁl st?Sgturi (:rzm_plféztz‘ficzoa’tg 'aszvﬁ]zn to the alternative reaction-diffusion equations description.

Thus simple dvnamical scaling is violated for one- While for the cyclic version both the lattice and the reaction-
: : P y g Is vio .~ diffusion approaches have been found to be closely related,
dimensional Lotka-Volterra models. Violations of scaling

have been reported in a few recent studies of coarsenin ifor the symmetric version very different results have

PO : 9 Qmerged and a relationship with extremal dynamics has been
one- and two-dimensional systerf¥8-54. To the best of .

. . R established.

our knowledge, however, in previous work violations of dy-
namical scaling have been seen only in systems with vector We thank S. Ispolatov, G. Mazenko, J. Percus, and S.
and more complex order parameter. In contrast, LotkaRedner for discussions. L. F. was supported by the Swiss
Volterra models can be interpreted as systems wathlar NSF, P. L. K. was supported in part by a grant from NSF,
order parameter, although the number of equilibrium stateg. B. was supported in part by NSF Grant No. 92-08527, and
N generally exceeds two, the characteristic value for Isingby the MRSEC Program of the NSF under Grant No. DMR-
type systems. 9400379.
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