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We study velocity statistics of electrostatically driven granular gases. For two different experi-
ments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity
distribution is non-Maxwellian, and its high-energy tail is exponential, P (v) ∼ exp (−|v|). This
behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a
fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range
interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are
sensitive to the fluid environment and to the form of the particle interaction.
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Despite extensive recent studies, a fundamental under-
standing of the dynamics of granular materials still poses
a challenge for physicists and engineers [1–3]. Remark-
ably, even dilute granular gases substantially differ from
molecular gases. A series of recent experiments on granu-
lar gases, driven either mechanically [4–10] or electrostat-
ically [11], reveals that the particle velocity distribution
significantly deviates from the Maxwell-Boltzmann dis-
tribution law. In particular, the high-energy tail of the
velocity distribution P (v) is a stretched exponential

P (v) ∼ exp
(

−|v/v0|ξ
)

(1)

with v0 the typical velocity. The exponent ξ = 3/2 is
observed for certain vigorous driving experiments [4, 11].
Non-Maxwellian velocity distributions were also observed
in experiments with a variety of geometries and driving
conditions [5–10] and in numerical simulations [12–18].
Energy dissipation is responsible for this behavior and
this can be understood using a simple model: a thermally
driven gas of inelastic hard spheres. For high-energy par-
ticles, there is a balance between loss due to inelastic col-
lisions and gain due to the thermal driving. For hard-core
interactions, kinetic theory predicts (1) with ξ = 3/2, in
agreement with vigorous shaking experiments [19]. How-
ever, interactions between particles often do not reduce
to simple hard-core exclusion.

In this Letter, we study the effects of fluid environ-
ment and particle interactions on electrostatically driven
granular gases. We perform experiments with particles
immersed in a viscous fluid and with magnetic particles
in air subjected to an external magnetic field. We find
that the high-energy tail of the velocity distribution is
characterized by (1) but with the exponent ξ = 1. We
generalize the kinetic theory to situations with viscous
damping and with long-range interactions and find that
the experimental results are in-line with the kinetic the-
ory predictions. We conclude that velocity statistics in
granular gases depend sensitively on the environment and

on the form of the particle interaction.

Our experimental setup is similar to that in Ref. [20–
22], see Inset to Fig. 1. The particles are placed be-
tween the plates of a large capacitor that is energized
by a constant (dc) or alternating (ac) electric field E =
E0 cos(2πft). To provide optical access to the cell, the
capacitor plates were made of glass with a clear conduc-
tive coating. We used 11 × 11 cm capacitor plates with
a spacing of 1.5 mm (big cell) or 4 cm diameter by 1.5
mm cell (small cell). The particles are 165 µm diameter
non-magnetic bronze spheres or 90 µm magnetic nickel
spheres. The field amplitude E0 varied from 0 to 10
kV/cm and the frequencies f were between 0 and 120 Hz.
The total number of particles in the cell is on the order
106. To control the magnetic interactions, the cell was
placed inside a large 30 cm electromagnetic coil capable
of creating dc/ac magnetic field H up to 80 Oe. The cell
can be filled with non-polar dielectric fluid (toluene) to
introduce viscous damping. The electro-cell works as fol-
lows: conducting particles acquire a surface charge when
they are in contact with the capacitor plate. If the mag-
nitude of the electric field exceeds gravity, particles travel
upwards, recharge upon contact and then fall down. This
process repeats in a cyclic manner. By applying ac elec-
tric field and adjusting its frequency f , one controls the
vertical extent of particles motion by effectively turning
them back before they collide with the upper plate, mak-
ing the system effectively two-dimensional.

We extracted horizontal particle velocities using high-
speed videomicroscopy. Images were obtained in trans-
mitted light at a rate up to 2,000 frames per second from
a camera mounted to a long focal distance microscope.
Particle positions were determined to sub-pixel resolu-
tion. Inter-particle and particle-boundary collisions that
introduce sudden changes in momenta were filtered out
in a manner similar to Ref. [5]. An ensemble average
for each of the velocity distributions was obtained from
about 5 · 106 data points.
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FIG. 1: Velocity distribution functions for particles immersed
in fluid. The data are for 165 µm bronze particles immersed in
fluid (toluene) at frequencies f = 0, 50, 90, 120 Hz and applied
voltage U = 950V. Corresponding rms velocities vrms = 1.68,
1.27, 0.75, 0.70 cm/s. Dashed line shows best fit to pure
exponential distribution P (v) ∼ exp(−|v|/v0) for f = 90 Hz,
and solid line shows theoretical result from Eq. (2) with η =
0.1. Inset: Schematics of the experimental apparatus.

We performed two sets of experiments: (i) electro-
statically driven non-magnetic particles in viscous fluid;
(ii) electrostatically driven magnetic particles in air sub-
jected to external magnetic field. Some experiments were
also performed with magnetic particles in fluid. Although
the origin of the particle interaction is very different, both
systems happen to show somewhat similar behavior: ex-
ponential asymptotic velocity statistics. For the fluid
system, the exponential behavior results mostly from the
dominant viscous drag. However, the effects of hydrody-
namic dipole-dipole interaction between moving particles
in fluid are of certain importance: the hydrodynamic in-
teraction between particles become comparable with the
viscous drag if the particles are close enough or in contact
[23]. This interaction has consequence for high velocity
tail, see discussion below. The ratio of viscous drag force
Fd to the gravity force Fg at rms velocity in toluene is
about 0.2-0.3 and in air is less then 0.007. Thus, viscous
drag effects are obviously dominant in toluene. For the
magnetic system the exponential behavior is attributed
to dominant long-range dipole interaction since the air
drag is negligible. Simple estimates show that the mag-
netic dipole forces between particles dominate gravity if
the distance is smaller than 3 particles diameters. Thus,
due to remnant magnetization of the particles magnetic
interaction is dominant even for H = 0.

Representative results for the fluid system are shown
in Fig. 1. Pure toluene was used in most experi-
ments. Further experiments were performed using a
toluene/polysterene mixture in order to control the vis-
cosity of the solution, but no qualitative differences were
found. Throughout this Letter, we analyze the distribu-
tion of the horizontal velocity components, P (v), with
v ≡ vx, vy. The velocity is normalized such that the
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FIG. 2: Velocity distributions for magnetic particles. The
data corresponds to 90 µm nickel spheres for dc and ac (f = 90
Hz) electric field, U = 1000V in 11×11 cm cell, in dc magnetic
field. Corresponding rms velocities vrms for f = 0 (dc) are 1.9
cm/s (H = 44 Oe) and 2.53 cm/s (H = 44 Oe), and for f = 90
Hz vrms = 3.0, 2.12, 2.34 for H = 0, 44, 56 Oe. Data for a small
3 cm cell is also shown for comparison. Exponential decay is
indicated by straight line as a reference.

root-mean-square (rms) velocity equals one, 〈v2〉 = 1,
and of course, the velocity distributions are symmetric,
P (v) = P (−v). As shown in Fig. 1, the velocity dis-
tributions are all notably different than the Maxwellian
distribution. Moreover, the best fit to Eq. (1) gives the
value ξ = 1 in a wide range of parameters (driving ampli-
tude and frequency). Remarkably, the velocity distribu-
tions for fluid-filled cells are different from those obtained
for air-filled cells (where viscous drag is negligible) with
ξ = 3/2, other parameters the same [11].

Experiments with magnetic interactions were per-
formed using nickel magnetic microparticles with an av-
erage size of about 90µm (Alfa Aesar Company). The
magnetic moment per particle at 80 Oe is 1 · 10−5 emu;
the saturated magnetic moment is 2 · 10−4 emu per par-
ticle and the saturation field is about 4 kOe. A vertically
oriented external magnetic field was applied in order to
control the magnetic interactions: since the particles are
multi-domain, and nickel is a soft magnetic material, the
applied field can effectively increase the particle’s mag-
netic moment. The corresponding velocity distributions
are shown in Fig. 2. The magnetic field systematically
widens the velocity distribution and it enhances the ex-
ponential asymptotic decay of P (v) at the high veloci-
ties. This observation is consistent with the fact that the
applied magnetic field enhances the dipole-dipole mag-
netic interaction due to the magnetization of the parti-
cles. Comparing the fluid and the magnetic systems, we
note that the velocity distributions have different cores,
but the tails are exponential in both cases.

In the course of the measurements we noticed that fi-
nite size effects have a strong influence on the tail of P (v).
We performed a number of measurements using a 4 cm
diameter cell, and about 3,000 particles. At the same
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conditions, the velocity distribution in the larger cell has
a more pronounced exponential tail (see Fig. 2).

We also carried out several experiments combining
features of the two systems using magnetic particles in
toluene solution, and obtained results consistent with the
rest of our observations: non-Maxwellian velocity distri-
butions with an exponential tail. Compared with pure
magnetic interactions results, the range of exponential
behavior for the tail becomes even more extended.

We now compare the experimental results with the pre-
dictions of kinetic theory, the standard framework for de-
scribing granular gases. This requires generalization of
(1) to situations with long-range interactions. For par-
ticles interacting via the potential U(r) ∼ r−σ, r is the
interparticle distance, the collision rate K grows alge-
braically with the normal component of velocity differ-
ence ∆v, K ∝ (∆v)λ with λ = 1− 2 d−1

σ
, and d is the di-

mension of space [24]. Hard-spheres, λ = 1, model gran-
ular particles with hard-core (σ ≡ ∞) interactions while
Maxwell molecules [25], λ = 0, model granular particles
with a specific dipole interaction. In two-dimensions, rel-
evant to our experiments, the collision rate effectively be-
comes independent on the relative velocity when σ = 2.

First consider magnetic particles. To analyze the
high-energy tail, we make the standard assumption that
forcing is thermal. For energetic particles, gains due
to collisions are negligible and losses due to collisions
are balanced by the forcing. The high-energy tail of
the velocity distribution is governed by this balance,
d2P (v)/d2v ∝ K(v)P (v) ∝ vλP (v) [27]. Consequently,
the velocity distribution decays as a stretched exponen-
tial (1) with ξ = 1+λ/2. In general, the velocity statistics
are non-Maxwellian and the tails are over-populated with
respect to a Maxwellian distribution. The upper limit,
ξ = 3/2, is realized for hard-spheres, and pure exponen-
tial behavior, ξ = 1, occurs for Maxwell molecules. For
magnetic dipole interactions one has σ = 2. In this case,
in two dimensions the kinetic theory predicts a simple
exponential tail, ξ = 1.

In the following, we consider a representative data set
for the fluid system (120 Hz) and for the magnetic system
(44 Oe, 90 Hz). We display a single set because variations
in P (v) among the different experimental conditions are
relatively small: the kurtosis κ ≡ 〈v4〉/〈v2〉2 varies by
less than 5% for the different data sets.

For the fluid system, the velocity distribution is very
close to a pure exponential, as shown in Fig. 1, and fur-
thermore, the kurtosis κ = 6.2 ± 0.2 is within 3% of the
value corresponding to a pure exponential distribution
κ = 6. Viscous damping is responsible for this behavior
and the nearly exponential distribution is consistent with
the damping process v → ηv suggested by van Zon et al
[16]. This mimics viscous damping because vn = v0η

n

[16] with n the number of damping events and n grow-
ing linearly with time. The damping rate is set by the
frequency of collisions with the plates, but in the theory,
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FIG. 3: The experimental distribution for magnetic particles
vs the theory for forced Maxwell molecules. Crossover to
exponential law occurs for |v| > 2.

it can be set to one without loss of generality. When the
viscous dissipation dominates over the collisional dissipa-
tion, the kinetic theory is modified as follows

D∂2
vP (v) + η−1P (v/η) − P (v) = 0 (2)

where the last two terms represent gain and loss due to
drag and D is diffusion coefficient. At large velocities, the
gain term is negligible and consequently, the tail is ex-

ponential P (v) ∼ exp
(

−v/
√

D
)

. Eq. (2) can be solved

analytically, and there is a family of velocity distributions
characterized by one parameter η. When η → 0, the gain
term in (2) is negligible and the distribution is purely ex-
ponential. This is reflected by the kurtosis κ = 6

1+η2 .
For strong damping, η → 0, the value corresponding to
a pure exponential distribution is realized, κ → 6.

A Discrete Simulation Monte Carlo methods was used
to solve the Boltzmann equation for Maxwell molecules.
In the simulations pairs of randomly chosen particles col-
lide according to the inelastic collision rule (v1,v2) →
(v′

1,v
′

2) with (v′

1 − v2
′) · n̂ = −α(v1 − v2) · n̂ and

v
′

1 + v2
′ = v1 + v2 with α the restitution coefficient

and n̂ the impact direction. In addition, particles are
thermally forced dv/dt = ζ with ζ a white noise. Also,
damping v → ηv with unit rate models the fluid effect.
The simulation results represent an average over 102 runs
in a system with N = 107 particles.

When viscous damping dominates over collisional dis-
sipation, the distribution is nearly exponential, see Fig. 1,
and in a very good agreement with the experiments. We
note that even though the drag term dominates over the
collision terms, the experimental results suggest that the
collision rate is velocity independent at least at large ve-
locities, λ = 0. If this were not the case, the collisional
loss term would dominate at some very large velocity and
there would be a cross over to ξ > 1 [26]. But no such
crossover is observed experimentally. We conclude that
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the results of kinetic theory of forced Maxwell molecules
with strong viscous damping are consistent with the ex-
perimental results for all velocities.

For magnetic interactions, there is an excellent agree-
ment between the experiment and the theory of thermally
forced Maxwell molecules for which the collision rate is
completely independent on the relative velocity (see Fig.
3). The kurtosis, κ = 3.6 ± 0.1, falls within 2% of the
analytically known value κ = 3 + 18

33
∼= 3.55 obtained

from κ = 3+ 18p2(1−p)
(d+2)(1+p)−3(1−p)(1+p2) where p = (1−α)/2

[27]. We note that there are no fitting parameters. The
restitution coefficient α was set to zero because particle
collisions in the experiments are strongly inelastic and
because as long as the dissipation is strong, there is only
a weak dependence on α. Even though the tail of the
distribution is close to a simple exponential, its core is
approximately Maxwellian, as reflected by the kurtosis
that is much closer to the pure Maxwellian value of 3
than the pure exponential value of 6. We conclude that
for magnetic particles the collision rate becomes practi-
cally independent on the relative velocity, and conversely,
that they are accurately modeled by Maxwell molecules.

In summary, our main result is that velocity statis-
tics of forced granular gases depend sensitively on the
fluid environment and on the nature of the inter-particle
interactions. The two sets of experiments can be univer-
sally described by a specific version of the kinetic theory,
Maxwell molecules, with a velocity independent collision
rate. Whereas dipole interactions are ubiquitous for the
magnetic system, our studies indicate that the Maxwell
model is the only way to interpret the fluid experiments.
If hard sphere were used, the collision rate will grow lin-
early with the velocity and ξ = 3/2 stretched exponential
tail will prevail at large velocities. No such crossover is
observed and this is a strong evidence that the collision
rate is velocity independent. Thus, although the core
behavior is dominated by the damping, the tail behavior
indicates that long range interactions play a role. In view
of this, the two experiments are complementary.

We comment that it is difficult to experimentally vali-
date that the driving is thermal in nature. However, the
consistent agreement between the experiments and the-
ory supports this widely-used modeling assumption. In
addition, the excellent quantitative agreement between
the magnetic particles experiments and the Maxwell
molecules kinetic theory suggests that magnetic parti-
cles are an ideal experimental probe for the predictions
of this analytically tractable theory, including in par-
ticular, the transport coefficients [28]. We also propose
that stretched exponential velocity distributions may be
generic for dissipative gases with competing interactions,
and may possibly be relevant for vastly different systems,
such as dusty plasmas, colloids, and even star clusters,
where long-range interactions (e.g due to gravity) are me-
diated by short-range collisions.
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