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We study the kinetics of clustered immobile reactants in diffusion-controlled single-species an-
nihilation. We consider the initial conditions where the immobile reactants occupy a subspace of
dimension di, while the rest of the d-dimensional space is occupied by identical mobile particles.
The Smoluchowski rate theory suggests that the immobile reactants concentration, s(t), exhibits in-
teresting behavior as a function of the codimension, d̄ ≡ d− di. This survival probability undergoes
a survival-to-extinction transition at d̄c = 2. For d̄ < d̄c, a finite fraction of the immobile reactants
survives, while for d̄ ≥ d̄c, s(t) decays indefinitely. The corresponding asymptotic properties of the
concentration are discussed. The theoretical predictions are verified by numerical simulations in 2D
and 3D.
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I. INTRODUCTION

The kinetics of diffusion-controlled reactions have at-
tracted much interest recently. Despite their simplic-
ity, the underlying stochastic processes show complex
nonequilibrium behavior. For homogeneous reaction
processes, substantial theoretical knowledge is available
[1–5,?,7–10]. For reaction processes such as single-species
annihilation [7] and single-species aggregation [10], it is
well known that for d ≤ 2 spatial correlations are impor-
tant in the long time limit, while for d > 2 such correla-
tions are negligible asymptotically.

A recent generalization of the annihilation process
A + A → 0 to situations where the reactants have dif-
ferent mobilities was shown to exhibit a rich array of
asymptotic behavior. Such a process is well suited for de-
scribing reactions that involve particles of different sizes.
The case where a small number of particles move accord-
ing to one diffusion coefficient and the rest of the particles
according to another is especially interesting because of
its simplicity. The survival probability of a single “im-
purity” particle in a background of identical particles,
s(t), depends in a nonuniversal fashion on the diffusivity
of the impurity. In one dimension, the results are es-
pecially intriguing. While for the aggregation process, a
mapping to a random walk in three dimension enables an
exact solution [11], for the annihilation process only an
approximate theory is available [12]. The survival proba-
bility of a single immobile impurity particle is equivalent
to the fraction of unvisited sites by annihilating random
walkers [13]. Additionally, as the annihilation process is
equivalent to the T = 0 Ising model with Glauber dy-
namics [14], s(t) equals the fraction of “cold” spins, i.
e., the number of spins that did not flip up to time t.
Numerically, time-dependent and finite size simulations
[12,15,16], exact enumerations [17], as well as time power-
series studies [12] suggest that the impurity survival
probability depends algebraically on time, s(t) ∼ t−α,
with a non-trivial exponent, α ∼= 0.375, while the corre-
sponding exponent for the aggregation case, A+A→ A,
is α = 1. A recent theoretical work confirmed that the
exact value is indeed α = 3/8 [18]. In addition, for tri-

molecular annihilation, A+A+A→ 0, it was found that
the impurity decays faster than a power-law but slower
than an exponential s(t) ∼ exp

(
− (ln t)3/2

)
[13]. Hence,

in one-dimension, the impurity decay kinetics are highly
sensitive to the microscopic details of the reaction pro-
cess.

In this study, we present a generalization of the isolated
impurity problem. We restrict our attention to situations
where the impurity particles are immobile. We investi-
gate the collective behavior of such immobile impurities
by considering initial conditions in which the immobiles
are clustered. For simplicity, the immobiles occupy a
subspace of dimension di embedded in a d-dimensional
space. For convenience, we introduce the codimension
d̄ = d− di. Note that the case d̄ = d corresponds to the
single impurity problem. In the long time limit, neigh-
boring immobile reactants “shield” each other, and as a
result, the immobile reactants decay significantly slower
than the background. The concentration inside the sub-
space is larger than in the bulk, and consequently, the
boundary between the subspace and the bulk acts as
an absorbing boundary. The geometry of the system
reduces to a d̄-dimensional one. Applying the Smolu-
chowski rate theory to the mobile particles in dimension d
and to the immobile particles in dimension d̄, make theo-
retical predictions concerning the asymptotic form of the
survival probability possible. The survival probability
of an immobile reactant undergoes a survival-extinction
transition at d̄ = d̄c = 2. Below this critical codimen-
sion, a finite fraction of the immobiles survive, while at
a higher codimension their concentration decays forever.
For d̄ = 1, the approach to the final concentration is an
algebraic one, s(t) − s∞ ∼ t−1/2 for d > 2, with a loga-
rithmic correction at d = 2, s(t)−s∞ ∼ t−1/2 ln t. At the
critical codimension, d̄ = 2, an unusual logarithmic decay
occurs s(t) ∼ (ln t)−α(d,d̄ ), while for d̄ > 2, a dimension
dependent decay is found, s(t) ∼ t−α(d,d̄ ).
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II. THE SINGLE IMPURITY PROBLEM

In this section we review the rate equation theory and
apply it to the single impurity problem. This approach
truncates the infinite hierarchy of equations describing
the concentration at the first order. Above the critical
dimension, spatial fluctuations are asymptotically irrele-
vant and thus, this theory is exact. Moreover, this theory
can be extended to arbitrary dimension, and is especially
attractive due to its simplicity.

In the lattice version of the homogeneous single-species
annihilation process, particles hop independently with
rate D to any one of their nearest-neighbor sites. An
attempt to land on an occupied site results in the re-
moval of both particles from the system. Symbolically,
the process can be written as

A+A→ 0. (1)

Hence, the concentration, c(t), obeys the following rate
equation, dc/dt ∝ −cAA, where cAA is the concentration
of pairs of neighboring particles. This approach leads to
an infinite hierarchy of equations and is of limited practi-
cal use. Alternatively, one assumes that the annihilation
rate is proportional to the flux experienced by a particle,
dc/dt ∝ −jc [1]. This flux can be evaluated by placing an
absorbing particle in a diffusing background of concen-
tration c. Since j is proportional to c, the concentration
is described by the following rate equation,

dc

dt
= −kc2, (2)

with k being the d-dimensional reaction rate. Above the
critical dimension dc = 2 the reaction rate aproaches a
constant. Otherwise, the reaction rate is time dependent
since the target particle is surrounded by a depletion zone
the size of the diffusion length

√
Dt. In appendix A, we

detail a heuristic derivation of the reaction rate in ar-
bitrary dimension using the quasistatic approximation.
Asymptotically, the reaction rate is given by

k ∼

{
t−1/2 d = 1;
(ln t)−1 d = 2;
1 d > 2.

(3)

By introducing a modified time variable

z(t) =
∫ t

0

k(t′)dt′, (4)

the rate equation simplifies, dc/dz = −c2. Without loss
of generality, we set the initial concentration to unity and
consequently, the concentration c = 1/(1 + z) is found.
Evaluating the modified time variable, z, we arrive at
the following asymptotic behaviors of the homogeneous
single-species annihilation process,

c(t) ∼

{
t−1/2 d = 1;
t−1 ln t d = 2;
t−1 d > 2.

(5)

Interestingly, these results are asymptotically exact [8,9],
despite the assumptions involved with the rate theory.
Moreover, a similar concentration is obtained for the ag-
gregation process A+A→ A as well. In low dimensions,
the reaction proceeds with a slow rate, since particles are
effectively repelling each other. On the other hand, in
high dimensions spatial correlations are practically irrel-
evant, and the concentration decays faster. The critical
dimension is characterized by typical logarithmic correc-
tions.

The annihilation process can be generalized to hetero-
geneous situations where the the mobilities of the reac-
tants are not equal. Reactants with a diffusion coefficient
Di are denoted by Ai, and the annihilation process can
be symbolically written as

Ai +Aj → 0. (6)

Let us consider the special case where a single impurity
particle with diffusion coefficient Di is placed in a uni-
form background of particles with a diffusion coefficient
D. The survival probability of such an impurity particle,
denoted by s(t), obeys the generalized rate equation

ds

dt
= −kics. (7)

The reaction process between reactants of diffusivities D
and Di is characterized by the reaction rate ki, given by
(see Appendix)

ki '

K1(D +Di)−1/2t−1/2 d = 1;
K2(D +Di) (ln ((D +Di)t))

−1
d = 2;

Kd(D +Di) d > 2.
(8)

Again, it is useful to rewrite the rate equation in terms
of the modified time variable z defined by Eq. (4),
ds/dz = −(ki/k)cs. Note that in the long time limit the
rate ratio approaches a constant that depends only on the
diffusion coefficient ratio. By substituting the asymp-
totic form of the concentration c, c ∼ 1/z, one finds a
purely algebraic dependence of the impurity concentra-
tion s ∼ zki/k for d 6= 2 [12]. At the critical dimension,
d = 2, the leading asymptotic correction to the rate ratio
is important, and a detailed calculation is necessary [19].
Using the aforementioned forms of z and ki, the following
impurity concentration is found,

s(t) ∼

 t−
√
θ/2 d = 1;

t−θ(ln t)θ(1−ln θ) d = 2;
t−θ d ≥ 2.

(9)

Hence, the ratio θ = (D + Di)/2D governs the long
time kinetics. For the case Di = 0, the decay exponent
equals 1/

√
8 ∼= 0.353 when d = 1, and 1/2 when d > 2.

While the latter value is exact, the former is only approx-
imate. Interestingly, this approximate value is quite close
to the observed numerical value 0.375 [12,15–17]. How-
ever, as this approximation is uncontrolled, its accuracy
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can widely vary, and for the exactly soluble aggregation
process, the discrepancy in the exponents is larger. To
summarize, both in the supercritical regime and in the
subcritical regime, the decay of the impurities depends
on the diffusivity ratio in a nongeneric fashion.

III. KINETICS OF CLUSTER IMPURITIES

The following questions arise naturally from the above
theory: Can the presence of neighboring impurities in-
crease the survival probability of an impurity? If yes, to
what extent? To answer these questions we concentrate
on the case of immobile reactants, Di = 0. We introduce
a generalization of the single immobile impurity problem.
Let us consider the initial configuration where the impuri-
ties occupy a subspace of dimension di. For example, on a
simple cubic lattice, the subspace {x|x1 = · · · = xdi = 0}
is occupied by impurities, with x ≡ x1, . . . , xd the Carte-
sian coordinates. The rest of the space is occupied by
particles with an identical diffusion coefficient D. The
annihilation process is the same as Eq. (6). The codi-
mension d̄ can be conveniently defined as d̄ = d−di. For
example, when d̄ = 1, the impurities initially occupy a
line in 2D, a plane in 3D, etc. Figure 1 illustrates the
initial configuration for the case d̄ = 1 in two spatial di-
mensions. Note also that the single impurity problem
corresponds to the special case d̄ = d.
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FIG. 1. A line of impurities (bullets) in a two-dimensional
background (circles)

Let us consider first a line of impurities in 2D. The
presence of nearby static particles can only increase the
survival probability of an impurity, and thus, the survival
probability is bounded by s ∼ t−1/2, the corresponding
result for the single impurity case for d ≥ 2. However,
the mobile particles decay c ∼ t−1 is stronger and con-
sequently, the boundary between the mobile reactants
and the immobile reactants is equivalent to an absorbing
boundary for the mobile reactants. This absorber is not
a perfect one since not all sites are occupied with impuri-
ties. However, it is well known that in the long time limit
a partial absorber is equivalent to a perfect one [20]. A
depletion layer of width

√
Dt develops around the sub-

space and the mobile reactant concentration profile is

strongly suppressed in this depletion zone. As a result,
the geometry of the system is drastically altered. A line
in 2D reduces to a one-dimensional geometry. In other
words, the codimension becomes the relevant dimension.
This simple conclusion has a striking effect on the long
time kinetics of the impurities.

One possible way to tackle this problem is to describe
this spatial inhomogeneity by the reaction-diffusion equa-
tion with proper boundary conditions. However, the
leading term in the reaction-diffusion equation is the dif-
fusion term, and this approach is equivalent in the long
time limit to the quasistatic approximation, or namely,
the Smoluchowsky rate theory. This theory, appealing in
its simplicity, leads to new and interesting behaviors for
the cluster impurity problem. As discussed above, the
relevant dimension is the codimension. Thus, we apply
the d̄-dimensional rate equation to the impurity concen-
tration

ds

dt
= −kd̄i cs, (10)

where kd̄i is the reaction rate in d̄ dimensions. In contrast
with the previous analysis, introduction of a modified
time variable would not simplify the algebra, since the
equations involve different dimensions and consequently,
different intrinsic time scales. Instead, the impurity sur-
vival probability, s(t)/s(0), is obtained by an integration
of the above equation,

s(t)/s(0) = exp
(
−
∫ t

0

dt′kd̄i (t′)c(t′)
)
. (11)

Since the case d̄ = d reduces to the single impurity case
(see Eq. (9)), we concentrate on the case d̄ < d only. By
substituting the proper values of the concentration c in
d-dimensions and the reaction rate kd̄i in d̄-dimensions
into Eq. (11), we find the following asymptotic impurity
densities,

s(t) ∼


s∞ + const× t−1/2 ln t d̄ = 1 and d = 2;
s∞ + const× t−1/2 d̄ = 1 and d > 2;
(ln t)−Kd̄/2Kd d̄ = 2 and d > d̄;
t−Kd̄/2Kd d̄ > 2 and d > d̄.

(12)

This rich behavior follows directly from the annihilation
rate, i. e., the integrand in Eq. (11). If kd̄i (t)c(t) de-
cays faster than 1/t, the integral remains finite in the
long time limit, and a finite fraction of the impurities
survive the annihilation process. Otherwise, all of the
impurities eventually annihilate. For d̄ < 2, this inte-
grand decays faster than 1/t, while for d̄ ≥ 2, the in-
tegrand is dominated by 1/t. Consequently, the system
exhibits a survival-extinction transition at d̄ = 2. Be-
low this critical codimension, a fraction of the impurities
survive, while they decay indefinitely at a higher codi-
mension.

The approach to the final concentration, s(t) − s∞ ∼
t−1/2 ln t for a line in 2D (d̄ = 1) is reminiscent of the
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single impurity decay in 2D. The two cases differ in that
s∞ does not vanish for the cluster case. They also differ
in the logarithmic correction. The critical case is char-
acterized by inverse logarithmic decay since the annihi-
lation rate is proportional to 1/ (t ln t) = d ln (ln t) /dt.
Both the critical case and the supercritical case follow a
power-law with the exponent α(d, d̄ ) = Kd̄/2Kd. Thus,
both decays depend on the dimension as well as the codi-
mension. Only in the extreme case, d̄ = d, corresponding
to the single impurity case, Kd cancels out and the decay
s ∼ t−1/2 is expected. Generally, a detailed calculation
for the dimensionless prefactors Kd is necessary in order
to find the various decay exponents. Since the decay in
the cluster case d̄ < d is slower than in the single impurity
case d̄ = d, we learn that the prefactor Kd is an increas-
ing function of the spatial dimension d. This observation
is consistent with the fact that the initial reaction rate
is given by ki(t = 0) = 2(D + Di)zd, with zd the num-
ber of neighboring sites in d-dimensions. Indeed, zd is
an increasing function of d. Above the critical dimension
d = 2, the effective reaction rate depends weakly on time.
Hence, the assumption Kd ∝ zd leads to an approximate
value for the decay exponent α(d, d̄ ) ∼= zd̄/2zd. For a sim-
ple square lattice one has the zd = 2d or α(d, d̄ ) ∼= d̄/2d.
This approximation improves as the dimension and the
codimension increase.

The above results can be easily generalized to arbitrary
dimensions. Such a generalization is nontrivial only when
the temporal nature of the reaction rate is dimension de-
pendent, or namely, below the critical dimension. Using
the reaction rates of Eq. (A3), we evaluate the immobile
impurity densities,

s(t) ∼



t−d/2
1+d/2

d̄ < 2 and d = d̄;
s∞ + const× t−(d−d̄ )/2 d̄ < 2 and d̄ < d < 2;
s∞ + const× t−(2−d̄ )/2 ln t d̄ < 2 and d = 2;
s∞ + const× t−(2−d̄ )/2 d̄ < 2 and d > 2;
t−1/2(ln t)(1+ln 2)/2 d̄ = 2 and d = 2
(ln t)−Kd̄/2Kd d̄ = 2 and d > d̄;
t−Kd̄/2Kd d̄ > 2 and d ≥ d̄.

(13)

To summarize, a fraction of the impurities survive only
when d̄ < 2 and d > d̄. The behavior for d < 2
is influenced by the background concentration behavior
c ∼ t−d/2. As a result, the approach towards the lim-
iting concentration is algebraic with a vanishing decay
exponent (d − d̄ )/2 = di/2 when d̄ <∼ d < 2. It will
be interesting to see how the above results compare with
Renormalization Group studies in the vicinity of the crit-
ical codimension d̄ = 2− ε.

For completeness, we briefly discuss the early behavior
of the system. We consider the case where all lattice sites
are initially occupied, such that c(0) = s(0) = 1. Follow-
ing the above discussion, the initial reaction rate is given
by k(t = 0) = 2Dzd. From Eq. (2), the background
concentration is found

c(t) ∼= (1 + 2Dzdt)
−1
, t→ 0. (14)

On the other hand, only interfacial sites contribute to
the annihilation of impurities, and as a result ki(t = 0) =
D(zd−zd−d̄). By substituting this rate and the early time
mobile reactant concentration into Eq. (10), the impurity
concentration is calculated in the small time limit,

s(t) ∼= (1 + 2Dzdt)
−β(d,d̄ )

, t→ 0. (15)

The above exponent, β(d, d̄ ), equals the reaction rate
ratio β(d, d̄ ) = (zd − zd−d̄)/2zd. This exponent should
not be regarded as an asymptotic one, since it is rele-
vant only for the short time limit. In addition to the
dimension dependence, the early time behavior depends
on the lattice structure as well. As the reaction process
evolves, such details become irrelevant, and the general
asymptotic behavior is recovered. There is no sign of a
critical codimension in the early stages since the system
is still d-dimensional. After a sufficiently long time, the
codimension governs the kinetics.

IV. SIMULATION RESULTS

FIG. 2. The impurity concentration s(t) versus t in 2D
and 3D. Shown are the case d̄ = 1 in 2D (bullets) and 3D
(squares), and the case d̄ = 2 in 3D (triangles).

To test the theoretical predictions, we have performed
Monte-Carlo simulations for d = 2 and 3. The numerical
implementation is simple. Initially all Ld sites of the cu-
bic lattice are occupied with reactants, of which Ldi/d are
immobile and occupy the subspace {x|x1 = · · · = xdi =
0}, with the Cartesian coordinates x ≡ (x1, . . . , xd). The
rest of the lattice is occupied by identical mobile par-
ticles. Periodic boundary conditions are imposed. An
elemental simulation step consists of picking a mobile
particle at random and moving it to a randomly chosen
neighboring site. If this site is occupied, both particles
are removed from the system. Time is updated by the
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inverse of the total number of mobile particles after each
step. The linear dimension of the lattice used in the sim-
ulation was L = 5 × 103, 2 × 102 in 2D, and 3D respec-
tively. The total number of particles was thus 25 × 106,
and 8 × 106 for 2D, and 3D. In 2D the results represent
one realization of the process, while in 3D an average
over 10 realizations is taken. Typically, the simulation
data are reliable up to time ∝ L2 because due to finite
size effects.

FIG. 3. The quantity s(t) − s∞ versus time for the case
d̄ = 1. Shown are simulation results in 2D (bullets) and 3D
(squares) versus the theoretical prediction of Eq. (12) (solid
lines).

We have first verified that the average concentration of
the mobile reactants decays according to the well known
concentration of Eq. (5). To verify the survival-extinction
transition at d̄ = 2, we measured the impurity concentra-
tion versus time (see figure 2). Indeed, for the case d̄ = 1,
s(t) approaches a final nonzero value, s∞, while the im-
purity concentration decays indefinitely for the marginal
case, d̄ = 2. Since the total number of impurities ini-
tially present in the latter case is small, we could not
verify the inverse logarithmic decay of Eq. (12). For the
case d̄ = 1, we performed a least square fit of the data to
the theoretical predictions of Eq. (12). The optimal fi-
nal concentration was found to be s∞ ∼= 0.095 and 0.335
in 2D and 3D, respectively. We verified that similar re-
sults occured for smaller system sizes. In Figure 3, the
concentration difference s(t)− s∞ is plotted versus time.
According to the rate theory, this quantity should decay
as t−1/2 ln t in 2D, and as t−1/2 in 3D. It is seen that the
theoretical curves (solid lines) fit well the simulation data
in the long time limit. We conclude that the simulation
results are consistent with the theoretical predictions.

V. CONCLUSIONS

We have studied the kinetic behavior of clusters of im-
mobile reactants in the single-species annihilation pro-

cess. The codimension, d̄, plays an important role in
the long time limit. The Smoluchowsky theory shows
that a transition from survival to extinction takes place
at d̄ = 2. For d̄ < 2, a finite fraction of the impurities
survive, while for d̄ ≥ 2 all of the impurities eventually
vanish. Furthermore, the asymptotic behavior of the con-
centration of impurities depends on the dimension as well
as the codimension. The theoretical predictions are ver-
ified by Monte-Carlo simulations.

This study suggests that the rate theory can be ex-
tended to heterogeneous situations. Moreover, a time-
dependent reaction equation is equivalent in the long
time limit to the detailed reaction-diffusion equation.
The success of this theory is remarkable especially con-
sidering its simplicity. It will be interesting to apply the
same mechanism to more complicated processes, such as
multispecies reactions.
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APPENDIX A: THE QUASISTATIC
APPROXIMATION

The reaction rate, k, can be found by evaluating the
flux j experienced by an absorbing test particle of ra-
dius R due to a diffusing background of concentration
c0. Hence, the diffusion equation ∂c/∂t = D∇c is solved
under the initial conditions c|t=0 = c0 and the absorbing
boundary condition c(r)|r=R = 0. Although an exact so-
lution can be obtained, we present a simpler approximate
technique. Since the length scale governing the diffusion
process is

√
Dt, one assumes that the absorber does not

affect the background concentration at distances larger
than

√
Dt. Inside this depletion zone the Laplacian term

dominates the spherically symmetric diffusion equation,

Dr1−d ∂

∂r
rd−1 ∂c(r)

∂r
= 0, R < r <

√
Dt. (A1)

The quasistatic approximation imposes an additional
time-dependent boundary condition c|r=√Dt = c0
[21,22]. The concentration profile is readily obtained for
R < r <

√
Dt,

c(r, t) '


c0
(
(r/R)2−d − 1

)/(
(
√
Dt/R)2−d − 1

)
d < 2;

c0 ln(r/R)
/

ln(
√
Dt/R) d = 2;

c0
(
1− (r/R)2−d)/(1− (

√
Dt/R)2−d

)
d > 2.

(A2)

Above the critical dimension dc = 2, c(r, t) approaches a
limiting concentration profile. The reaction rate is given
by calculating the total flux seen by the test particle
j = DSdR

d−1∂c/∂r, with Sd the surface area of the d-
dimensional unit sphere. We quote the leading asymp-
totic term of the reaction rate, k = j/c0,

k ∝

{
Dd/2td/2−1 d < 2;
D (lnDt)−1

d = 2;
DRd−2 d > 2.

(A3)

In the case where the target diffusivity DT is nonzero, the
appropriate diffusion constant is D +DT . We derived
the continuum rates, however, the lattice counterparts
can be conveniently obtained by setting R ≡ 1.
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