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We study the kinetics of clustered immobile reactants in diffusion-controlled single-species an-
nihilation. We consider the initial conditions where the immobile reactants occupy a subspace of
dimension d;, while the rest of the d-dimensional space is occupied by identical mobile particles.
The Smoluchowski rate theory suggests that the immobile reactant concentration s(t) exhibits in-
teresting behavior as a function of the codimension, d = d — d;. This survival probability undergoes
a survival-to-extinction transition at d..= 2. For d < d., a finite fraction of the immobile reactants
survives, while for d > d., a(t) decays indefinitely. The corresponding asymptotic properties of the
concentration are discussed. The theoretical predictions are verified by numerical simulations in two

and three dimensions.
PACS number(s): 02.50.—r, 05.40.+j, 82.20.Wt

I. INTRODUCTION

The kinetics of diffusion-controlled reactions have at-
tracted much interest recently. Despite their simplic-
ity, the underlying stochastic processes show complex
nonequilibrium behavior. For homogeneous reaction
processes, substantial theoretical knowledge is available
[1-10]. For reaction processes such as single-species anni-
hilation [7] and single-species aggregation [10], it is well
known that for d < 2 spatial correlations are important
in the long time limit, while for d > 2 such correlations
are negligible asymptotically.

A recent generalization of the annihilation process
A+A — 0 to situations where the reactants have different
mobilities was shown to exhibit a rich array of asymptotic
behavior. Such a process is well suited for describing re-
actions that involve particles of different sizes. The case
where a small number of particles moves according to
one diffusion coefficient and the rest of the particles ac-
cording to another is especially interesting because of its
simplicity. The survival probability of a single “impu-
rity” particle in a background of identical particles, s(t),
depends in a nonuniversal fashion on the diffusivity of
the impurity. In one dimension, the results are especially
intriguing. While for the aggregation process, a map-
ping to a random walk in three dimension enables an
exact solution [11], for the annihilation process only an
approximate theory is available [12]. The survival proba-
bility of a single immobile impurity particle is equivalent
to the fraction of unvisited sites by annihilating random
walkers [13]. Additionally, as the annihilation process is
equivalent to the T = 0 Ising model with Glauber dy-
namics [14], s(t) equals the fraction of “cold” spins, i.e.,
the number of spins that did not flip up to time ¢t. Numer-
ically, time-dependent and finite-size simulations {12, 15,
16], exact enumerations [17], as well as time power-series
studies [12] suggest that the impurity survival probabil-
ity depends algebraically on time, s(t) ~ t~%, with a
nontrivial exponent, o ¢ 0.375, while the corresponding
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exponent for the aggregation case, A+ 4 — A,isa = 1.
A recent theoretical work confirmed that the exact value
is indeed o = 3/8 [18]. In addition, for trimolecular anni-
hilation, A + A+ A — 0, it was found that the impurity
decays faster than a power law but slower than an ex-
ponential s(t) ~ exp( — (Int)3/2) [13]. Hence, in one
dimension, the impurity decay kinetics are highly sensi-
tive to the microscopic details of the reaction process.
In this study, we present a generalization of the isolated
impurity problem. We restrict our attention to situations
where the impurity particles are immobile. We investi-
gate the collective behavior of such immobile impurities
by considering initial conditions in which the immobiles
are clustered. For simplicity, the immobiles occupy a
subspace of dimension d; embedded in a d-dimensional
space. For convenience, we introduce the codimension
d = d ~ d;. Note that the case d = d corresponds to the
single-impurity problem. In the long time limit, neigh-
boring immobile reactants “shield” each other, and as a
result, the immobile reactants decay significantly slower
than the background. The concentration inside the sub-
space is larger than in the bulk, and, consequently, the
boundary between the subspace and the bulk acts as an
absorbing boundary. The geometry of the system reduces
to a d-dimensional one. Applying the Smoluchowski rate
theory to the mobile particles in dimension d and to the
immobile particles in dimension d makes theoretical pre-
dictions concerning the asymptotic form of the survival
probability possible. The survival probability of an im-
mobile reactant undergoes a survival-extinction transi-
tion at d = d. = 2. Below this critical codimension,
a finite fraction of the immobiles survives, while at a
higher codimension their concentration decays forever.
For d = 1, the approach to the final concentration is
an algebraic one, $(t) — 8o ~ t~1/2 for d > 2, with a
logarithmic correction at d = 2, s(t) — 8, ~ t~/?Int.
At the critical codimension, d = 2, an unusual logarith-
mic decay occurs, 8(t) ~ (Int)~*(4d) while for d > 2, a
dimension-dependent decay is found, s(t) ~ ¢~(&d),
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II. THE SINGLE-IMPURITY PROBLEM

In this section we review the rate equation theory and
apply it to the single-impurity problem. This approach
truncates the infinite hierarchy of equations describing
the concentration at first order. Above the critical di-
mension, spatial fluctuations are asymptotically irrele-
vant, and thus this theory is exact. Moreover, this theory
can be extended to arbitrary dimension, and is especially
attractive due to its simplicity.

In the lattice version of the homogeneous single-species
annihilation process, particles hop independently with
rate D to any one of their nearest-neighbor sites. An
attempt to land on an occupied site results in the re-
moval of both particles from the system. Symbolically,
the process can be written as

A+ A0 (1)

Hence, the concentration c(t) obeys the following rate
equation, de/dt < ~ca4, where c4 4 is the concentration
of pairs of neighboring particles. This approach leads to
an infinite hierarchy of equations and is of limited practi-
cal use. Alternatively, one assumes that the annihilation
rate is proportional o the flux experienced by a particle,
de/dt < —jc [1]. This flux can be evaluated by placing an
absorbing particle in a diffusing background of concen-
tration c. Since j is proportional to ¢, the concentration
is described by the following rate equation:
de 2

— = ke, (2)
with & being the d-dimensional reaction rate. Above the
critical dimension d. = 2 the reaction rate approaches a
constant. Otherwise, the reaction rate is time dependent
since the target particle is surrounded by a depletion zone
the size of the diffusion length v/Dt. In Appendix A,
we detall a heuristic derivation of the reaction rate in
arbitrary dimension using the quasistatic approximation.
Asymptotically, the reaction rate is given by

=12 d=1
k~ ¢ (Int)™, d=2 (3)
1, d> 2.

By introducing a modified time variable

z@:LkMM, (@)

the rate equation simplifies, dc/dz = —c?. Without loss
of generality, we set the initial concentration to unity and,
consequently, the concentration ¢ = 1/(1 + 2) is found.
Evaluating the modified time variable, z, we arrive at
the following asymptotic behaviors of the homogeneous
single-species annihilation process:

=12 d=1
ct)~< t7'lnt, d=2 ()
1L, d>2.

Interestingly, these results are asymptotically exact [8,
9], despite the assumptions involved with the rate the-
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ory. Moreover, a similar concentration is obtained for
the agpregation process A + A = A4 as well. In low di-
mensions, the reaction proceeds with a slow rate, since
particles are effectively repelling each other. On the other
hand, in high dimensions spatial correlations are practi-
cally irrelevant, and the concentration decays faster. The
critical dimension is characterized by typical logarithmic
corrections.

The annihilation process can be generalized to hetero-
geneous situations where the mobilities of the reactants
are not equal. Reactants with a diffusion coefficient D;
are denoted by A;, and the annihilation process can be
symbolically written as

A.’ + Aj — 0. (6)

Let us consider the special case where a single-impurity
particle with diffusion coeflicient D; is placed in a uni-
form background of particles with a diffusion coefficient
D. The survival probability of such an impurity particle,
denoted by s(t), obeys the generalized rate equation

ds
dt ,
The reaction process between reactants of diffusivities D

and D; is characterized by the reaction rate k;, given by
(see the Appendix)

= —k,-cs. (7)

Ky(D + D;)~/2¢-1/3, d=1
Ky(D+D;)(ln((D+D)t))™, d=2 (8)
Kq(D + Dy), d>2.

k,;z

Again, it is useful to rewrite the rate equation in terms
of the modified time variable z defined by Eq. (4),
ds/dz = —(k;/k)cs. Note that in the long time limit the

‘rate ratio approaches a constant that depends only on the

diffusion coefficient ratio. By substituting the asymp-
totic form of the concentration ¢, ¢ ~ 1/z, one finds a
purely algebraic dependence of the impurity concentra-
tion s ~ z%/* for d # 2 [12]. At the critical dimension,
d = 2, the leading asymptotic correction to the rate ratio
is important, and a detailed calculation is necessary [19].
Using the aforementioned forms of z and k;, the following
impurity concentration is found:

t—\/5/2, d=1
S(t) ~ t—e(lnt)a(l—lne), d=2 (g)
t=%, - Cod>2

Hence, the ratio @ = {D + D;)/2D governs the long time
kinetics. For the case D; = 0, the decay exponent equals
1/v/8 2 0.353 when d = 1, and 1/2 when d > 2. While
the latter value is exact, the former is only approximate.
Interestingly, this approximate value is quite close to the
observed numerical value 0.375 [12, 15-17]. However, as
this approximation is uncontrolled, its accuracy can vary
widely, and for the exactly soluble aggregation process,
the discrepancy in the exponents is larger. To summa-
rize, both in the supercritical regime and in the subcrit-
ical regime, the decay of the impurities depends on the
diffusivity ratio in a nongeneric fashion.
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III. KINETICS OF CLUSTER IMPURITIES

The following questions arise naturally from the above
theory: Can the presence of neighboring impurities in-
crease the survival probability of an impurity? If yes,
to what extent? To answer these questions we concen-
trate on the case of immobile reactants, D; = 0. We
introduce a generalization of the single immobile impu-
rity problem. Let us consider the initial configuration
where the impurities occupy a subspace of dimension
d;. For example, on a simple cubic lattice, the subspace
{x|z1 = --+ = x4, = 0} is occupied by impurities, with
x = (zy1,...,%q) the Cartesian coordinates. The rest
of the space is occupied by particles with an identical
diffusion coeflicient D. The annihilation process is the
same as Eq. (6). The codimension d can be conveniently
defined as d = d — d;. For example, when d = 1, the
impurities initially occupy a line in 2D, a plane in 3D,
etc. Figure 1 illustrates the initial configuration for the
case d = 1 in two spatial dimensions. Note also that the
single-impurity problem corresponds to the special case
d=d.

Let us consider first a line of impurities in 2D. The
presence of nearby static particles can only increase the
survival probability of an impurity, and thus, the survival
probability is bounded by s ~ t=1/2 the corresponding
result for the single-impurity case for d > 2. However,
the mobile particle decay ¢ ~ t~! is stronger and, con-
sequently, the boundary between the mobile reactants
and the immobile reactants is equivalent to an absorbing
boundary for the mobile reactants. This absorber is not
a perfect one since not all sites are occupied with impuri-
ties. However, it is well known that in the long time limit
a partial absorber is equivalent to a perfect one [20]. A
depletion layer of width /Dt develops around the sub-
space and the mobile reactant concentration profile is
strongly suppressed in this depletion zone. As a result,
the geometry of the system is drastically altered. A line
in 2D reduces to a one-dimensional geometry. In other
words, the codimension becomes the relevant dimension.
This simple conclusion has a striking effect on the long
time kinetics of the impurities.

10|00
O10|® 0
O10|®@0 |0

O

FIG. 1. A line of impurities (solid circles) in a two-
dimensional background (open circles).
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One possible way to tackle this problem is to describe
this spatial inhomogeneity by the reaction-diffusion equa-
tion with proper boundary conditions. However, the
leading term in the reaction-diffusion equation is the dif-
fusion term, and this approach is equivalent in the long
time limit to the quasistatic approximation, or namely,
the Smoluchowsky rate theory. This theory, appealing in
its simplicity, leads to new and interesting behaviors for
the cluster impurity problem. As discussed above, the
relevant dimension is the codimension. Thus, we apply
the d-dimensional rate equation to the impurity concen-
tration

ds

E = —k,‘;ICS, (10)

where k,‘g is the reaction rate in d dimensions. In contrast
with the previous analysis, introduction of a modified
time variable would not simplify the algebra, since the
equations involve different dimensions and, consequently,
different intrinsic time scales. Instead, the impurity sur-
vival probability, s(¢)/s(0), is obtained by an integration
of the above equation,

(t)/8(0) = exp <— [)t dt’kf(t')c(t’)) . (11)

Since the case d = d reduces to the single impurity case
[see Eq. (9)], we concentrate on the case d < d only. By
substituting the proper values of the concentration ¢ in
d dimensions and the reaction rate k¢ in d dimensions
into Eq. (11), we find the following asymptotic impurity
densities:

So0 +const X t=Y2Int, d=1 and d=2

s(t) 800 + const x t~1/2, d=1 and d>2
(Int)~¥a/2Ka d=2 and d>d
t—Ka/2Ka, d>2 and d>d.

(12)

This rich behavior follows directly from the apnihilation
rate, ie., the integrand in Eq. (11). If k¢(t)c(t) decays
faster than 1/t, the integral remains finite in the long
time limit, and a finite fraction of the impurities survives
the annihilation process. Otherwise, all of the impuri-
ties eventually annihilate. For d < 2, this integrand de-
cays faster than 1/¢, while for d > 2, the integrand is
dominated by 1/t. Consequently, the system exhibits a
survival-extinction transition at d = 2. Below this crit-
ical codimension, a fraction of the impurities survives,
while they decay indefinitely at a higher codimension.
The approach to the final concentration, s(t) — 840 ~
t~1/21nt, for a line in 2D (d = 1) is reminiscent of the
single impurity decay in 2D. The two cases differ in that
800 does not vanish for the cluster case. They also differ
in the logarithmic correction. The critical case is char-
acterized by inverse logarithmic decay since the annihi-
lation rate is proportional to 1/ (tInt) = dln(Int) /dt.
Both the critical case and the supercritical case follow a
power law with the exponent o(d,d) = Kz/2K4. Thus,
both decays depend on the dimension as well as the codi-
mension. In the extreme case, d = d, corresponding to
the single impurity case, K cancels out and the decay
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s ~ t~1/2 is expected. Generally, a detailed calculation
for the dimensionless prefactors Ky is necessary in order
to find the various decay exponents. Since the decay in
the cluster case d < d is slower than in the single impurity
case d = d, we learn that the prefactor K is an increas-
ing function of the spatial dimension d. This observation
is consistent with the fact that the initial reaction rate
is given by ki(t = 0) = 2(D + D;)z4, with zg the num-
ber of neighboring sites in d dimensions. Indeed, z4 is
an increasing function of d. Above the critical dimension
d = 2, the effective reaction rate depends weakly on time.
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Hence, the assumption K4 « z4 leads to an approximate
value for the decay exponent a(d,d) & z7/2z4. For a
simple square lattice one has zg = 2d or a(d,d) = d/2d.
This approximation improves as the dimension and the
codimension increase.

The above results can be easily generalized to arbitrary
dimensions. Such a generalization is nontrivial only when
the temporal nature of the reaction rate is dimension de-
pendent, or namely, below the critical dimension. Using
the reaction rates of Eq. {A3), we evaluate the immobile
impurity densities,

rt"d/zwd/z, d<?2 and d=d
Seo + const x t~(@=9)/2 d<?2 and d<d<?2
Seo -+ const x £=2=9/21nt, d< 2 and d=2
8(t) ~ { s, + const x t~(2=9)/2 d<2 and d>2 (13)
t~1/2(Int)(1+1n2)/2, d=2 and d=2
(Int)~Ka/2Ka d=2 and d>d
|t Hal2Ka, d>2 and d>d.

To summarize, a fraction of the impurities survives only
when d < 2 and d > d. The behavior for d < 2
is influenced by the background concentration behavior
¢ ~ t~%2, As a result, the approach towards the lim-
iting concentration is algebraic with a vanishing decay
exponent (d ~d)/2 = d;/2 when d < d < 2. Tt will
be interesting to see how the above results compare with
renormalization-group studies in the vicinity of the crit-
ical codimension d = 2 — .

For completeness, we briefly discuss the early behavior
of the system. We consider the case where all lattice
sites are initially occupied, such that ¢(0) = s(0) = 1.
Following the above discussion, the initial reaction rate is
given by k(t = 0) = 2Dz,4. From Eq. (2), the background
concentration is found,

c(t) 2 (1+2Dzgt)™", t—0. (14)

On the other hand, only interfacial sites contribute to
the annihilation of impurities, and as a result k;(t = 0) =
D(zq—z4_g). By substituting this rate and the early time
mobile reactant concentration into Eq. (10), the impurity
concentration is calculated in the small time limit,

8(t) 2 (1+2Dzgt) P4 0. (15)

The above exponent, §(d,d), equals the reaction rate
ratio B(d,d) = (24 — 24_3)/224- This exponent should
not be regarded as an asymptotic one, since it is rele-
vant only for the short time limit. In addition to the
dimension dependence, the early time behavior depends
on the lattice structure as well. As the reaction process
evolves, such details become irrelevant, and the general
asymptotic behavior is recovered. There is no sign of a
critical codimension in the early stages since the system
is still d dimensional. After a sufficiently long time, the
codimension governs the kinetics.

IV. SIMULATION RESULTS

To test the theoretical predictions, we have performed
Monte Carlo simulations for d = 2 and 3. The numerical
implementation is simple. Initially all L¢ sites of the cu-
bic lattice are occupied with reactants, of which L%/¢ are
immobile and occupy the subspace {x|z; = -+« =z4, =
0}, with the Cartesian coordinates x = (zy,...,zq). The
rest of the lattice is occupied by identical mobile par-
ticles. Periodic boundary conditions are imposed. An
elemental simulation step consists of picking a mobile

. d=2 =1 .
s d=33=1 :
a d=3d=2
10° 10' 10° 10° 10° ot 10°
t
FIG. 2. The impurity concentration s(t) versus t in 2D

and 3D. Shown are the case d = 1 in 2D (circles) and 3D
(squares), and the case d = 2 in 3D (triangles).
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T 10" 10°
FIG. 3. The quantity s(t) — 8+ versus time for the case
d = 1. Shown are simulation results in 2D (circles) and 3D

(squares) versus the theoretical prediction of Eq. (12) (solid
lines).

particle at random and moving it to a randomly chosen
neighboring site. If this site is occupied, both particles
are removed from the system. Time is updated by the
inverse of the total number of mobile particles after each
step. The linear dimension of the lattice used in the sim-
ulation was L = 5 x 102 and 2 x 102 in 2D and 3D, respec-
tively. The total number of particles was thus 25 x 10°®
and 8 x 10® for 2D and 3D, respectively. In 2D the re-
sults represent one realization of the process, while in 3D
an average over 10 realizations is taken. Typically, the
simulation data are reliable up to time o< L? due to finite
size effects.

‘We have first verified that the average concentration of
the mobile reactants decays according to the well-known
concentration of Eq. (5). To verify the survival-extinction
transition at d = 2, we measured the impurity concentra-
tion versus time (see Fig. 2). Indeed, for the case d = 1,
s(t) approaches a final nonzero value, sy, while the im-
purity concentration decays indefinitely for the marginal
case, d = 2. Since the total number of impurities ini-
tially present in the latter case is small, we could not
verify the inverse logarithmic decay of Eq. (12). For the
case d = 1, we performed a least-squares fit of the data
to the theoretical predictions of Eq. (12). The optimal
final concentration was found to be so, = 0.095 and 0.335
in 2D and 3D, respectively. We verified that similar re-
sults occurred for smaller system sizes. In Fig. 3, the
concentration difference s(t) — 8o, is plotted versus time.
According to the rate theory, this quantity should decay
as t~12Int in 2D, and as £~1/2 in 3D. It is seen that the
theoretical curves (solid lines) fit well the simulation data

e(r,t) ~

co [(r/R)*4 —;]_Z [(«/D—t/R)z“d - 1] , d<2
coln(r/R)/In(vDt/R), d=2
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" “in the long time limit. We conclude that the simulation

results are consistent with the theoretical predictions.

V. CONCLUSIONS

We have studied the kinetic behavior of clusters of im-
mobile reactants in the single-species annihilation pro-
cess, The codimension d plays an important role in the
long time limit. The Smoluchowsky theory shows that
a transition from survival to extinction takes place at
d = 2. For d < 2, a finite fraction of the impurities
survives, while for d > 2 all of the impurities eventu-
ally vanish. Furthermore, the asymptotic behavior of the
concentration of impurities depends on the dimension as
well as the codimension. The theoretical predictions are
verified by Monte Carlo simulations.

This study suggests that the rate theory can be ex-
tended to heterogeneous situations. Moreover, a time-
dependent reaction equation is equivalent in the long
time limit to the detailed reaction-diffusion equation.
The success of this theory is remarkable, especially con-
sidering its simplicity. It will be interesting to apply the
same mechanism to more complicated processes, such as
multispecies reactions.
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APPENDIX A: THE QUASISTATIC
APPROXIMATION

The reaction rate k can be found by evaluating the flux
Jj experienced by an absorbing test particle of radius R
due to a diffusing background of concentration ¢g. Hence,
the diffusion equation 8c/0t = DV is solved under the
initial conditions c|;=9 = ¢g and the absorbing boundary
condition ¢(r)[p=p = 0. Although an exact solution can
be obtained, we present a simpler approximate technique.
Since the length scale governing the diffusion process is
v Dt, one assumes that the absorber does not affect the
background concentration at distances larger than v/Dt.
Inside this depletion zone the Laplacian term dominates
the spherically symmetric diffusion equation,
Drl“d%rd“lg;g—) =0, R<r<VDt. (Al)

The quasistatic approximation imposes an additional
time-dependent boundary condition ¢|,_ 5; = co [21,
22]. The concentration profile is readily obtained for
R <r < /Dt

(A2)

co [1— (r/R)*9] / [1 - (\/D—t/R)z‘d] , d>2.
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Above the critical dimension d, = 2, ¢(r,t) approaches a limiting concentration profile. The reaction rate is given by
calculating the total flux seen by the test particle j = DSqR%'8c/0r, with Sz the surface area of the d-dimensional
unit sphere. We quote the leading asymptotic term of the reaction rate, k = j/co,

D¥/4d/2-1 4 <2
koc{ D(lnDt)™, d=2
DR-2 d>2.

(A3)

In the case where the target diffusivity Dr is nonzero, the appropriate diffusion constant is D + Dr. We derived the
continuum rates, however the lattice counterparts can be conveniently obtained by setting R = 1.
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