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The largest component (“the leader”) in evolving random structures often exhibits universal
statistical properties. This phenomenon is demonstrated analytically for two ubiquitous structures:
random trees and random graphs. In both cases, lead changes are rare as the average number of
lead changes increases quadratically with logarithm of the system size. As a function of time, the
number of lead changes is self-similar. Additionally, the probability that no lead change ever occurs
decays exponentially with the average number of lead changes.
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Extreme statistics are important in science, engineer-
ing, and society as they dictate catastrophic events, sys-
tems robustness, financial indices, etc. The theory of ex-
treme statistics provides a powerful analysis framework
and prediction tool [1, 2]. However, it is limited to en-
sembles of independent random variables. Even though
most practical applications involve correlated random
variables, such cases remain largely unexplored [3–5].

We investigate extremal characteristics of two basic
random structures: random trees and random graphs.
Random trees appear in data storage algorithms in com-
puter science [6–8] and in physical processes such as colli-
sions in gases [9]. Random graphs [10, 11] have numerous
applications to theoretical computer science [7, 8], social
networks [12, 13], and physical processes such as poly-
merization [14].

We focus on the largest component, the leader, and
ask: What is the size of the leader? How does the number
of lead changes depend on time and system size? What
is the probability that the leader never changes? Similar
questions were investigated in growing networks [15, 16],
and related leadership statistics were studied in random
graphs by Erdős and ÃLuczak [17].

Random trees and random graphs are special cases of
aggregation processes and hence, we analyze them using
the rate equation approach [18–21]. Characterization of
leadership statistics is sensible only for finite systems.
We thus consider large yet finite systems for which the
rate equation approach yields the leading asymptotic de-
pendence on the system size [22–25].

Our main result is that the total number of lead
changes L grows as L(N) ∼ [lnN ]2 with the system size
N . This as well as other leadership statistics are univer-
sal as they characterize both random trees and random
graphs. The time dependent number of lead changes
L(t,N) attains the scaling form (lnN)2 F (x) with the
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FIG. 1: Illustration of the tree merger process with system
size N = 4. Nodes are denoted by circles, with the top node
(the root) denoted by a bullet. The bottom nodes are the
leafs.

scaling variable x = ln k∗/ lnN where k∗ is the typical
component size at time t. Additionally, the probability
that no lead change has ever occurred decays as e−L.

We start with the simpler case of random trees. A tree
is a hierarchical structure of connected nodes. We term
the top node the root and the bottom nodes the leafs (see
Fig. 1). Initially, the system consists of N trivial trees
in which the root is also a leaf. We grow an ensemble (a
forest) of trees using a recursive procedure in which two
trees are picked at random and attached to a common
root (Fig. 1). This merging process is repeated until a
single tree with N leafs emerges.

We treat the merger process dynamically. Let n be
the number of trees. The transition n → n − 1 oc-
curs with rate rn proportional to the total number of
pairs. Choosing 2/N as the merger rate for each pair (i.e.,
rn = n(n−1)/N) is convenient as in the thermodynamic
limit N → ∞, the normalized density c = n/N evolves
according to d

dtc = −c2. Subject to the initial condition

c(0) = 1 the density is c(t) = (1 + t)−1. We state the
results in terms of time t; the results can be easily refor-
mulated in terms of the number of trees n = N(1 + t)−1.

The size distribution is obtained similarly. Let nk be
the number of trees with k leafs. The normalized density
ck = nk/N evolves according to the Smoluchowsky rate
equation d

dtck =
∑

i+j=k cicj − 2cck with the monodis-

perse initial conditions ck(0) = δk,1. The rate equation
reflects the fact that trees are merged randomly, indepen-
dent of their size. It can be solved (using the generating
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functions technique for example) to give [18, 19]

ck(t) =
tk−1

(1 + t)k+1
. (1)

In the long time limit, the size distribution attains a sim-
ple self-similar behavior

ck(t) ' k−2
∗ Φ(k/k∗), Φ(x) = e−x (2)

with the typical size k∗ ' t.
What is the average size of the largest tree (the leader)?

Using the size distribution, we can answer an even more
general question. Let lr(t) be the average size of the r-
largest tree with the leader l ≡ l1. From the cumulative
distribution uk =

∑

j≥k nj = Nt−1[t/(1 + t)]k and the
relation ulr = r, the size of the rth leader is

lr(t,N) =
ln[N/rt]

ln[(1 + t)/t]
. (3)

There are two regimes of behavior. In the short time
limit, t ¿ 1, one has lr(t,N) = 1 + ln[N/r]/ ln[1/t].
Moreover, from nk ' Ntk−1 the first dimer appears at
t2 ' N−1; the first trimer appears at t3 ' N−1/2 and
then, there are of the order N1/2 dimers, so this trimer
results from the leading dimer with probability of the
order N−1/2. At the crossover point, t ≈ 1, the size
of the leader varies logarithmically with the system size,
l(t ≈ 1, N) ∼ lnN . In the long time limit, tÀ 1, the size
of the leader grows linearly (up to a logarithmic correc-
tion) with time

lr(t,N) ' t ln
N

rt
. (4)

What is the average size lw of the winner (the leader
that never relinquishes the lead)? At what time tw does
the winner emerge? Both quantities grow linearly with
N : lw ' αN and tw ' βN as follows from Eq. (4).
The curve α = −β lnβ has an extremum at α = β =
e−1 ∼= 0.36788 thereby implying the bounds: α, β < e−1.
Finding the values of α and β is an open problem.

How many lead changes L(t,N) occur as a function
of time? As a function of system size? What is the
total number of lead changes L(N) ≡ L(t = ∞, N)?
In our definition, a lead change occurs when two trees
(none of which is the leader) merge to become larger
than the leader. For short times, t ¿ 1, almost every
lead change introduces a new leader, and since the leader
grows in increments of unity L(t,N) = l(t,N) − 1. For
long times, t À 1, consider the cumulative distribution
uk ' Nt−1 exp(−k/t). Its growth rate immediately gives
the rate by which the leader is surpassed, d

dtL(t,N) =
d
dtuk

∣

∣

k=l
(this rate properly accounts for events in which

two non-leaders are merging to surpass the leader). As
ul ' 1, we have d

dtL(t,N) ' lt−2 ' t−1 ln N
t from which

the time-dependent number of lead changes is

L(t,N) ' ln t lnN − 1

2
(ln t)2. (5)
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FIG. 2: The normalized time dependence of the number of
lead changes for random trees, L(t, N)/L(N), versus the scal-
ing variable x = ln t/ ln N . The simulation data, representing
an average over 103 Monte Carlo runs, is compared with the
theoretical prediction 2F (x) = 2x− x2.

Interestingly, this quantity obeys the scaling form

L(t,N) = (lnN)2 F (x), x =
ln t

lnN
(6)

with the quadratic scaling function: F (x) = x − 1
2x

2

(Fig. 2). The scaling variable is unusual: a ratio of log-
arithms, in contrast with the ordinary ratio underlying
the size distribution (2).

To check these theoretical predictions, we performed
large-scale Monte Carlo simulations. In the simulations,
randomly chosen trees are merged repeatedly. Keeping
track of the leader and averaging over many independent
realizations, we observe a scaling behavior that is consis-
tent with Eq. (6). However, as a function of the system
size, the convergence is slow because the scaling variable
involves logarithms.

The time dependent behavior can be used to obtain
the total number of lead changes. Substituting tw = βN
into Eq. (5) gives

L(N) ' A(lnN)2 (7)

with A = F (1) = 1/2. Both the leading asymptotic
behavior and the lnN correction are confirmed numer-
ically. Moreover, the numerical prefactor A = 0.50(1)
agrees with the theoretical prediction (Fig. 3). Since
L(t ≈ 1, N) ∼ lnN , the majority of lead changes occur
when tÀ 1.

How is the number of lead changes distributed? What
is the probability that no lead change occur? Let Pn(t,N)
be the probability that n lead changes occur till time
t. We assume that the flux surpassing the leader char-
acterizes the evolution of the probability distribution
d
dtPn = ( d

dtL) [Pn−1 − Pn]. With the initial condition
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FIG. 3: The total number of lead changes L(N) versus the sys-
tem size N . Shown are simulation results for Random Trees
(RT) and Random Graphs (RG) representing an average over
104 realizations.

Pn(0, N) = δn,0, the distribution is Poissonian

Pn(t,N) =
[L(t,N)]n

n!
e−L(t,N). (8)

Consequently, the distribution of the total number of
lead changes Pn(N) ≡ Pn(t =∞, N) is also Poissonian:

Pn(N) = Ln

n! e
−L with L ≡ L(N) given by (7). Hence,

the standard deviation in the number of lead changes
σ(N) grows as σ(N) '

√
A lnN . Furthermore, the prob-

ability that no lead change occur (the survival probability
of the first leader) S(N) ≡ P0(N) decays faster than a
power-law but slower than a stretched exponential

S(N) = exp[−L] ' exp
[

−A(lnN)2
]

. (9)

The asymptotic N -dependence is confirmed numerically
(Fig. 4).

We now consider graphs, grown randomly as follows.
Initially, the system consists of N single-node graphs.
Then, two nodes are picked at random and a link is drawn
between them. If they belong to two distinct graphs, the
two become one. This process is repeated indefinitely.
Let nk be the number of graphs of size k. The normalized
density ck = nk/N evolves according to the rate equa-
tion d

dtck = 1
2

∑

i+j=k ijcicj−k ck with the monodisperse

initial conditions ck(0) = δk,1. The rate equation reflects
the fact that two graphs are connected with rate propor-
tional to the product of their sizes. This equation can be
solved using generating functions to give [20, 21]

ck(t) =
(kt)k−1

k · k!
e−kt. (10)

At time t = 1, the system undergoes a gelation transi-
tion: it develops a giant component that eventually takes
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FIG. 4: The survival probability of the initial leader S(N)
versus the system size N . The number of realizations was 1010

and 108 for random trees and random graphs, respectively.

over the entire system. Close to the gelation time, the
size distributions attains the scaling behavior

ck(t) ' k
−5/2
∗ Φ(k/k∗), Φ(x) ∝ x−5/2e−x/2. (11)

The typical size diverges: k∗ ' (1− t)−2 as t→ 1. At the
gelation time, the size distribution develops an algebraic
tail ck(t = 1) ∼ k−5/2. Hence, the cumulative distribu-
tion is uk ∼ Nk−3/2 and with the criterion ulw ∼ 1 we
obtain the average size of the giant component (the win-
ner): lw ∼ N2/3 [10]. The time at which it emerges is
1− tw ∼ N−1/3.

The size of the leader is again estimated from the rela-
tion ul = 1. For t¿ 1, the size of the leader l(t,N), the
number of lead changes L(t,N), as well as the number of
distinct leaders are all approximately equal and the same
as for random trees. The number of lead changes is of
the order lnN in this phase; furthermore, L(t,N) ∼ lnN
for t < 1. The behavior near the gelation time 1− t¿ 1
is a bit more interesting. From the large-k behavior,
uk ∼ N(1− t)−2k−5/2 exp[−k(1− t)2/2], and ul = 1 we
arrive at following implicit relation for the leader l(t,N):
l ' 2(1− t)−2 lnN − 3(1− t)−2 ln l . Inserting the ze-
roth order approximation l(0) = 2(1− t)−2 lnN into ln l
on the right-hand side of the above relation and ignoring
ln lnN terms yields the leader size

l ' 2

(1− t)2
ln[N(1− t)3]. (12)

The rate by which the leader changes is estimated from
d
dtL = d

dtuk
∣

∣

k=l
' l(1 − t). Substituting Eq. (12) and

integrating, the number of lead changes is

L(t,N) ' 2 lnN ln
1

1− t
− 3

[

ln
1

1− t

]2

. (13)

It attains the scaling form

L(t,N) ' (lnN)2 F (x), x =
ln 1

1−t

lnN
(14)
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with the scaling function F (x) = 2x − 3x2. As this be-
havior holds up to time tw, where 1 − tw ∼ N−1/3, the
total number of lead changes grows according to Eq. (7)
with A = F (1/3) = 1/3. Furthermore, the distribution
of lead changes is Poissonian as in (8) and the survival
probability decays according to (9).

As terms of the order ln lnN/ lnN were neglected, the
scaling behavior and the leading asymptotic behavior
may be realized only for extremely large systems. More-
over, the computational cost of random graph simula-
tions is larger because graphs are chosen with proba-
bility proportional to their size. Nevertheless, we can
confirm the predicted system size dependence of L(N)
(Fig. 2) and S(N) (Fig. 3) numerically. The prefactor
A = 0.20(2) is lower than the theoretical value A = 1/3,
perhaps due to the slow convergence.

Let us compare random trees and random graphs.
They seem very different, e.g., the gelation transition oc-
curs in one case but not in the other. Yet, they exhibit
similar extremal characteristics. In both cases, the to-
tal number of lead changes L(N) grows as [lnN ]2 and
the survival probability decays as exp[−L]. Moreover,
even the seemingly distinct temporal characteristics can
be reconciled, e.g., in both cases the size distribution at-
tains the scaling form ck(t) ∝ Φ(k/k∗) when t→∞ (for
random trees) and t→ 1 (for random graphs). Of course,
the actual time dependence of the typical scale is differ-
ent: k∗ ∼ t and k∗ ∼ (1 − t)−2, respectively. The size
of the leader can be rewritten as l ≈ k∗ ln[N/kγ∗ ] with
γ = 1 and 3/2, respectively. Furthermore, Eqs. (6) and
(14) can be reconciled by writing the scaling variable in
the unified form x = ln k∗/ lnN .

We now restrict our attention to the survival prob-
ability S(N) and supplement the leading behavior (9)
with bounds. Consider random trees. A lower bound
for S(N) is obtained from a greedy scenario in which
all merger events involve the leader till it reaches size
N/2. The probability that the second merger involves
the leading dimer is (N − 1)−1; the probability that the
third merger involves the leading trimer is (N − 2)−1;
etc. Thus, the greedy scenario is realized with proba-
bility

∏

j<N/2
1

N−j , thereby providing the lower bound

S(N) > (N/2)!
(N−1)! . An upper bound can be obtained by

estimating the number of trees the size of the leader.
There are of the order N1/2 dimers when the first trimer
is born, n2(t3 = N−1/2) = N1/2. The leading dimer
retains the lead with probability inversely proportional
to the number of dimers, N−1/2. Similarly, this leading
trimer retains the lead with probability proportional to
N−1/3. Therefore the upper bound

∏

j<lnN N−1/j is es-

timated as N− ln lnN (the cutoff j < lnN is dictated by
the size of the leader at the crossover time t ≈ 1). Hence,
the survival probability obeys

( e

2N

)
N

2

< S(N) < exp [−(lnN) · (ln lnN)] , (15)

where the lower bound was simplified using the Stirling
formula. Note that the upper bound merely assures that

the lead never changes in the early phase t < 1 when the
average number of lead changes is only lnN .

For random graphs, the greedy scenario is again sim-
ple to analyze since the probability that in a sys-
tem with a leader of size j and N − j monomers the
probability that the next merger involves the leader
is pj = [j(N − j)]/[j(N − j) + 1

2 (N − j)(N − j − 1)] or
pj = (2j)/(N + j − 1). The product

∏

j<N/2 pj provides

the lower bound. Asymptotically, the lower bound decays
as λN with λ = (2/3)3/2 = 0.544331 . . .. On the other
hand, repeating the above argument yields the same up-
per bound, so

λN < S(N) < exp [−(lnN) · (ln lnN)] . (16)

The upper bound is again much closer to the actual
asymptotic behavior.

In conclusion, random graphs and random trees exhibit
similar leadership characteristics. As in random growing
networks [16], lead changes are infrequent given that the
overall number of lead changes increases only logarithmi-
cally with the system size. The time dependent number
of lead changes approaches a self-similar form asymptot-
ically. The convergence to the asymptotic behavior is
much slower for extremal statistics compared with size
statistics due to the various logarithmic dependences.
Consequently, the asymptotic behavior may difficult to
detect in practice, especially for random graphs.

To obtain the extremal characteristics, we employed
the scaling behavior of the size distribution outside the
scaling regime, namely, at sizes much larger than the typ-
ical size where, at least formally, statistical fluctuations
can no longer be ignored. Interestingly, the resulting sys-
tem size dependence for the various leadership statistics
appears to be asymptotically exact. Further analysis is
needed to illuminate the role of statistical fluctuations,
for example by characterizing corrections to the leading
behavior.

The virtue of the rate equation approach to analyzing
extremal characteristics is its simplicity, robustness, and
generality. It applies to general aggregation processes
where the merger rate may depend in a complicated man-
ner on the aggregate size or in situations where there is
an underlying spatial structure. We find that the above
leadership statistics extend to algebraic merger rates as
well as to aggregation in one spatial dimension [26]. This
method is also applicable to other extremal features in-
cluding for example laggard (smallest component) statis-
tics. In the case of random trees, for instance, the total
number of laggard changes grows logarithmically with
the system size.
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