
Knots and Random Walks in Vibrated Granular Chains

E. Ben-Naim1,2, Z. A. Daya2,3, P. Vorobieff2,4, and R. E. Ecke2,3
1Theoretical Division, 2Center for Nonlinear Studies, 3Condensed Matter & Thermal Physics Group

Los Alamos National Laboratory, Los Alamos, NM 87545
4Department of Mechanical Engineering, University of New Mexico, Albuquerque NM 87131

We study experimentally statistical properties of the opening times of knots in vertically vibrated
granular chains. Our measurements are in good qualitative and quantitative agreement with a
theoretical model involving three random walks interacting via hard core exclusion in one spatial
dimension. In particular, the knot survival probability follows a universal scaling function which is
independent of the chain length, with a corresponding diffusive characteristic time scale. Both the
large-exit-time and the small-exit-time tails of the distribution are suppressed exponentially, and
the corresponding decay coefficients are in excellent agreement with the theoretical values.
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Topological constraints such as knots [1] and entangle-
ments strongly affect the dynamics of filamentary objects
including polymers [2–5] and DNA molecules [6,7]. Typi-
cally, large time scales are associated with the relaxation
of such constraints [8,9]. Understanding the physical
mechanisms governing the relaxation of such constraints
is crucial to characterizing flow, deformation, as well as
structural properties of materials consisting of ensembles
of macromolecules, e.g., polymers, gels, and rubber.

Scaling techniques, such as de Gennes-Edwards repta-
tion theory, provide a powerful tool for modeling dynam-
ics of topological constraints [8,9]. These are successful
when the precise details of the interparticle interactions
are secondary relative to the geometric effects. However,
topological constraints are difficult to control experimen-
tally and typically, they can be probed only using indirect
methods. Here, we introduce a physical system where
these difficulties are greatly reduced, thereby enabling a
detailed quantitative comparison with theory.

FIG. 1. Illustrative snapshots of the vibrated knot experi-
ment, taken every ten plate oscillation cycles.

In this Letter, we study dynamics of knots in vibrated
granular chains. This system has an appealing simplicity
as the “molecular weight” of the chain and the driving
conditions can be well controlled. Additionally, the topo-
logical constraints can be directly observed. We restrict
our attention to simple knots and investigate the time
it takes for a knot to open. We find that the average

unknotting time τ is consistent with a diffusive behavior
τ ∼ N2 where N is the number of beads in the chain. We
also show that statistical properties of opening times are
well described by a one dimensional model where three
random walks, representing the three exclusion points
governing the knot, interact via excluded volume inter-
actions. This model provides an excellent approximation
to the knot survival probability. Furthermore, quanti-
tative predictions of this model including fluctuations in
the exit times, as well as the coefficients governing the
exponential decay of the extremal tails of the distribution
are in excellent agreement with the measured values.

In the experiments, a simple knot was tightly tied
in the center of a ball chain and placed onto a vibrat-
ing plate. In Fig. 1, we show images representative of
the unknotting process starting from a tightly knotted
chain, Fig. 1a, through intermediate states, Figs. 1b-e
to an unknotted state, Fig. 1f. The chain consists of N
hollow nickel-plated steel spheres of diameter 2Rbead =
2.37 ± 0.02 mm connected by thin rods of diameter
0.52 ± 0.02 mm. The maximum extension between two
beads is 0.94±0.01 mm, or roughly 0.8Rbead. The stain-
less steel plate has a diameter 13.40 cm. The beads es-
sentially interact via hard core repulsion (deformation
experienced during collisions < 1%), and the connecting
rods act as nonlinear springs. This bead-spring chain
can be viewed as a “granular polymer”. Beads experi-
ence dissipative inelastic collisions with the plate as well
as with other beads, and motion is sustained by injecting
energy via the harmonically oscillating plate [10].

Similar to experiments of vertically-vibrated granular
materials [11,12], given the plate height z = A sinωt,
with amplitude A, angular velocity ω = 2πν, and fre-
quency ν, the driving conditions are characterized by
the frequency ν and the dimensionless acceleration Γ =
Aω2/g (g is the gravitational acceleration). We examined
the parameter range 12Hz < ν < 16Hz and 1.7 < Γ < 3,
but as statistical properties of the unknotting time were
independent of the driving conditions, we report results
obtained with ν = 13Hz and Γ = 2.40± 0.05 (variations
in the acceleration across the plate are smaller than 2%).
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FIG. 2. The average unknotting time τ versus the chain
length N − N0. Each data point represents an average over
400 measurements. The line represents a power-law best fit.

Let us first discuss the dependence of the average un-
knotting time τ on the chain length N . We have mea-
sured this time for chains of lengths 30 ≤ N ≤ 273. The
lower limit was dictated by the knot size as the minimal
number of beads associated with the knot is N0 = 15±1.
Additionally, the error in measurement is significant for
times much smaller than 1 second, and obtaining statis-
tically significant measurements for large opening times
becomes prohibitive. Nevertheless, the results shown in
Fig. 2 provide evidence of diffusive behavior via the scal-
ing of τ with N :

τ ∼ (N −N0)
δ, (1)

with δ ∼= 2.0± 0.1 (the rationale for subtracting the knot
size N0 is given below). A power-law best fit of the data
yields an exponent of δ = 1.95± 0.07, and the larger er-
ror bar was obtained by combining possible systematic
errors with the statistical uncertainties.

Next, we examine whether τ is the only time scale un-
derlying the distribution of opening times. Let S(t,N) be
the probability that a knot placed on the vibrating plate
at time 0 is still “alive” at time t. This probability yields
R(t,N), the exit time distribution R(t,N) = − d

dtS(t,N),

and the average time is given by τ =
∫

dt tR(t,N). The
measured survival probabilities suggest that rather than
depending on two parameters t and N , S(t,N) is char-
acterized by a single scaling variable

S(t,N) = F (z), z =
t

τ
. (2)

As shown in Fig. 3, apart from systematic deviations for
the two shortest chains (this data is not used in further
analysis), a universal scaling function underlies survival
probabilities obtained for different chains. This scaling
behavior is very useful as it enables us to combine dif-
ferent sets of measurements and therefore evaluate quan-
titative characteristics of the distribution with smaller
statistical uncertainties.
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FIG. 3. Scaling of the survival probability. The survival
probabilities corresponding to the data points in Fig. 2 are
plotted versus the scaling variable z = t/τ . Although τ
changes by two orders of magnitude, the distributions follow
a universal scaling curve.

Our theoretical model is based on simple observations
of the knot dynamics. Whereas the detailed chain motion
is complicated, being determined by wave motion excited
in the chain and by collisions between beads and between
beads and the plate, the knot moves via a series of short
range hops of the cross-links constituting it. When one of
the two external cross links defining the knot crosses one
of the chain ends for the first time, the knot opens. The
diffusive opening times suggest that the hops are random
in direction.

In a chain of length N there areN−1 links, and as indi-
cated in Fig. 1c, the knot motion appears to be subject to
three constraints, namely exclusion points located at po-
sitions 1 < x1 < x2 < x3 < N−1. These exclusion points
cannot cross each other and, since the knot itself contains
N0 links, one must have x3 − x1 > N0. Our theoretical
model assumes that (i) these points hop randomly, (ii)
their motion is uncorrelated, i.e., all three points hop in-
dependently, and (iii) the N0 links constituting the knot
can be divided equally among the three exclusion points,
i.e., xi+1 − xi > N0/3. With these three simplifying as-
sumptions, we arrive at a model of three identical random
walks interacting via excluded volume interactions on a
one dimensional lattice. The finite N0/3 size of these
three “particles” merely amounts to an overall rescaling
of the lattice size N → N −N0.

Within the model framework, the knot survival prob-
ability equals the probability that all three walks re-
main confined to a finite domain. We are interested
primarily in large chains, and hence, we consider the
continuum limit xi → ∞, N → ∞ with the variables
x = x1/N , y = x2/N , and z = x3/N kept finite. Since
the three exclusion points perform independent random
walks with identical diffusivity D, the problem is there-
fore reduced to diffusion in three dimensions [13]. Set-
ting the diffusion coefficient to unity by redefining the
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time variable t → Dt/N2, then P (x, y, z, t), the prob-
ability that at time t the three walks are at positions
0 < x < y < z < 1 respectively evolves according to the
diffusion equation ∂tP = ∇2P . The initial conditions
read P (x, y, z, 0) = δ(x − x0)δ(y − x0)δ(z − x0) with x0

the knot starting position. The reflecting boundary con-
ditions (∂x−∂y)P

∣

∣

x=y
= (∂y−∂z)P

∣

∣

y=z
= 0 ensure that

the walks do not cross each other. Finally, the survival
probability S3(t), namely the probability that all three
walks remain confined to within the box boundary, is ob-
tained by enforcing the absorbing boundary conditions
P (0, y, z, t) = P (x, y, 1, t) = 0, and integrating the prob-

ability S3(t) =
∫ 1

0
dx

∫ 1

x
dy

∫ 1

y
dzP (x, y, z, t). The solu-

tion P (x, y, z, t) = 3!p(x, t)p(y, t)p(z, t) can be easily con-
structed from the solution of the one dimensional prob-
lem ∂tp(x, t) = ∂xxp(x, t) subject to the corresponding
absorbing boundary conditions p(0, t) = p(1, t) = 0, and
initial conditions p(x, 0) = δ(x−x0). Indeed, the product
solution satisfies the evolution equation as well as the ini-
tial and boundary conditions. Physically, since the walks
are identical, the interacting random walk problem can
be mapped to a noninteracting problem by simply ex-
changing the identity of the particles whenever their tra-
jectories cross. In general, Sm(t), the survival probability
of m random walks is

Sm(t) = [s(t)]
m

, (3)

with the single walk survival probability

s(t) =
∫ 1

0
dx p(x, t) obtained by integrating the well-

known solution of the linear diffusion problem [14]
p(x, t) = 2

∑

∞

n=1 sin(nπx0) sin(nπx) exp
[

− (nπ)2t
]

,

s(t) =
4

π

∞
∑

k=0

sin[(2k + 1)πx0]

2k + 1
e−(2k+1)2π2t. (4)

In the following, we set x0 = 1/2.
Statistical properties of the exit time distribution can

be determined from the survival probability. For exam-
ple, Rm(t), the exit time probability distribution func-
tion is Rm(t) = − d

dtSm(t), and moments of the exit

time distribution are given by 〈tn〉m =
∫

dt tnRm(t).
As expected, the mean first passage time decreases
as the number of walks increases τm ≡ 〈t〉m =
1/8, 0.073671, 0.056213 for m = 1, 2, 3, respectively.
Rescaling the mean exit times to unity via the scal-
ing function Fm(z) = Sm (z〈t〉m) allows us to compare
the results with the experimental data. As seen from
Fig. 4, the three-random-walk model is in remarkable
agreement with the data: the two distributions agree to
within 4% in the range z < 3 (F > 10−2). Further-
more, fluctuations in the mean unknotting times, charac-
terized by the width of the normalized unknotting time
distribution σ2 = 〈z2〉 − 〈z〉2 = (〈t2〉 − 〈t〉2)/〈t〉2 are
within 1.5% of each other. For the experimental data
one has σ = 0.62(1), whereas the theoretical values are

σ = 0.81649(
√

2/3), 0.70495, 0.63047 for m = 1, 2, 3.
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FIG. 4. The survival probability F (z) versus the scaling
time variable z = t/τ . The experimental curve represents
6000 data points obtained by aggregating different sets of
measurements with 100-400 data points in each set. The the-
oretical curve is obtained from Eqs. (3)-(4) with m = 3.

Extremal properties can be studied as well. One may
ask “what is the probability that the knot opens in a time
equal to k times larger or 1/k smaller than the average
time?” (with k À 1). The answer to either questions
is “exponentially small”. The large tail statistics follow
directly from Eq. (4): the first term in the series, corre-
sponding to the largest decay time, governs the long time
behavior and Sm(t) ∼ exp(−mπ2t). The large argument
tail of the survival probability is suppressed exponentially

F (z) ∼ e−βz for z À 1, (5)

with β = mπ2τm. This exponential behavior is ob-
served experimentally as shown in Fig. 5. The quanti-
tative agreement is striking with the experimental value
β = 1.65(2) within 1% of the theoretical value corre-
sponding to the three random walk model, β = 1.66440.

In the complementary short time (t→ 0) limit, the sur-
vival probability can be found by performing a steepest
descent analysis on the leading large argument (q →∞)
behavior of the exit probability Laplace transform ob-
tained by differentiating Eq. (4)

∫

dte−qt
[

− d
dts(t)

]

=
[

cosh(
√
q/2)

]

−1
. In this case one finds that 1− Sm(t) ∼√

t exp[−1/16t], and consequently, the small argument
tail decays exponentially with inverse z

1− F (z) ∼
√
z e−α/z for z ¿ 1, (6)

where α = 1/16τm. Here, the theory suggests an addi-
tional algebraic prefactor. Although the data are con-
sistent with such behavior as shown in Fig. 5, we can
only address the exponential behavior with our current
statistics. The difference in this case is larger: the exper-
imental data yields α = 1.2(1) whereas the theoretical
value is α = 1.11184. Nevertheless, it is remarkable that
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even this more subtle statistic is in good agreement with
the theoretical predictions.
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FIG. 5. The exponential tails of the survival probability.
The experimental data of Fig. 4 (solid curves) is plotted ver-
sus the three random walk theory (dashed curves). The large
argument tail is shown by plotting F (z) versus z, while the
small argument tail is shown in the inset where [1− F (z)] /

√
z

is plotted versus z−1.

We also examined other predictions of the theory by
placing the knot at off-center starting positions x0 6= 1/2.
One can then study conditional statistics of knots exiting
at the near and far ends. Overall, we find that statistical
properties such as the overall survival probabilities, the
conditional survival probabilities, and the relative fluc-
tuations in the exit times are in reasonable quantitative
agreement with the three random walk model. Addition-
ally, we verified that the coefficient characterizing the
large tail decay of the distribution is independent of x0

in agreement with Eqs. (3)-(4), reflecting that the initial
conditions are “forgotten” by long lasting knots.

To test the range of validity of the above results, we
studied how τ and F (z) depend on the driving conditions.
Fixing the acceleration at Γ = 2.4, both τ and F (z) were
frequency independent in the range 12Hz < ν < 16Hz.
Setting the frequency at ν = 13Hz, F (z) remained the
same in the accessible acceleration range 1.7 < Γ < 3.
This is despite the fact that τ diverged as the accelera-
tion approached a critical value Γc ∼= 1.6, below which
the cross links did not move and consequently, the knot
remained tied. These observations are consistent with
recent experiments in vibrated granular layers where the
behavior is governed primarily by Γ [11,12]. Addition-
ally, by doubling the sidewall diameter, and measuring
τ , F (z), and σ, we confirmed that the effects of the side-
walls were negligible even for the longest chain. In short,
our findings suggest that the driving parameters (Γ, ν)
and the chain parameters merely determine the hopping
rate D, and that D is uniform along the chain and inde-
pendent of the chain length. In units of the characteristic
time scale, τ , opening time statistics are given by a uni-

versal scaling function F (z).
The most significant assumption made in our model is

that the motion of the exclusion points is uncorrelated.
While such correlation is present for small knots, possi-
bly responsible for the larger discrepancy in the short
exit time tail and in the survival probability of short
chains, it is possible, however, that it becomes negligi-
ble beyond some fixed correlation length. In any case,
the random walk model can be useful for characteriz-
ing isolated topological constraints. Measurements of
τ(N) ' τ3(N − N0)

2/D can be used to extract the
constraint size N0 as well as the hopping rate D. For
instance, minimizing the statistical uncertainty in the
power law best fit to the data in Fig. 2 yields N0

∼= 15.2,
consistent the actual knot size N0 = 15 ± 1, while the
hopping rate D = 11 ± 1 sec−1 is found to be compa-
rable with the frequency ν = 13Hz. Furthermore, the
effective number of constraints m in more complicated
knots can be deduced by comparing the measured F (z)
with the theoretical Fm(z).

In conclusion, vibrated granular chains provide a use-
ful tool for probing dynamics of topological constraints.
As the vibrating plate effectively plays the role of a heat
bath, constantly supplying the system with energy, this
system may prove useful for studying issues of current in-
terest in polymer dynamics as well as in granular media.
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