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We study statistical properties of the Kolmogorov-Avrami-Johnson-Mehl nucleation-and-growth model in
one dimension. We obtain exact results for the gap density as well as the island distribution. When all
nucleation events occur simultaneously, we show that the island distribution has discontinuous derivatives on
the raysx,(t)=nt,n=1,23 ... . Weintroduce an accelerated growth mechanism with growth rate increasing
linearly with the island size. We solve for the interisland gap density and show that the system reaches
complete coverage in a finite time and that the near-critical behavior of the system is robust; i.e., it is
insensitive to details such as the nucleation mechariSA063-651%96)10910-7

PACS numbg(s): 05.40:+j, 02.50.Ey, 82.60.Nh, 82.20.Mj

[. INTRODUCTION motivated by an accelerated random sequential adsorption
(RSA) procesd18]. In the ordinary RSA of monomers on a
Inhomogeneous systems where stable and metastable fettice an adsorption attempt on a site is successful only if
gions coexist are common in nature. Phase separation aridat site is empty. Unlike ordinary RSA where an attempt to
coarsening1], aggregatiori2], wetting[3], dendritic growth ~ adsorb on an occupied site is rejected, in the accelerated
[4], and growth of breath figurd$] are just a few examples process any attempt is successful — if a monomer is depos-
of such systems. Typically, the stable phase grows into théed onto an already existing island it diffuses until it reaches
metastable phase according to complicated kinematic rule@n empty site on the island boundary. Hence, islands grow
However, in certain cases such as adsorgi@nsimple bal-  with a rate increasing with island size; if the diffusion time
listic growth rules apply. The Kolmogorov-Avrami-Johnson- scale is very small compared to the adsorption time scale, the
Mehl (KAJM) nucleation-and-growth process is a naturalgrowth rate becomes a linear function of the island length.
model incorporating nucleation of stable phases with ballisticThe continuum version of this model is simply the KAJM
growth [6-17]. nucleation-and-growth process with growth rate linear in the
In this work we present exact results for various statisticaisland size. While for the lattice model only an approximate
properties of the KAJM growth model in one dimension. Thetheory exists, we generalize the KAJM theory to the accel-
process depends on the nucleation rate as well as the initi&rated growth model. Exact results for the island gap distri-
concentration of the growing phase. There are two limitingbution show that the system is covered in a finite time. Also,
cases, instantaneous nucleatiubsequent nucleation rate the behavior near complete coverage is robust. It is indepen-
vanishey and continuous nucleatiofvanishing initial con- dent of many details of the growth velocity as well as the
centration. The growth rate of the stable phase may alsohucleation mechanism; it is the same for instantaneous and
depend on size of the growing islands. Besides the ordinargontinuous nucleation.
KAJM model with size-independent growth rate, the accel- The rest of this paper is organized as follows. In Sec. I,
erated KAJM model with growth rate linear in size is alsowe consider the ordinary KAJM nucleation-and-growth pro-
solvable as we shall demonstrate in this paper. cess. We first review the existing theory, and present a sum-
To solve the KAJM model with linear growth rate, a mary of the exact results for both instantaneous and continu-
deeper understanding of the island-size distribution is nece®us nucleation. We then consider the detailed island gap
sary. Surprisingly, even for the classical KAJM model little density and analyze its properties. In Sec. I, we introduce
is known about the island-size distribution function. Hence the accelerated growth model and solve for the exact inter-
we first investigate the KAJM model with a constant growthisland gap distribution. Additionally, we analyze the behav-
velocity. We introduce the density of islands containimg ior close to complete coverage.
“seeds” and show that this distribution is not a smooth func-
tipn _of tr_]e space varjablg. As a result, thg to.tal island Iength Il THEORY OF NUCLEATION AND GROWTH
distribution has spatial discontinuous derivatives at every in- IN ONE DIMENSION
teger multiple oft. In the continuous nucleation case, we
obtain only the inverse Laplace transform of this generalized In the ordinary Kolmogorov-Avrami-Johnson-Mehl
island distribution. However, an asymptotic analysis showsnodel sizeless island8seeds”) nucleate randomly in space
that the relative fraction of islands containingseeds decays with ratey(t) per unit length, and grow with constant veloc-
algebraically in time rather than exponentially as in the caséty, which we set equal to 1/2, in both positive and negative
of instantaneous nucleation. directions. A collision between two such growing islands
In the second part of our study, we introduce an accelerresults in a similarly growing island whose length is given by
ated nucleation-and-growth process where the growth velodhe sum of its constituents’ lengths. Since islands grow with
ity depends on the island size. This growth mechanism isinit rate, the system is covered with a rate proportional to the
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density of islandsN(t); in other words, the fraction of un- agn(X,t) agn(X,t)
covered space§(t), satisfies the rate equation b ax TY(US(1)8,28(x)
da ) n-1 X
t _
T:_N(t)_ (D) +a(t) m§=:1 JO dygm(Yat)gnfm(X y,t)
Let us introducef(x,t), the density of interisland gaps of —2N(1)gn(x,1) |. ®)

sizex at timet. The total island density and the uncovered

fraction are simply given byN(t)=/[gdxf(x,t) and This equation simply reflects the fact that the number of

S(t)=fzdxxf(x,t), respectively. The gap distribution S€eds is conserved during collisions. .

evolves according to the following rate equation: To solve the above equation, itis usef_ul to introduce the
Laplace transform of the generating functiongggfx,t) de-
fined as g(s,z,t)=[pdxZ,=12"€"%gy(Xx,t). This “joint

of(x,t)  af(x,t) transform’ satisfies

=T oxin+ 2y [ dyfy.

) dg(s,zt)

s =—[s+2a(t)N(t)]g(s,zt)

The first term in the right-hand side of E€) accounts for +zy(H)S(t) +a(t)g(s,z,1)% (6)

the shrinking of a gap caused by growth of its two neighbory; ey information concerning the island distribution

ing islands. The last two terms represent 16gain of 9aps  can pe directly extracted frorg(s,z,t). For example, the
due to nucleation of seeds. The rate of change in the 'Slangaplace transform of the island  distribution

density is evaluated by integrating E@), g(s,t)=[odxe 3g(x,t), can be readily found from the
joint Laplace transform,g(s,t)=g(s,z=1t). The total
dN(t) Fjensity pf islands containing seeds,gn(t.) ='f‘§,°dxgn(x,t),
. ~fOH+y(OSH). (3 is obtained by considering a vanishing, namely,

g(zlt):2n>lzng_n(t_):g(szovz!t)' .
Two natural limits of KAJM nucleation-and-growth pro-
Additionally, multiplying Eq.(2) by x and integrating, we Ce€ss are instantaneous nucleation and continuous nucleation.
recover Eq(1), thus providing a check of self-consistency. In instantaneous nucleation all seeds start growing at the
A complementary distribution ig(x,t), the density of Same time, taken as=0 for convenience. In continuous
islands of sizex at timet. The number density and the frac- nucleation the space contains no seeds initially and seeds

tion of the uncovered space can be alternatively expressﬂ?p.ear uniformly in space and time on yet uncovered space.
via the island distribution: N(t)=/5dxg(x.t) and hile for the former case, once the positions of the seeds are

_ o . : specified the growth is fully deterministic, in the latter case,
S(t)=1-—fodxxgx,t), respectively. The densitg(x,t)  {he process is stochastic. We now present exact results for
obeys[16] both cases using the above formalism.

ag(x.t) ag(x.t) A. Instantaneous nucleation
T o T YOSHax) In instantaneous nucleatiog(t)=T"§(t) since all nucle-
ation events occur simultaneouslytat 0. Hence fort>0,
X Eqg. (2) can be rewritten asf(x,t)/dx_=0 with x.=x=t,
f dyg(y,t)g(x—y,t) =2N(t)g(x,t) |. and the gap distribution is thus a function of the variable
0 X,=x+t only. Let the initial gap distribution be
4) fo(x)=f(x,t=0); then the solution for an arbitrary initial
distribution is readily found (x,t)=fy(x+t). We setl’'=1
without loss of generality, and furthermore, we restrict our

While the first term in the right-hand side of E@) corre-  ayention to the initial conditions where the seeds are distrib-
sponds to g.rowth mth unit yelocny, the second term repre-;te uniformly in spacefo(x)=e"*. In this case, the solu-
sents creation of sizeless islands due to nucleation. Thgyp f(x,t)=fo(x+1) becomes

last two terms describe coalescence events between two
growing islands. Integrating Eq{4), one finds that f(x,t)=e7*7", (7)

N(D) = Jodxg(x,) zsatlsfles the rate . equation rpe jsiand number density as well as the uncovered fraction
dN(t)/dt=—a(t)N(t)"+ (t)S(t). Comparing this expres- yecay exponentially in timél(t)=S(t)=e!. The average
sion with Ezq. (3), the prefactora(t) is found, a(t) island length can be easily found as well
=f(0/N()~. o _  (x(1))=[1-S(t1)]/N(t)=e'—1. These average quantities
Another interesting quantity ig,(x,t), the density of is-  were originally derived from simple consideratiditsg]. For

lands of lengthx that containn seeds. The previous island example, the uncovered fraction equals the probability that a
size distribution is obtained from this more detailed quantitypoint, say the origin, remains uncovered at tim&or such

by a simple summatiog(x,t)=2,-=19,(X,t). The g,(x,t) an event to occur, the intervalt/2,t/2] must contain no
distribution obeys a generalization to H¢): seeds initially, and hence the ' decay. Combining

+a(t)
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S(t)=e™ ' with Eq. (1) yields the number density long time limit. This situation is reminiscent of the behavior

N(t)=e'. These considerations are applicable in arbitraryof extremal properties of stochastic systems such as random

dimensions while more complete analytical results for thewalks and fragmentation moddl$9]. The tail of the distri-

gap and the island distributions are limited to one dimensionbution can be found directly from the Laplace transform.
The Laplace transform of the joint island distribution, Taking thes=0 limit of Eq. (11) and performing the inverse

9(s,z,t), satisfies Laplace transform yields

ag(s,z,t)

~ - 7X<X> — 0
i ——(s+2)g(s,z,t)+etg(s,z,t)2. (8) 90,0~ (x) e, x ’ (12

with (x)~e'. Hence, the tail of the island length distribution
The above was obtained from E(f) by substituting the approaches an exponential distribution with an exponentially
appropriate prefacton(t)=f(0t)/N(t)?=¢€". Solving Eq. growing average. The tera 25(x—t) in Eq. (11) arises

(8) subject to the initial conditiong(s,z,t=0)=2z gives from islands that contain a single seed. Thus, the total num-
sa (st ber density of such islands ;(t)=e~?, or equivalently,

g(s,z,t)= T _ (9 the fraction of one-seed islands decays exponentially in time
1-2[(1-e"®"Y/(s+1)] p1(t)=g,(t)/N(t)=e"'. The rest of thay,(t) distribution is

easily obtained from the joint generating function by evalu-
ating thes=0 limit, =,~,9,2"=9(s=0,z,t) and expanding
in powers ofZz". Thus we find for the fraction oh-seed

The Laplace transform of the island distribution is readily
found by evaluatingy(s,z,t) atz=1,

. st1 islands
a(s0=e Sy "o (1
2 _ —tiq_-tyn-1
One can immediately recover the total number density, Pn()= N(t) e (1-e )" (13

N(t)=g(s=0t)=e"!, and the fraction of uncovered space,

S(t)=1-dg(s,t)/ds|s_o=€"". The inverse Laplace trans- The average number of seed&(t))=Z=,-1npy(t), is
form can be obtained by expanding the Laplace transform ifieadily found to ben(t))=e". Therefore in the scaling limit,
powers ofe™st, i_e.,g(s,t):EmBlam(s’t)e*mSt‘ Performing t—® with n/{n(t)) kept finite, the exact distribution of Eq.

the inverse Laplace transform term by term yields (13) becomes
* =~ —lg=n/n(t))
g(x,H)=e 2[S(x—t)+ B(x—t)]+ >, (—1)"e "+ Po(t)={n0y e T (19
n=1 To find the completey,(x,t) distribution one first deter-
(x—(n+ 1)1 mines the Laplace transforgy(s,t) = [idxe *g,(x,t) by
X O(x—(n+1)t) T expandingg(s,z,t) in powers ofz",
_ + 1)t n - 1_ef(s+l)t n—-1
LoDy (r:“ 0 } (11 On(st)=e (S+2)t(T (15

where 6(x) is the Heaviside step function. Unlike the gap Then one has to perform the inverse Laplace transform.
distribution which is a simple smooth function, Simple explicit expressions are found for small e.g.,
f(x,t)=e *"!, the island distribution is more complex. Al- the distribution of “monomers” is indeedg;(x,t)
though it is a continuous function, it has discontinuous de=€e ?'8(x—t) as we have already seen previously,
rivatives on the ray,(t)=nt, forn=1,23... .These dis- and the distribution of dimers is g,(xt)
continuities are exponentially suppressed because of thee X[ g(x—1t)— O(x—2t)]. Generally for n=2, one

e " term and should be noticeable only for smalin the  finds

M x—(m+1)t]" 24 x— (m+1)t]
m!(n—1—m)!

n-1 (_1)
gn(x,t)=(n—1)e" x> , t=x=nt. (16)
m=0

The distribution g,(x,t) vanishes outside the interval t+(n—1)[1—t/(e'—1)]. As a result, the leading behavior

[t.nt]. Anisland of maximal lengtimt results from an initial i poth limiting cases is linear in time,

arrangement of the seeds where all nearest neighbor dis-

tances equdl. Similar to the island distributiorg,,(x,t) has (n+1)t/2, t—0

n discontinuous derivatives at=t,2t, ... ,nt. {Xn(t))= (n—1)+t, t—oo
It is also useful to consider the average length of an ’ '

island containing n  seeds, (X),=—dIng,(st)/dss=0= The prefactor depends aninitially, and at the later stages of

17
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the growth process it becomes independem.of he width 2 Jt+s DL y(s+t)+D._;(—s—t)

of the distributiono2=(x2)—(x)? is conveniently obtained g(s,zt)=e " 2 D, (5t0+D, J(—s—D|"
from Eq. (15), o3(t) = 3°Ingn(s,t)/d5%s—0, and we quote only -t 2t 23)
the more interesting long time asymptotics. In this limit, the

width of the distribution approaches a constant(t)  with D,_, the parabolic cylinder function of order—1. It

—n—1 ast—c. can be verified tha(t)=g(0,1t) =te~ /2. Two important
cases are the Laplace transform of the length distribution
B. Continuous nucleation function[16],
We now turn to the case of continuous nucleation, 2t ot
y(t)=const, and sety=1 for notational simplicity. As a (s:)=g(s z=1t):e“2’2 . se
preliminary step, we solve for the gap distributid(x,t) gisby=gts, ’ 1+Sftod7_e72/2+57 '
subject to the initial conditions (24)
f dxf(x,0)=0, j dxxf(x,00=1, (18) and the generating functiog(z,t)==,-,2"g,(t),
0 0
. . . —t2/2| t Dé—l(t)_‘_Dé—l(_t)
corresponding to no seeds presental. Substituting the  9(z,t)=g(s=0zt)=e 27D, (0D, (-0
ansatz f(x,t)=¢(t)e *' eliminates the size dependence 21 z-1 (25

from the rate equatiorf2). The time dependent prefactor

¢(t) satisfies the ordinary differential equatiodg(t)/dt We are unable to perform the inverse Laplace transform.
= ¢(t)(21t—1). Solving this szub]ect to the initial conditions  ovever, by a direct solution of E¢5), it is still possible to
of Eq. (18) yields ¢(t) =t?e~""2 and thus the gap distribu- obtain several quantities. For example, the one-seed island

tion is given by distribution obeys

f(x,t)=t2e X172, (19 J 9
( T o) 91D = —2tgy(x,t)+e 28(x).  (26)
Integrating over the space variable gives the island number

density, the uncovered fraction, and the average iSIangolving this partial differential equation gives
length:

ot22_ 1 gi(x,t)=e Cex V%2 p<x<t (27)
t and g(x,t)=0 outside the space intervgdt]. The above

(20) distribution is strongly peaked at=t. A numerical solution
(ﬁ_f Eq. (4) shows that the total gap distributiag(x,t), is also
il=

N(t)=te 2 S(t)=e 2 (x(t))=

These average quantities can be found from simple consi
erations as well. The uncovered fraction equals the probab
ity that a point, say the origin, remains uncovered during th
time interval[0,t]. For this event to happen, no nucleation

harply peaked at this poirfil6]. In fact, we expect that
one-seed islands dominate for sizes approachifigm be-
Jow. Following the previous section findings, we also expect
events can occur at a poirt 0<|x|<t/2 during the time that the n-seed densities are discontinuous on the rays
interval[ 0,2|x|]. The probability for such an event is indeed Xn(t)=nt. However, such discontinuous behavior might be
y ' hardly visible for largen.

S(F)=eh‘t2’2.|The number_density can also be easily found Tphe density of one-seed island equalg;(t)
using the relatiord Xt)/dt=—N(t). —e [ldre™ Evaluating the limit t—o gives

_ 2_ At32
Once the prefactor(t)=f(0)/N(t)"=e = is known g.(t)=t e 2. Unlike the simultaneous case, where the

th_e e_quatlon satisfied by the joint ansform of the gap d'si‘raction of one-seed islands decayed exponentially, here we
tribution g(s,z,t) can be written

find that the quantity(t)=g,(t)/N(t)=t 2 decays signifi-
cantly slower in an algebraic fashion. This power-law behav-

0g(S,Z,t) _ 12 2 . . " _ 2
—— = [st2tg(s.zt)+ze 24 etl2g(s,z,1)2. ior is actually a general one. Writingy(t)=e™" '23,(t) and
21) integrating Eq.(5) with respect tax, we find
~ -1
The transformation dgn(t) .

= O G+ 2 Gu(OTa-m(t).  (28)
m=1

n_¥'(n)

g(s,zt)=e 2 —} n=s+t (22

Instead of solving the above equation generally, we obtain
the leading asymptotic behavior in the limits of small and
(prime denotes the derivative with respectzibreduces Eq. larget. In the long time limit, the left-hand side is negligible
(21) to the parabolic cylinder equatid20] for the auxiliary and can be safely discarded. In the limit of small time, the
function (), namely, "+ (z— 1/2— 5?/4)=0. Finally, loss term—tg,(t) is unimportant. Solving the resulting ap-
the generating function is found, proximate equations gives

2 P(n)
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a,t’" v 10 sizesx, andx, shrinks with rate ¥ (x;+Xx,)/2, and we can
(29 usethe equalityx; +X,)/2=(x). It is possible to write down
the rate equation for the island distribution function. How-
ever, the analysis of that equation is very cumbersome.
with the prefactorsa,=22"(22"—1)B,/(2n)! (B, are the Therefore in the following we limit ourselves to the gap
Bernoulli numbers and b,,=(2n)!/[2(2n—1)n!?]. While  distribution which can be examined in depth for both instan-
the early time behavior resembles the simultaneous case, tf@heous and continuous nucleation. We also present an ap-
long time behavior is algebraic rather than exponential. Not@roximate treatment of generalized KAJM models where the
also the nontrivial dependence of both prefactarg,and  growth rate equals an arbitrary power of the island size.
b,, on the number of seeds

On(t)
Pn(t)= W: bnt_zn, t—oo

A. Instantaneous nucleation

ll. ACCELERATED NUCLEATION AND GROWTH We consider first the case of instantaneous nucleation. To
solve Eq.(30) with y(t)=5(t), it is useful to introduce a
modified time variable, T(t), defined by T(t)

= [Hdt'[1+(x(t"))]. In terms of this variable, E430) sim-
plifies to

Most of the studies of the nucleation-and-growth pro-
cesses assume that the growth velocity is cons&ed, e.g.,
[16] and references therginin this section we demonstrate
that a particular generalized KAJM model wititcelerated
growth, namely, with velocity linear in the island size, can be
treated analytically in one dimension. We emphasize that the
linear dependence of the growth velocity on island size natu-
rally appears in several problems. One application which hag. . T
alreyad?/pbeen mentionedpin the Introductii())% concerns the a zimilar to the usual KAJM growth, the gap distribution is

celerated random sequential adsorption on a line with precwr;eadIIy ftoun_d Idf?‘r atrbltrfary Jr'r_]llt'all con?_ltlolns,f§x£t20)
sor layer diffusion. Indeed, in accelerated RSA, particles are o(x), to yie (X.’ ) =To(x ).' in particurar, Jet us as-
ume that sizeless islands were initially randomly distributed

deposited onto the substrate and they occupy empty siteg ) ) _ AR
Particles that are deposited on occupied sigsgrinsic pre- with unit density, fo(x)=e"* Then the gap distribution
cursor statecan lose enough kinetic energy that they do notreads
desorb back to the gas phase. Instead, they diffuse on top of
occupied islands until they encounter an empty site on the
island boundary where they are deposited irreversibly~
[21,18. If the process is adsorption limited, i.e., the diffusion
time scale is small compared to the adsorption time scale, N(T)=S(T)=e T, (x(T))=e"—1. (33
islands on the one-dimensiondD) substrate grow with rate

proportional to the island length. Another possible applicaThe average island length was obtained using
tion is related to biological growth where seeds are the{x(T))z[l—S(T)]/N(T) for the number density, the un-
source of the new phase. Therefore, in one dimension ongovered fraction, and the average island length, respectively.
seed islands grow with rate 1, two-seed islands grow withro obtain the explicit time dependence, it is necessary to
rate 2, etc. The definitions of both accelerated RSA and thgolve dT/dt=1+(x(T))=e", which is integrated to yield
biological model are appealingly simple, and they exhibite=T=1 —t. This allows us to determine the time of complete

similar behavior to that of the KAJM model with Iinea}r .Coverage,tczl_ Reexpressing the exact results in terms of
growth rate. The latter model has the advantage that it ighe physical time, we arrive at

more amenable to analytical treatment.

Thus, we consider the KAJM model with an accelerated t
growth mechanism, namely, with growth rate proportional to f(x,t)=(1—-t)e™™, N()=S(t)=1—-t, (x(t))= it
the length of a domain, or better equal te-& to ensure a (34)
finite growth velocity for initial sizeless islands. As the
length of an isolated domain grows exponentially in time, it|nterestingly, the uncovered fraction and the number density
is expected that for this accelerated KAJM space is covereglre equal, as for the KAJM model. The covered fraction
in finite time t.. Below, we will find exact values for some exhibits a linear growth, 4 S(t) =t. This result agrees with
interesting quantities, including, and the gap distribution. the lattice adsorption process of REE8]. Identical behavior

d a) B
T ox f(x,t)=0. (31

f(x,t)y=e T, (32

onsequently, we get

The rate equation fof(x,t) is a generalization of Eq2), is found for the biological growth process whareseed is-
lands grow with raten. For simultaneous nucleation, the
af(x,t) af(xt) ¢ number of seeds remains constant and hence the covered
at =) ox Y(OXTD fraction increases with constant rate. However, the covered

fraction is theonly characteristic which is known analytically
” for both of these lattice models.
+2y(t)fx dyfy.b). 30 Return now to the accelerated KAJM model and consider
the competition between the two components of the velocity,
The growth term reflects the fact that the growth velocity ofthe intrinsic part and the size dependent part. Suppose that
islands is linear in length. The linear dependence is crucial isizeless islands grow with velocity, i.e., the growth veloc-
writing the above equation. A gap between two islands ofity of anx island equal®,+Xx. Then, the rate equation reads
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o ot (X(O) ] [ f(x,1)=0. (35

3567

The instant of complete coverage is determined from the

positivity condition of the gap-size distribution function.
Thus,t. is found from the implicit relation

The above treatment holds with the modified time variable,

T=[}[vo+(x(t"))]dt’. Following the steps that led to Eq.

(34) gives
1_er(1*vo)t
f(x,t)= ——F——e X (36
l_Uo
Additionally, the number density is given byN(t)

=3(t)=(1—vee* Y /(1-v,), and the average length is

(x(1))=vo(1—elt vl /(p,et-vt—1). By taking the

tC
1= fo dre— T+, (42)

In the limiting situations of small and large birth rate one has

In(1ly), y<1 “3
¢ (NInyly, y>1.

Comparing to Eq(37), it is seen that the parametgrplays

limit vo—1, one can verify that the previous results are re-3 similar role tov,. Furthermore, in the vicinity of complete

covered. The critical time is thug=Invy/(vy—1). Both lim-
iting cases exhibit logarithmic behavior,

|n(1/U0),

¢ Invglug,

Uo—>o

t (37

Vog— .

coverage, *t/t;<1, the gap distribution function ap-
proaches

f(X, 1) =(yte)%(tc—t)e™ e, (44)

which is surprisingly similar to Eq.38). The uncovered frac-

. tion is simply S(t)=t.—t as for the case of simultaneous
The limiting caseo— 0 reduces to the KAJM growth where ,cjeation. Hence, the near-critical behavior is robust: i.e.,

the coverage time is infinite. When-t., the gap distribu-  he details of the nucleation are not important.
tion vanishes according to

f(x,t)=(t,—t)e % C. Generalized accelerated nucleation

(38)
) N ) . We turn now to the general accelerated nucleation-and-
Itis seen that near-critical behavior suchS{$)=(t.—t) is  growth model with growth rate proportional to a power of
independent of the relative magnitudes of the two compothe jsland length. Let us assume thabaisland grows with
nents of the growth velocity. rate (1+x)®. Constant and linear growth rates correspond to
a=0 anda=1, respectively.

Consider the case of simultaneous nucleation. We first
write anexactrate equation satisfied by an uncovered frac-
elion

B. Continuous nucleation

We turn now to the continuous nucleation cage,0. We
will assume that the system is initially empty; therefore, th
initial conditions are given by Eq18). Similar to the previ- dst)

ous section, we seek for a solution to Eg0) of the form =—=N(t){((1+x)%).

ar (45

f(x,t)=o(t)e ™, (39
Remember that the previously investigated extreme cases of
The choice of the exponential factor allows us to cancel thex=0 and a=1 vyield S(t)=N(t) for simultaneous nucle-
x dependent term in the right-hand side of E20). The rate  ation (the initial density of seeds is set equal tb Physi-
equation reduces to an ordinary differential equation, cally, it means that during the evolution process, the average
do(t size of interisland gaps does not change. We ramsume
o(t

this feature for generalized nucleation-and-growth models as

T =2¢(t)/t—yp(OH[1+(x(1))]. 40 well. To proceed, we need to know theth moment
((1+x)*). We certainly know the first moment

Expressingx(t)) via ¢(t) gives (x(t))=[1-S(t)]/N(t). For a>0, we shall estimate

((1+x)*) by [1+(x)]*, which is exact only forz=0 and

(x(1))=[1— [odxxf(x,1)]/ [gdxf(x,t) a=1. Inserting S(t)=N(t) and ((1+x)*)~[1+(1-9)/

N]*=S"“into Eq.(45) we arrive at theapproximatecover-

=[1— () (y)2)[ p(t)/ yt]. age rate equation,
ds 1—a
Substituting (x(t)) in Eg. (40) and solving the resulting E:_S ' (46)
closeddifferential equation forp(t), we obtain
t which is solved to yield
— 24— yxt+t— 22 4 _ — 4 y72
f(x,t)=(yt)%e [1 fodre } (41 S(t)=(1—at)¥e, (47

This exact solution agrees with the initial condition of Eg. Although there is no reason to expect that Ey) provides
(19). an exact quantitative description farother than 0 or 1, we
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do expect that complete coverage is still reached in a finitéaneous nucleation, a much slower power-law decay occurs
time and that the near-critical behavior is described by thdor continuous nucleation. We generalized the KAJM theory
exponent 1d. to cases where the island growth velocity is linear in its size.
Such an accelerated growth mechanism was shown to give
rise to covering in a finite time, and the near-critical behavior

) _ ) ) of the system was found to be insensitive to most details of
We investigated analytically nucleation-and-growth pro-the growth process.

cesses on one-dimensional substrates. We examined both
constant and size dependent growth mechanisms. In the case
of simultaneous nucleation the island size distribution has an

infinite set of progressively weaker discontinuous spatial de- E.B. was supported in part by NSF under Grant No. 92-
rivatives. We introduced the joint island-number density and)8527 and by the MRSEC Program of the National Science
showed that while exponential decay characterizes the frad=oundation under Grant No. DMR-9400379. P.L.K. was
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