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We study statistical properties of the Kolmogorov-Avrami-Johnson-Mehl nucleation-and-growth model in
one dimension. We obtain exact results for the gap density as well as the island distribution. When all
nucleation events occur simultaneously, we show that the island distribution has discontinuous derivatives on
the raysxn(t)5nt, n51,2,3 . . . . Weintroduce an accelerated growth mechanism with growth rate increasing
linearly with the island size. We solve for the interisland gap density and show that the system reaches
complete coverage in a finite time and that the near-critical behavior of the system is robust; i.e., it is
insensitive to details such as the nucleation mechanism.@S1063-651X~96!10910-7#

PACS number~s!: 05.40.1j, 02.50.Ey, 82.60.Nh, 82.20.Mj

I. INTRODUCTION

Inhomogeneous systems where stable and metastable re-
gions coexist are common in nature. Phase separation and
coarsening@1#, aggregation@2#, wetting@3#, dendritic growth
@4#, and growth of breath figures@5# are just a few examples
of such systems. Typically, the stable phase grows into the
metastable phase according to complicated kinematic rules.
However, in certain cases such as adsorption@6#, simple bal-
listic growth rules apply. The Kolmogorov-Avrami-Johnson-
Mehl ~KAJM! nucleation-and-growth process is a natural
model incorporating nucleation of stable phases with ballistic
growth @6–17#.

In this work we present exact results for various statistical
properties of the KAJM growth model in one dimension. The
process depends on the nucleation rate as well as the initial
concentration of the growing phase. There are two limiting
cases, instantaneous nucleation~subsequent nucleation rate
vanishes! and continuous nucleation~vanishing initial con-
centration!. The growth rate of the stable phase may also
depend on size of the growing islands. Besides the ordinary
KAJM model with size-independent growth rate, the accel-
erated KAJM model with growth rate linear in size is also
solvable as we shall demonstrate in this paper.

To solve the KAJM model with linear growth rate, a
deeper understanding of the island-size distribution is neces-
sary. Surprisingly, even for the classical KAJM model little
is known about the island-size distribution function. Hence,
we first investigate the KAJM model with a constant growth
velocity. We introduce the density of islands containingn
‘‘seeds’’ and show that this distribution is not a smooth func-
tion of the space variable. As a result, the total island length
distribution has spatial discontinuous derivatives at every in-
teger multiple oft. In the continuous nucleation case, we
obtain only the inverse Laplace transform of this generalized
island distribution. However, an asymptotic analysis shows
that the relative fraction of islands containingn seeds decays
algebraically in time rather than exponentially as in the case
of instantaneous nucleation.

In the second part of our study, we introduce an acceler-
ated nucleation-and-growth process where the growth veloc-
ity depends on the island size. This growth mechanism is

motivated by an accelerated random sequential adsorption
~RSA! process@18#. In the ordinary RSA of monomers on a
lattice an adsorption attempt on a site is successful only if
that site is empty. Unlike ordinary RSA where an attempt to
adsorb on an occupied site is rejected, in the accelerated
process any attempt is successful — if a monomer is depos-
ited onto an already existing island it diffuses until it reaches
an empty site on the island boundary. Hence, islands grow
with a rate increasing with island size; if the diffusion time
scale is very small compared to the adsorption time scale, the
growth rate becomes a linear function of the island length.
The continuum version of this model is simply the KAJM
nucleation-and-growth process with growth rate linear in the
island size. While for the lattice model only an approximate
theory exists, we generalize the KAJM theory to the accel-
erated growth model. Exact results for the island gap distri-
bution show that the system is covered in a finite time. Also,
the behavior near complete coverage is robust. It is indepen-
dent of many details of the growth velocity as well as the
nucleation mechanism; it is the same for instantaneous and
continuous nucleation.

The rest of this paper is organized as follows. In Sec. II,
we consider the ordinary KAJM nucleation-and-growth pro-
cess. We first review the existing theory, and present a sum-
mary of the exact results for both instantaneous and continu-
ous nucleation. We then consider the detailed island gap
density and analyze its properties. In Sec. III, we introduce
the accelerated growth model and solve for the exact inter-
island gap distribution. Additionally, we analyze the behav-
ior close to complete coverage.

II. THEORY OF NUCLEATION AND GROWTH
IN ONE DIMENSION

In the ordinary Kolmogorov-Avrami-Johnson-Mehl
model sizeless islands~‘‘seeds’’! nucleate randomly in space
with rateg(t) per unit length, and grow with constant veloc-
ity, which we set equal to 1/2, in both positive and negative
directions. A collision between two such growing islands
results in a similarly growing island whose length is given by
the sum of its constituents’ lengths. Since islands grow with
unit rate, the system is covered with a rate proportional to the
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density of islands,N(t); in other words, the fraction of un-
covered space,S(t), satisfies the rate equation

dS~ t !

dt
52N~ t !. ~1!

Let us introducef (x,t), the density of interisland gaps of
sizex at time t. The total island density and the uncovered
fraction are simply given byN(t)5*0

`dx f(x,t) and
S(t)5*0

`dxx f(x,t), respectively. The gap distribution
evolves according to the following rate equation:

] f ~x,t !

]t
5

] f ~x,t !

]x
2g~ t !x f~x,t !12g~ t !E

x

`

dy f~y,t !.

~2!

The first term in the right-hand side of Eq.~2! accounts for
the shrinking of a gap caused by growth of its two neighbor-
ing islands. The last two terms represent loss~gain! of gaps
due to nucleation of seeds. The rate of change in the island
density is evaluated by integrating Eq.~2!,

dN~ t !

dt
52 f ~0,t !1g~ t !S~ t !. ~3!

Additionally, multiplying Eq. ~2! by x and integrating, we
recover Eq.~1!, thus providing a check of self-consistency.

A complementary distribution isg(x,t), the density of
islands of sizex at time t. The number density and the frac-
tion of the uncovered space can be alternatively expressed
via the island distribution: N(t)5*0

`dxg(x,t) and
S(t)512*0

`dxxg(x,t), respectively. The densityg(x,t)
obeys@16#

]g~x,t !

]t
52

]g~x,t !

]x
1g~ t !S~ t !d~x!

1a~ t !F E
0

x

dyg~y,t !g~x2y,t !22N~ t !g~x,t !G .
~4!

While the first term in the right-hand side of Eq.~4! corre-
sponds to growth with unit velocity, the second term repre-
sents creation of sizeless islands due to nucleation. The
last two terms describe coalescence events between two
growing islands. Integrating Eq.~4!, one finds that
N(t)5*0

`dxg(x,t) satisfies the rate equation
dN(t)/dt52a(t)N(t)21g(t)S(t). Comparing this expres-
sion with Eq. ~3!, the prefactor a(t) is found, a(t)
5 f (0,t)/N(t)2.

Another interesting quantity isgn(x,t), the density of is-
lands of lengthx that containn seeds. The previous island
size distribution is obtained from this more detailed quantity
by a simple summationg(x,t)5(n>1gn(x,t). The gn(x,t)
distribution obeys a generalization to Eq.~4!:

]gn~x,t !

]t
52

]gn~x,t !

]x
1g~ t !S~ t !dn,1d~x!

1a~ t !F (
m51

n21 E
0

x

dygm~y,t !gn2m~x2y,t !

22N~ t !gn~x,t !G . ~5!

This equation simply reflects the fact that the number of
seeds is conserved during collisions.

To solve the above equation, it is useful to introduce the
Laplace transform of the generating functions ofgn(x,t) de-
fined as g(s,z,t)5*0

`dx(n>1z
ne2sxgn(x,t). This ‘‘joint

transform’’ satisfies

]g~s,z,t !

]t
52@s12a~ t !N~ t !#g~s,z,t !

1zg~ t !S~ t !1a~ t !g~s,z,t !2. ~6!

Much information concerning the island distribution
can be directly extracted fromg(s,z,t). For example, the
Laplace transform of the island distribution,
g(s,t)5*0

`dxe2sxg(x,t), can be readily found from the
joint Laplace transform,g(s,t)[g(s,z51,t). The total
density of islands containingn seeds,gn(t)5*0

`dxgn(x,t),
is obtained by considering a vanishings, namely,
g(z,t)5(n>1z

ngn(t)5g(s50,z,t).
Two natural limits of KAJM nucleation-and-growth pro-

cess are instantaneous nucleation and continuous nucleation.
In instantaneous nucleation all seeds start growing at the
same time, taken ast50 for convenience. In continuous
nucleation the space contains no seeds initially and seeds
appear uniformly in space and time on yet uncovered space.
While for the former case, once the positions of the seeds are
specified the growth is fully deterministic, in the latter case,
the process is stochastic. We now present exact results for
both cases using the above formalism.

A. Instantaneous nucleation

In instantaneous nucleation,g(t)5Gd(t) since all nucle-
ation events occur simultaneously att50. Hence fort.0,
Eq. ~2! can be rewritten as] f (x,t)/]x250 with x6[x6t,
and the gap distribution is thus a function of the variable
x15x1t only. Let the initial gap distribution be
f 0(x)5 f (x,t50); then the solution for an arbitrary initial
distribution is readily foundf (x,t)5 f 0(x1t). We setG51
without loss of generality, and furthermore, we restrict our
attention to the initial conditions where the seeds are distrib-
uted uniformly in space,f 0(x)5e2x. In this case, the solu-
tion f (x,t)5 f 0(x1t) becomes

f ~x,t !5e2x2t. ~7!

The island number density as well as the uncovered fraction
decay exponentially in timeN(t)5S(t)5e2t. The average
island length can be easily found as well
^x(t)&5@12S(t)#/N(t)5et21. These average quantities
were originally derived from simple considerations@7,8#. For
example, the uncovered fraction equals the probability that a
point, say the origin, remains uncovered at timet. For such
an event to occur, the interval@2t/2,t/2# must contain no
seeds initially, and hence thee2t decay. Combining
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S(t)5e2t with Eq. ~1! yields the number density
N(t)5e2t. These considerations are applicable in arbitrary
dimensions while more complete analytical results for the
gap and the island distributions are limited to one dimension.

The Laplace transform of the joint island distribution,
g(s,z,t), satisfies

]g~s,z,t !

]t
52~s12!g~s,z,t !1etg~s,z,t !2. ~8!

The above was obtained from Eq.~6! by substituting the
appropriate prefactora(t)5 f (0,t)/N(t)25et. Solving Eq.
~8! subject to the initial conditionsg(s,z,t50)5z gives

g~s,z,t !5
ze2~s12!t

12z@~12e2~s11!t!/~s11!#
. ~9!

The Laplace transform of the island distribution is readily
found by evaluatingg(s,z,t) at z51,

g~s,t !5e2t
s11

se~s11!t11
. ~10!

One can immediately recover the total number density,
N(t)5g(s50,t)5e2t, and the fraction of uncovered space,
S(t)512]g(s,t)/]sus505e2t. The inverse Laplace trans-
form can be obtained by expanding the Laplace transform in
powers ofe2st, i.e.,g(s,t)5(m>1g̃m(s,t)e

2mst. Performing
the inverse Laplace transform term by term yields

g~x,t !5e22t@d~x2t !1u~x2t !#1 (
n51

`

~21!ne2~n12!t

3u~x2~n11!t !F ~x2~n11!t !n21

~n21!!

1
~x2~n11!t !n

n! G , ~11!

whereu(x) is the Heaviside step function. Unlike the gap
distribution which is a simple smooth function,
f (x,t)5e2x2t, the island distribution is more complex. Al-
though it is a continuous function, it has discontinuous de-
rivatives on the raysxn(t)5nt, for n51,2,3 . . . .These dis-
continuities are exponentially suppressed because of the
e2nt term and should be noticeable only for smalln in the

long time limit. This situation is reminiscent of the behavior
of extremal properties of stochastic systems such as random
walks and fragmentation models@19#. The tail of the distri-
bution can be found directly from the Laplace transform.
Taking thes50 limit of Eq. ~11! and performing the inverse
Laplace transform yields

g~x,t !;^x&22e2x/^x&, x→`, ~12!

with ^x&;et. Hence, the tail of the island length distribution
approaches an exponential distribution with an exponentially
growing average. The terme22td(x2t) in Eq. ~11! arises
from islands that contain a single seed. Thus, the total num-
ber density of such islands isg1(t)5e22t, or equivalently,
the fraction of one-seed islands decays exponentially in time
p1(t)[g1(t)/N(t)5e2t. The rest of thegn(t) distribution is
easily obtained from the joint generating function by evalu-
ating thes50 limit, (n>1gnz

n5g(s50,z,t) and expanding
in powers ofzn. Thus we find for the fraction ofn-seed
islands

pn~ t ![
gn~ t !

N~ t !
5e2t~12e2t!n21. ~13!

The average number of seeds,^n(t)&5(n>1npn(t), is
readily found to bên(t)&5et. Therefore in the scaling limit,
t→` with n/^n(t)& kept finite, the exact distribution of Eq.
~13! becomes

pn~ t !.^n~ t !&21e2n/^n~ t !&. ~14!

To find the completegn(x,t) distribution one first deter-
mines the Laplace transformgn(s,t)5*0

`dxe2sxgn(x,t) by
expandingg(s,z,t) in powers ofzn,

gn~s,t !5e2~s12!tS 12e2~s11!t

s11 D n21

. ~15!

Then one has to perform the inverse Laplace transform.
Simple explicit expressions are found for smalln, e.g.,
the distribution of ‘‘monomers’’ is indeedg1(x,t)
5e22td(x2t) as we have already seen previously,
and the distribution of dimers is g2(x,t)
5e2(x1t)@u(x2t)2u(x22t)#. Generally for n>2, one
finds

gn~x,t !5~n21!e2~x1t ! (
m50

n21
~21!m@x2~m11!t#n22u@x2~m11!t#

m! ~n212m!!
, t<x<nt. ~16!

The distribution gn(x,t) vanishes outside the interval
@ t,nt#. An island of maximal lengthnt results from an initial
arrangement of then seeds where all nearest neighbor dis-
tances equalt. Similar to the island distribution,gn(x,t) has
n discontinuous derivatives atx5t,2t, . . . ,nt.

It is also useful to consider the average length of an
island containing n seeds, ^x&n52] lngn(s,t)/]sus505

t1(n21)@12t/(et21)#. As a result, the leading behavior
in both limiting cases is linear in time,

^xn~ t !&.H ~n11!t/2, t→0

~n21!1t, t→`.
~17!

The prefactor depends onn initially, and at the later stages of
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the growth process it becomes independent ofn. The width
of the distributionsn

25^x2&2^x&2 is conveniently obtained
from Eq. ~15!, sn

2(t)5]2lngn(s,t)/]s
2us50, and we quote only

the more interesting long time asymptotics. In this limit, the
width of the distribution approaches a constant,sn

2(t)
→n21 ast→`.

B. Continuous nucleation

We now turn to the case of continuous nucleation,
g(t)5const, and setg51 for notational simplicity. As a
preliminary step, we solve for the gap distributionf (x,t)
subject to the initial conditions

E
0

`

dx f~x,0!50, E
0

`

dxx f~x,0!51, ~18!

corresponding to no seeds present att50. Substituting the
ansatz f (x,t)5f(t)e2xt eliminates the size dependence
from the rate equation~2!. The time dependent prefactor
f(t) satisfies the ordinary differential equation,df(t)/dt
5f(t)(2/t2t). Solving this subject to the initial conditions
of Eq. ~18! yieldsf(t)5t2e2t2/2, and thus the gap distribu-
tion is given by

f ~x,t !5t2e2xt2t2/2. ~19!

Integrating over the space variable gives the island number
density, the uncovered fraction, and the average island
length:

N~ t !5te2t2/2, S~ t !5e2t2/2, ^x~ t !&5
et

2/221

t
.

~20!

These average quantities can be found from simple consid-
erations as well. The uncovered fraction equals the probabil-
ity that a point, say the origin, remains uncovered during the
time interval @0,t#. For this event to happen, no nucleation
events can occur at a pointx, 0,uxu,t/2 during the time
interval @0,2uxu#. The probability for such an event is indeed
S(t)5e2t2/2. The number density can also be easily found
using the relationdS(t)/dt52N(t).

Once the prefactora(t)5 f (0,t)/N(t)25et
2/2 is known

the equation satisfied by the joint transform of the gap dis-
tribution g(s,z,t) can be written

]g~s,z,t !

]t
52@s12t#g~s,z,t !1ze2t2/21et

2/2g~s,z,t !2.

~21!

The transformation

g~s,z,t !5e2t2/2Fh2 2
c8~h!

c~h! G , h5s1t ~22!

~prime denotes the derivative with respect toh) reduces Eq.
~21! to the parabolic cylinder equation@20# for the auxiliary
function c(h), namely,c91(z21/22h2/4)c50. Finally,
the generating function is found,

g~s,z,t !5e2t2/2F t1s

2
2
Dz218 ~s1t !1Dz218 ~2s2t !

Dz21~s1t !1Dz21~2s2t !G ,
~23!

with Dz21 the parabolic cylinder function of orderz21. It
can be verified thatN(t)5g(0,1,t)5te2t2/2. Two important
cases are the Laplace transform of the length distribution
function @16#,

g~s,t !5g~s,z51,t !5e2t2/2F s1t2
set

2/21st

11s*0
t dtet2/21stG ,

~24!

and the generating functiong(z,t)5(n>1z
ngn(t),

g~z,t !5g~s50,z,t !5e2t2/2F t22
Dz218 ~ t !1Dz218 ~2t !

Dz21~ t !1Dz21~2t !G .
~25!

We are unable to perform the inverse Laplace transform.
However, by a direct solution of Eq.~5!, it is still possible to
obtain several quantities. For example, the one-seed island
distribution obeys

S ]

]t
1

]

]xDg1~x,t !522tg1~x,t !1e2t2/2d~x!. ~26!

Solving this partial differential equation gives

g1~x,t !5e2t2e~x2t !2/2, 0,x,t ~27!

and g(x,t)50 outside the space interval@0,t#. The above
distribution is strongly peaked atx5t. A numerical solution
of Eq. ~4! shows that the total gap distribution,g(x,t), is also
sharply peaked at this point@16#. In fact, we expect that
one-seed islands dominate for sizes approachingt from be-
low. Following the previous section findings, we also expect
that the n-seed densities are discontinuous on the rays
xn(t)5nt. However, such discontinuous behavior might be
hardly visible for largen.

The density of one-seed island equalsg1(t)
5e2t2*0

t dtet2/2. Evaluating the limit t→` gives

g1(t).t21e2t2/2. Unlike the simultaneous case, where the
fraction of one-seed islands decayed exponentially, here we
find that the quantityp1(t)[g1(t)/N(t).t22 decays signifi-
cantly slower in an algebraic fashion. This power-law behav-
ior is actually a general one. Writinggn(t)5e2t2/2g̃n(t) and
integrating Eq.~5! with respect tox, we find

dg̃n~ t !

dt
5dn,12tg̃n~ t !1 (

m51

n21

g̃m~ t !g̃n2m~ t !. ~28!

Instead of solving the above equation generally, we obtain
the leading asymptotic behavior in the limits of small and
larget. In the long time limit, the left-hand side is negligible
and can be safely discarded. In the limit of small time, the
loss term2tg̃n(t) is unimportant. Solving the resulting ap-
proximate equations gives
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pn~ t !5
gn~ t !

N~ t !
.H ant2~n21!, t→0

bnt
22n, t→` ~29!

with the prefactorsan522n(22n21)Bn /(2n)! (Bn are the
Bernoulli numbers! and bn5(2n)!/ @2(2n21)n! 2#. While
the early time behavior resembles the simultaneous case, the
long time behavior is algebraic rather than exponential. Note
also the nontrivial dependence of both prefactors,an and
bn , on the number of seedsn.

III. ACCELERATED NUCLEATION AND GROWTH

Most of the studies of the nucleation-and-growth pro-
cesses assume that the growth velocity is constant~see, e.g.,
@16# and references therein!. In this section we demonstrate
that a particular generalized KAJM model withaccelerated
growth, namely, with velocity linear in the island size, can be
treated analytically in one dimension. We emphasize that the
linear dependence of the growth velocity on island size natu-
rally appears in several problems. One application which has
already been mentioned in the Introduction concerns the ac-
celerated random sequential adsorption on a line with precur-
sor layer diffusion. Indeed, in accelerated RSA, particles are
deposited onto the substrate and they occupy empty sites.
Particles that are deposited on occupied sites~extrinsic pre-
cursor state! can lose enough kinetic energy that they do not
desorb back to the gas phase. Instead, they diffuse on top of
occupied islands until they encounter an empty site on the
island boundary where they are deposited irreversibly
@21,18#. If the process is adsorption limited, i.e., the diffusion
time scale is small compared to the adsorption time scale,
islands on the one-dimensional~1D! substrate grow with rate
proportional to the island length. Another possible applica-
tion is related to biological growth where seeds are the
source of the new phase. Therefore, in one dimension one-
seed islands grow with rate 1, two-seed islands grow with
rate 2, etc. The definitions of both accelerated RSA and the
biological model are appealingly simple, and they exhibit
similar behavior to that of the KAJM model with linear
growth rate. The latter model has the advantage that it is
more amenable to analytical treatment.

Thus, we consider the KAJM model with an accelerated
growth mechanism, namely, with growth rate proportional to
the length of a domain, or better equal to 11x to ensure a
finite growth velocity for initial sizeless islands. As the
length of an isolated domain grows exponentially in time, it
is expected that for this accelerated KAJM space is covered
in finite time tc . Below, we will find exact values for some
interesting quantities, includingtc and the gap distribution.
The rate equation forf (x,t) is a generalization of Eq.~2!,

] f ~x,t !

]t
5@11^x~ t !&#

] f ~x,t !

]x
2g~ t !x f~x,t !

12g~ t !E
x

`

dy f~y,t !. ~30!

The growth term reflects the fact that the growth velocity of
islands is linear in length. The linear dependence is crucial in
writing the above equation. A gap between two islands of

sizesx1 andx2 shrinks with rate 11(x11x2)/2, and we can
use the equalitŷx11x2&/25^x&. It is possible to write down
the rate equation for the island distribution function. How-
ever, the analysis of that equation is very cumbersome.
Therefore in the following we limit ourselves to the gap
distribution which can be examined in depth for both instan-
taneous and continuous nucleation. We also present an ap-
proximate treatment of generalized KAJM models where the
growth rate equals an arbitrary power of the island size.

A. Instantaneous nucleation

We consider first the case of instantaneous nucleation. To
solve Eq.~30! with g(t)5d(t), it is useful to introduce a
modified time variable, T(t), defined by T(t)
5*0

t dt8@11^x(t8)&#. In terms of this variable, Eq.~30! sim-
plifies to

S ]

]T
2

]

]xD f ~x,t !50. ~31!

Similar to the usual KAJM growth, the gap distribution is
readily found for arbitrary initial conditions,f (x,t50)
5 f 0(x), to yield f (x,t)5 f 0(x1T). In particular, let us as-
sume that sizeless islands were initially randomly distributed
with unit density, f 0(x)5e2x. Then the gap distribution
reads

f ~x,t !5e2x2T. ~32!

Consequently, we get

N~T!5S~T!5e2T, ^x~T!&5eT21. ~33!

The average island length was obtained using
^x(T)&5@12S(T)#/N(T) for the number density, the un-
covered fraction, and the average island length, respectively.
To obtain the explicit time dependence, it is necessary to
solve dT/dt511^x(T)&5eT, which is integrated to yield
e2T512t. This allows us to determine the time of complete
coverage,tc51. Reexpressing the exact results in terms of
the physical time, we arrive at

f ~x,t !5~12t !e2x, N~ t !5S~ t !512t, ^x~ t !&5
t

12t
.

~34!

Interestingly, the uncovered fraction and the number density
are equal, as for the KAJM model. The covered fraction
exhibits a linear growth, 12S(t)5t. This result agrees with
the lattice adsorption process of Ref.@18#. Identical behavior
is found for the biological growth process wheren-seed is-
lands grow with raten. For simultaneous nucleation, the
number of seeds remains constant and hence the covered
fraction increases with constant rate. However, the covered
fraction is theonlycharacteristic which is known analytically
for both of these lattice models.

Return now to the accelerated KAJM model and consider
the competition between the two components of the velocity,
the intrinsic part and the size dependent part. Suppose that
sizeless islands grow with velocityv0, i.e., the growth veloc-
ity of an x island equalsv01x. Then, the rate equation reads
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S ]

]t
2@v01^x~ t !&#

]

]xD f ~x,t !50. ~35!

The above treatment holds with the modified time variable,
T5*0

t @v01^x(t8)&#dt8. Following the steps that led to Eq.
~34! gives

f ~x,t !5
12v0e

~12v0!t

12v0
e2x. ~36!

Additionally, the number density is given byN(t)
5S(t)5(12v0e

(12v0)t)/(12v0), and the average length is
^x(t)&5v0(12e(12v0)t)/(v0e

(12v0)t21). By taking the
limit v0→1, one can verify that the previous results are re-
covered. The critical time is thustc5 lnv0 /(v021). Both lim-
iting cases exhibit logarithmic behavior,

tc.H ln~1/v0!, v0→0

lnv0 /v0 , v0→`. ~37!

The limiting casev0→0 reduces to the KAJM growth where
the coverage time is infinite. Whent→tc , the gap distribu-
tion vanishes according to

f ~x,t !.~ tc2t !e2x. ~38!

It is seen that near-critical behavior such asS(t).(tc2t) is
independent of the relative magnitudes of the two compo-
nents of the growth velocity.

B. Continuous nucleation

We turn now to the continuous nucleation case,g.0. We
will assume that the system is initially empty; therefore, the
initial conditions are given by Eq.~18!. Similar to the previ-
ous section, we seek for a solution to Eq.~30! of the form

f ~x,t !5f~ t !e2gxt. ~39!

The choice of the exponential factor allows us to cancel the
x dependent term in the right-hand side of Eq.~30!. The rate
equation reduces to an ordinary differential equation,

df~ t !

dt
52f~ t !/t2gf~ t !t@11^x~ t !&#. ~40!

Expressinĝ x(t)& via f(t) gives

^x~ t !&5@12*0
`dxx f~x,t !#/*0

`dx f~x,t !

5@12f~ t !/~gt !2#/@f~ t !/gt#.
.

Substituting ^x(t)& in Eq. ~40! and solving the resulting
closeddifferential equation forf(t), we obtain

f ~x,t !5~gt !2e2gxt1t2gt2/2F12E
0

t

dte2t1gt2/2G . ~41!

This exact solution agrees with the initial condition of Eq.
~18!.

The instant of complete coverage is determined from the
positivity condition of the gap-size distribution function.
Thus,tc is found from the implicit relation

15E
0

tc
dte2t1gt2/2. ~42!

In the limiting situations of small and large birth rate one has

tc;H ln~1/g!, g!1

Alng/g, g@1.
~43!

Comparing to Eq.~37!, it is seen that the parameterg plays
a similar role tov0. Furthermore, in the vicinity of complete
coverage, 12t/tc!1, the gap distribution function ap-
proaches

f ~x,t !.~gtc!
2~ tc2t !e2gtcx, ~44!

which is surprisingly similar to Eq.~38!. The uncovered frac-
tion is simply S(t)5tc2t as for the case of simultaneous
nucleation. Hence, the near-critical behavior is robust; i.e.,
the details of the nucleation are not important.

C. Generalized accelerated nucleation

We turn now to the general accelerated nucleation-and-
growth model with growth rate proportional to a power of
the island length. Let us assume that anx island grows with
rate (11x)a. Constant and linear growth rates correspond to
a50 anda51, respectively.

Consider the case of simultaneous nucleation. We first
write anexactrate equation satisfied by an uncovered frac-
tion

dS~ t !

dt
52N~ t !^~11x!a&. ~45!

Remember that the previously investigated extreme cases of
a50 anda51 yield S(t)5N(t) for simultaneous nucle-
ation ~the initial density of seeds is set equal to 1!. Physi-
cally, it means that during the evolution process, the average
size of interisland gaps does not change. We nowassume
this feature for generalized nucleation-and-growth models as
well. To proceed, we need to know theath moment
^(11x)a&. We certainly know the first moment
^x(t)&5@12S(t)#/N(t). For a.0, we shall estimate
^(11x)a& by @11^x&#a, which is exact only fora50 and
a51. Inserting S(t)5N(t) and ^(11x)a&'@11(12S)/
N#a5S2a into Eq. ~45! we arrive at theapproximatecover-
age rate equation,

dS

dt
52S12a, ~46!

which is solved to yield

S~ t !5~12at !1/a. ~47!

Although there is no reason to expect that Eq.~47! provides
an exact quantitative description fora other than 0 or 1, we

54 3567NUCLEATION AND GROWTH IN ONE DIMENSION



do expect that complete coverage is still reached in a finite
time and that the near-critical behavior is described by the
exponent 1/a.

IV. SUMMARY

We investigated analytically nucleation-and-growth pro-
cesses on one-dimensional substrates. We examined both
constant and size dependent growth mechanisms. In the case
of simultaneous nucleation the island size distribution has an
infinite set of progressively weaker discontinuous spatial de-
rivatives. We introduced the joint island-number density and
showed that while exponential decay characterizes the frac-
tion of islands containing a fixed number of seeds for simul-

taneous nucleation, a much slower power-law decay occurs
for continuous nucleation. We generalized the KAJM theory
to cases where the island growth velocity is linear in its size.
Such an accelerated growth mechanism was shown to give
rise to covering in a finite time, and the near-critical behavior
of the system was found to be insensitive to most details of
the growth process.
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