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Abstract

We investigate fragmentation processes with a steady input of fragments. We find that the size distribution approaches a
Ž . y3stationary form which exhibits a power law divergence in the small size limit, P x ;x . This algebraic behavior is robust`

as it is independent of the details of the input as well as the spatial dimension. The full time dependent behavior is obtained
analytically for arbitrary inputs, and is found to exhibit a universal scaling behavior. q 2000 Elsevier Science B.V. All rights
reserved.

PACS: 05.40.q j; 64.60.Ak; 62.20.Mk

Fragmentation underlies numerous natural phe-
w xnomena 1–5 . The quantity being ‘split’ can be the

mass, momentum, or the area, and typically, frag-
ments continue splitting independently of each other.

w xExamples include polymer degradation 6 , breakup
w x w xof liquid droplets 7 and atomic nuclei 8 , marten-

w xsitic transformations 9,10 , shattering of solid ob-
w xjects 11,12 , and meteor impacts. Fragmentation also

w xarises in several topics of computer science 13–15 .
The simplest fragmentation models assume that

the rate by which fragments are produced is a func-
w xtion of their size only 16–20 . In this study, we

focus on the classic ‘random scission model’ where
the cutting is uniform and hence a fragment is cut
with a rate proportional to its size. In particular, we
are interested in situations where the system is sub-
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ject to a steady input of fragments. Such ‘open’
systems occur in industrial applications where coarse
material is continuously fed into a grinding apparatus

w xto produce a fine powder 21–23 .
Fragmentation in open systems has received less

attention than fragmentation in closed systems
w x24,25 . We will show, however, that fragmentation
with input is actually simpler than the classical
counterpart as the system reaches a stationary state
which is remarkably robust. Specifically, fragmenta-
tion with a steady source is characterized by an
algebraic divergence of the size distribution in the
small size limit, and this behavior is independent of
the particular form of the input. Additionally, the
time dependent behavior, obtained analytically for
arbitrary inputs, follows a scaling behavior. These
two features are shown to be closely related.

We start with a one-dimensional fragmentation
process subject to constant input of segments. Here
‘one-dimensional’ means that the fragments are char-
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acterized by a single variable which we shall call
Ž .‘length’ the fragments can be viewed as segments .

Let the system be initially empty and intervals whose
Ž .length is within the range x, xqdx are added with

Ž .rate f x dx. Additionally, intervals are cut with a
constant spatially homogeneous rate; we set this rate
equal to unity without loss of generality. Fragmenta-
tion with input has a natural geometric interpretation.
Consider the segments as part of an infinite line. The
fragmentation process is equivalent to deposition of
point ‘cracks’ on the line. The line is initially ‘im-
mune’ to fragmentation, but then segments of length
x become ‘susceptible’ to fragmentation with rate
Ž .f x . Hence, fragmentation with input is equivalent

to inhomogeneous fragmentation of a growing line.
Ž .The density P x,t of intervals of length x at

time t evolves according to the following rate equa-
tion

`E P x ,tŽ .
syxP x ,t q2 dy P y ,t q f x .Ž . Ž . Ž .H

E t x

1Ž .

The negative term on the right-hand side accounts
for loss due to fragmentation with the rate equal to
the fragment size since the cutting is uniform. The
gain term gives the increase in fragments of size x
due to cutting of longer fragments. The last term
accounts for input of fragments of size x.

The size distribution can be determined by ap-
plying the Mellin transformation. The Mellin trans-

Ž . Ž .form or moment of the distribution, M s,t s
sy1 Ž .Hdx x P x,t , satisfies

E M s,t 2ysŽ .
ˆs M sq1,t q f s , 2Ž . Ž . Ž .

E t s

ˆ sy1Ž . Ž .where f s sHdx x f x is the Mellin transform
Ž .of the input density f x . Although this hierarchy of

equations is infinite, its linear nature makes it
tractable, as will be seen below.

We first examine what happens when t™`. In
this limit, the length density should approach the

Ž . Ž .stationary distribution, P x,t ™P x . Setting the`

Ž .time derivative in Eq. 2 to zero gives the corre-
2 ˆŽ . Ž .sponding transform M s s 1q f s y 1 .Ž .` sy 3

ˆ nŽ . Ž .Note that f sqn is the Mellin transform of x f x ,
y1 ˆ ymŽ . Ž .and sym f s is the transform of x H dyx

my 1 Ž .y f y . These two facts allow to perform the

Ž .inverse Mellin transform and yield P x explicitly`

in terms of the input function

`
y1 y3P x sx f x q2 x dy yf y . 3Ž . Ž . Ž . Ž .H`

x

In the small size limit, the integral on the right-hand
Ž .side of Eq. 3 approaches the average length added

Ž̂ . Ž .per unit time, ls f 2 sHdx xf x . Thus, the length
density becomes purely algebraic

P x ™2l xy3 , when x™0. 4Ž . Ž .`

This behavior is robust as the first term on the
Ž .right-hand side of Eq. 3 always diverges slower

y3 Žthan x in the limit x™0 otherwise, the total
Ž . .length input rate, Hdx xf x , would be infinite . For a

class of input densities, the algebraic behavior may
not be necessarily restricted to small sizes. For ex-

Ž . Ž .ample, for monodisperse inputs f x sld xy1 ,
the algebraic behavior extends to all sizes x-1,
Ž . y1 Ž . y3P x sl x d xy1 q2l x .`

The general algebraic behavior should be con-
trasted with the exponential length distribution found
generally in the absence of input. Algebraic distribu-
tions have been observed experimentally in fragmen-
tation of solid objects such as rods, spheres, and

w xbricks 11,12 . Although the corresponding expo-
nents measured in these experiments are significantly
lower, typically between 1 and 2, it is worth noting
that a steady source of fragments can serve as a
mechanism for generating algebraic distributions.
Curiously, algebraic distributions with an exponent
close to 3 were reported recently in social systems

Žwhich can be viewed as open ones distributions of
citations, of the number of links to sites on the

w x.internet, etc.; see e.g. Refs. 26–28 .
The limiting size distribution is ultimately related

to the time dependent behavior. This can be demon-
strated using the following heuristic argument. From

Ž . Ž . Ž .Eq. 2 , the total length L t sM 2,t grows linearly
˙Ž . Ž .with time L t sl, and hence, L t slt. Similarly,

Ž . Ž .the total number of fragments, N t sM 1,t satis-
˙ ˆŽ . Ž . Ž .fies N t sltqm, where ms f 1 sHdxf x is the

number of segments added per unit time, and conse-
1 2Ž .quently, N t s lt qm t. These two time depen-2

dent results imply that the average fragment length,
² : ² :x sLrN, decreases with time according to x
; ty1. For the length distribution to follow a scaling
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form, the corresponding scaling variable must be
² :xr x . The prefactor is fixed by the total number of

Ž . 2fragments, N t ;lt , so the scaling form reads

P x ,t ,lt 3F xt . 5Ž . Ž . Ž .

This scaling form would be consistent with a time
Ž .independent limiting distribution only when F j ;

y3 Ž .j , thereby implying the algebraic divergence 4 .
The full time dependent solution can be found

w xusing the Charlesby method 16 . This method starts
with a formal expansion of the Mellin transform,

` nt
M s,t s M s , 6Ž . Ž . Ž .Ý nn!ns0

Ž .and proceeds by solving for the functions M sn
Ž .iteratively. Indeed, substituting the expansion 6

Ž .into Eq. 2 and equating similar powers of time
ˆŽ . Ž . Ž . Ž .yields M s s0, M s s f s and M s s0 1 nq1

sy 2 Ž .y M sq1 for nG2. Solving this set of equa-ns

tions recursively gives

M sŽ .nq1

sy1 sy2Ž . Ž .n ˆs y1 f sqn .Ž . Ž .
sqny1 sqny2Ž . Ž .

To take advantage of the inversion rules used to
Ž . Ž .obtain Eq. 3 , we re-write M s asnq1

M sŽ .nq1

n nq1 n ny1Ž . Ž .n ˆs y1 1y q f sqn .Ž . Ž .
sqny1 sqny2

Ž .From Eq. 6 , the size distribution can be written as a
power series

nnq1` t yxŽ .
P x ,t s P x , 7Ž . Ž . Ž .Ý nnq1 !Ž .ns0

Ž .where the inverse transform of M s has beennq1
Ž .n Ž .conveniently written as yx P x . The three termsn

Ž .in the above expression for M s can be invertednq1

Ž .using the rules outlined before Eq. 3 . The final
Ž .expression for P x readsn

n nq1Ž .
P x s f x q f xŽ . Ž . Ž .n 1 2x

n ny1Ž .
q f x , 8Ž . Ž .32x

with

f x s f x ,Ž . Ž .1

`

f x s dy f y ,Ž . Ž .H2
x

`

f x s dy yf y . 9Ž . Ž . Ž .H3
x

Summing the three terms separately gives the frag-
ment size distribution

3
kP x ,t s t f x F xt , 10Ž . Ž . Ž . Ž .Ý k k

ks1

with the scaling functions

F z szy1 1yeyz ,Ž . Ž .1

F z seyz ,Ž .2

y3 2 yzF z sz 2y 2q2 zqz e . 11Ž . Ž . Ž .3

Ž .The function F z has been obtained from the3

power series

n
yzŽ .

F z s .Ž . Ý3 n! nq3Ž .nG0

Ž .One can verify that the previous results for N t ,
Ž . Ž .L t , and P x agree with this solution. Thus, we`

have obtained the full time dependent solution for an
Ž .arbitrary time independent input f x .

Ž .The size distribution of Eq. 10 exhibits scaling.
Indeed, in the limit t™`, x™0 with the scaling
variable zsxt kept finite, the third term in the sum

Ž .on the right-hand side of Eq. 10 dominates, and the
Ž .anticipated scaling behavior of Eq. 5 is confirmed

Ž . Ž .with F z sF z . Interestingly, the only parameter3

relevant asymptotically is the overall length input
rate l.
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The limiting behaviors of the scaling distribution
are

1 1y z z<1,3 4F z , 12Ž . Ž .½ y32 z z41.

In particular, the large z behavior implies the correct
Ž . y3 Ž .asymptotic P x ;x , in agreement with Eq. 4 .`

Thus, for sufficiently large fragments, x4 ty1, the
distribution has already reached the final limiting
form, while smaller sizes are still created.

Ž .The formal solution 10 has an interesting ‘stair-
case’ structure, a time power series whose terms are

Ž .products of time independent functions f x andk
Ž .time dependent functions F xt . In fact, the solutionk

for the random scission model in the absence of
input is also characterized by a similar structure.
Indeed, consider the evolution equation

˜ `E P x ,tŽ .
˜ ˜syxP x ,t q2 dy P y ,t 13Ž . Ž . Ž .H

E t x

corresponding to the above fragmentation process in
the absence of input. Given the initial conditions
˜ ˜Ž . Ž .P x,0 s f x , the solution can be obtained follow-

Ž .ing the same steps that led to Eq. 10 . Again, the
full time dependent solution is a three term expan-
sion:

3
ky1˜ ˜ ˜P x ,t s t f x F xt . 14Ž . Ž . Ž . Ž .Ý k k

ks1

The time independent functions are given by the
Ž . Žsame expressions 9 as in the input case with fk

˜ .replaced by f , while the time dependent functionsk
˜ ˜ yzŽ . Ž . Ž .are different from 11 : F z sF z se , and1 3

˜ yzŽ . Ž .F z s 2yz e . In the limit t™`, x™0 with2

zsxt kept finite, the scaling behavior emerges again.
˜ ˜ 2 ˜ ˜ ˜Ž . Ž . Ž .Specifically, P x,t ,lt F z with lsHdx xf x

˜ yzŽ .and the exponential scaling function F z se .
The above solutions for the input case with empty

initial conditions and no input case with arbitrary
initial conditions can be used to construct the general

Ž .solution for Eq. 1 . Indeed, the sum of the solutions
˜Ž . Ž . Ž . Ž .10 and 14 , P x,t qP x,t , is the solution for a

Ž .fragmentation process with input f x starting from
Ž̃ .an initial distribution f x . As expected, the initial

conditions are ‘forgotten’ in the long time limit as
˜Ž . Ž . Ž .P x,t given by Eq. 10 dominates over P x,t

Ž .given by Eq. 14 . In particular, the scaling solution

Ž . Ž . y35 is recovered, and the P x ,2l x divergence`

of the limiting distribution holds in general.
To examine the robustness of the algebraic behav-

ior above, we consider a natural generalization to d
w xspatial dimensions 29–32 . Given that the most

interesting long time behavior is independent of the
details of the source term, we focus on the simplest
monodisperse inputs, namely, unit hypercubes. For
instance, in two dimensions we add unit squares with
rate l. A unit square is divided by choosing a point
Ž .x , x with a uniform probability density, and cut-1 2

ting the original square into four rectangles of sizes
Ž . Ž . Ž .x =x , x = 1yx , 1yx =x , and 1yx1 2 1 2 1 2 1

Ž .= 1yx . Similarly, the process is repeated with2

rectangular fragments.
Ž . Ž .Let P x,t with x' x , . . . , x be the distribu-1 d

tion of fragments of size x = PPP =x at time t.1 d

This quantity evolves according to the rate equation

E
d< <q x P x ,t s2 dy P y,t qld xy1 .Ž . Ž . Ž .Hž /E t x

15Ž .
Ž .Here, we used the shorthand notations 1s 1, . . . ,1

< <and x s x PPP x . The d-dimensional Mellin1 d
Ž . s1y1 sdy1 Ž .transform, M s,t sHdx x PPP x P x,t with1 d

Ž . Ž .s' s , . . . ,s , reduces Eq. 15 to1 d

E M s ,t 2 d ys PPP sŽ . 1 d
s M sq1,t ql.Ž .ž /E t s PPP s1 d

16Ž .
Ž .We focus on the limiting size distribution P x .`

Ž . Ž .Its Mellin transform M s is found from Eq. 16`

by setting the time derivative to zero. One gets

2 d

M s sl 1q .Ž .` dž /s y1 PPP s y1 y2Ž . Ž .1 d

w xInverting this relation yields 13
y1d < <P x sl d xy1 q2 x F j , 17Ž . Ž . Ž . Ž .` d

with the shorthand notations
1rddn` dj 1

F j s and js2 ln .Ž . Ý Łd ž / ž /n! xis1 ins0

18Ž .
Ž . j y2In one dimension, F j se sx , and we re-1

Ž . y3cover the one-dimensional result P x s2l x . In`
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Ž . Ž .two dimensions, F j s I 2j where I is the2 0 0
Ž .modified Bessel function, and in general F j cand

be expressed in terms of hypergeometric functions.
Ž .The small size behavior of P x can be obtained`

by using the steepest decent method. The leading tail
Ž .1yd 2 j dŽ . Ž .behavior, F j , 2pj e for j41, cor-d

responds to the case when at least one of the lengths
is small, i.e., x <1. Returning to the original vari-i

ables, we re-write the above asymptotic as

1rdy1 yŽdy1.r2 d< < < < < <P x ; x ln x exp 2 d ln x ,Ž . Ž .`

1d< <where ln x 'Ł ln . Thus, the fragment distribu-is1 xi

tion exhibits a ‘log-stretched-exponential’ behavior.
Let us consider the limiting volume distribu-

Ž . Ž . Ž .tion P V defined via P V s Hdx P x` ` `

Ž .d Vyx PPP x . Its Mellin transform, M s sŽ .1 d `
sy1 Ž . Ž .HdV V P V , immediately follows from Eq. 16 :`

d2
M s sl 1q .Ž .` d dsy1 y2Ž .

Ž d .y1 y1 dy1 kŽUsing the identity a y1 sd Ý z ayks0
k .y1 2p i r d thz , where zse is the primitive d root of

Ž .unity, we can express M s as a sum over simple`

poles at 1q2z k. Consequently, the inverse Mellin
transform is given by a linear combination of d
power laws,

dy12 kk y1y2zP V sl d Vy1 q z V . 19Ž . Ž . Ž .Ý` d ks0

One can verify that the volume distribution is real
since it equals its complex conjugate. The small-
volume tail of the distribution can be obtained by

Ž .noting that the sum in Eq. 19 is dominated by the
first term in the series,

2l
y3P V , V , for V™0. 20Ž . Ž .` d

Thus, the same Vy3 algebraic behavior occurs in all
spatial dimensions. Clearly, this divergence is gen-

Ž .eral. Indeed, the time dependent evolution Eq. 15
implies that the overall volume grows linearly, and
that the overall number of fragments grows quadrati-
cally. Therefore, the heuristic scaling argument lead-

Ž .ing to Eq. 5 extends to higher dimensions, and
consequently, the limiting behavior is given by Eq.
Ž .20 .

In summary, we have studied random fragmenta-
tion processes in the presence of a steady source. We
have solved for the full time dependent behavior in
terms of the input function. In the long time limit,
the size distribution exhibits a universal scaling be-
havior. The limiting distribution diverges alge-
braically according to xy3 in the small size limit.
This behavior is robust. It applies to arbitrary inputs,
and it extends to higher dimensions as well. Interest-
ingly, the only asymptotically relevant parameter is
the total volume added per unit time. Additionally,
we have shown that the scaling behavior can be used
to predict the algebraic nature of the final size
distribution. Hence, the scaling behavior and the
limiting distribution are closely related.

The solution for the time dependent behavior
exhibits an interesting staircase structure. The two
progressively weaker corrections to the leading be-
havior are of the order ty1 and ty2 , respectively.
Such staircase structures may be a useful tool for
treating similar integro-differential equations which
are expected to exhibit a scaling asymptotic behav-
ior. For instance, one can check whether substituting
such an ansatz leads to a closed system of equations
for the time dependent and time independent func-
tions.

The above results can be extended in a number of
ways. One may try to derive a general solution for
Ž .P x,t in higher dimensions for arbitrary input rate
Ž .f x . We anticipate that geometric features of the

fragments will be interesting. Indeed, in the no input
case the volume distribution exhibits an ordinary
scaling behavior while multiscaling asymptotic be-
havior underlies the full multivariate size distribu-
tion. Additionally, a nontrivial set of conservation

Ž ) . d )laws exists as all moments M s ,t with Ł s sis1 i
d Ž .2 are conserved, as seen from Eq. 16 . In the

presence of input, the same moments grow linearly
in time but multiscaling should still hold asymptoti-
cally.
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