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We study the classic Susceptible-Infected-Recovered (SIR) model for the spread of an infectious
disease. In this stochastic process, there are two competing mechanism: infection and recovery. Sus-
ceptible individuals may contract the disease from infected individuals, while infected ones recover
from the disease at a constant rate and are never infected again. Our focus is the behavior at the
epidemic threshold where the rates of the infection and recovery processes balance. In the infinite
population limit, we establish analytically scaling rules for the time-dependent distribution func-
tions that characterize the sizes of the infected and the recovered sub-populations. Using heuristic
arguments, we also obtain scaling laws for the size and duration of the epidemic outbreaks as a
function of the total population. We perform numerical simulations to verify the scaling predictions
and discuss the consequences of these scaling laws for near-threshold epidemic outbreaks.
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I. INTRODUCTION

The study of epidemics has a long and fascinating his-
tory that dates back to Daniel Bernoulli who modeled
the spread of smallpox [1–3]. Theoretical models have
been quite successful in describing the spread of infec-
tious diseases. Closely related models have been applied
to a truly remarkable set of contagious processes includ-
ing HIV [4, 5], computer viruses [6], spread of technolog-
ical innovations [7, 8], outbreaks of social and political
unrest [9, 10], and rumor propagation [11].

The convenient deterministic framework is most com-
monly used to model the spread of an epidemic. In this
formulation, coupled ordinary differential equations de-
scribe the evolution of macroscopic properties such as
the average number of infected, the average number of
recovered, and so on [12]. However, the deterministic ap-
proach cannot capture fluctuations which are inevitable
due to the finite size of the population. In many scenarios
such as the spread of an infection in an isolated boarding
school with say, a hundred children, statistical fluctua-
tions are certainly significant. The stochastic framework
which involves evolution equations for the entire prob-
ability distribution is instead required to describe finite
populations [13–18]. Theoretical analysis of the stochas-
tic framework is challenging, even for the most basic in-
fection processes [19–24], and many questions concerning
finite-size effects and extremal properties of the probabil-
ity distribution functions remain unanswered.

In this paper, we investigate the stochastic version of
the classic Susceptible-Infected-Recovered (SIR) infec-
tion process. In this model, the population consists of
susceptible, infected, and recovered individuals, and the
infection spreads through contact between infected and
susceptible members of the community [12, 15, 25, 26].
Each infected individual spreads the infection at a certain
rate, denoted by α, while infected individuals recover at
a rate set to one. The epidemic threshold is α = 1. Below
the threshold, the infection cannot maintain itself; above

the threshold, the infection can take off.
We focus on epidemic outbreaks at or near the thresh-

old [26–32]. Such “threshold epidemics” are especially
interesting. From a theoretical viewpoint, the infection
and the recovery processes are in some sense in perfect
balance precisely at the threshold. While most infec-
tions are small, large outbreaks may occasionally happen,
and hence, threshold epidemics exhibit large fluctuations.
Moreover, human efforts at disease prevention reduce the
infection rate [25], but natural evolution increases the in-
fection rate of diseases hovering just below the threshold
[33]. As s result, such epidemics are subtle: they may be
difficult to detect as well as difficult to control.

We first consider infinite populations and focus on the
behavior precisely at the epidemic threshold. We ana-
lyze the rate equation for the probability Pi,r(t) that the
number of infected equals i and the number of recovered
equals r at time t. The typical number of infected grows
linearly with time while the typical number of recovered
grows quadratically with time. We show that the joint
distribution function obeys the scaling form

Pi,r(t) ≃ t−4 Φ
(

i t−1, r t−2
)

. (1)

We obtain the Laplace transform of the scaling function
Φ(ξ, η) analytically, and present a comprehensive asymp-
totic analysis. We also discuss scaling properties of the
respective single-population distribution functions for the
number of infected or the number of removed.

Next, we consider finite populations. We combine the
infinite population results with heuristic arguments to
derive scaling laws for the size and duration of outbreaks
in a finite population of size N . At or near the epidemic
threshold, the effective infection rate is reduced because
the population is finite. We find that the maximal size
of the outbreak, M , and the maximal duration of the
outbreak, T , obey the nontrivial scaling laws

M ∼ N2/3, and T ∼ N1/3. (2)
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We also formulate the range of infection rates near the
epidemic threshold for which these scaling laws apply.

The rest of this paper is organized as follows. We be-
gin with the definition of the infection process, given in
Section II. In section III, we treat the infinite popula-
tion limit by using the rate equation approach. First, we
derive the outbreak size distribution. We then compute
two single-variable distributions — the probability dis-
tribution for the number of infected individuals and the
probability distribution of the number of recovered indi-
viduals. Next, we discuss scaling and extremal properties
of the joint distribution function. In section IV, we con-
sider finite populations and obtain finite-size scaling laws
for the size and duration of the outbreaks. We discuss
the results in section V, and the appendix details some
necessary inverse Laplace transforms.

II. THE INFECTION PROCESS

The spread of infectious diseases has been widely stud-
ied on regular and irregular spatial structures such as
lattices [34–42] and complex networks [43–45]. Never-
theless, many characteristics of stochastic epidemics, e.g.
finite-size properties, remain open questions even for per-
fectly mixed populations. Throughout this paper we as-
sume that the populations are well-mixed so that any
infected individual can spread the disease to any suscep-
tible individuals.

In the ubiquitous Susceptible-Infected-Recovered
(SIR) infection process, the population includes three
types of individuals:

S Uninfected individuals who are susceptible to the
infection.

I Infected individuals who are actively spreading the
disease.

R Individuals who are neither infected nor susceptible
including those who have been infected and subse-
quently recovered, or became immune, or removed.

An individual may proceed from type S to I to R. In
this simplified model, all infected individuals may spread
the disease.

We investigate the continuous-time version of SIR in-
fection process [15]. At any given moment, the popula-
tion consists of s susceptible, i infected, and r recovered
individuals; the size of the total population, N = s+i+r,
remains fixed. The sub-populations change due to two
competing processes — infection and recovery. An in-
fected individual may infect a susceptible one with rate
α/N , where α is the infection rate:

(s, i, r)
αsi/N−→ (s− 1, i+ 1, r). (3)

The overall infection rate is proportional to the size of
the susceptible population times the size of the infected

population. Infected individuals recover at a constant
rate,

(s, i, r)
i−→ (s, i− 1, r + 1). (4)

Without loss of generality, the recovery rate is set to one.
We consider the natural initial condition where a single

infected individual is embedded in a “sea” of susceptible
individuals, that is, (s, i, r) = (N − 1, 1, 0) at time t = 0.
The infection process ends when no infected individuals
remain, (s, i, r) = (N − n, 0, n). The final number in-
fected, n, measures the size of the epidemic outbreak.

III. INFINITE POPULATIONS

Since the infection process is random, the size of the
epidemic outbreak is a stochastic quantity. First, we
investigate the distribution of this quantity as its basic
characteristics show how the infection process can be in
one of two phases: an endemic phase where a microscopic
number of individuals are infected and a pandemic phase
where a macroscopic number of individuals are infected.

In this section we analyze the infinite population limit,
N → ∞. Let Gn be the probability that the size of the
epidemic outbreak equals n. For the initial condition
(s, i, r) = (N − 1, 1, 0), the total infection rate and the
total recovery rate are α and 1 as follows from (3)–(4).
In the very first step, the infected individual either recov-
ers, or a second individual become infected. The former
happens with probability G1 = 1/(1 + α), while the lat-
ter occurs with the complementary probability α/(1+α).
Hence, the distribution Gn obeys the recursion equation

Gn =
α

1 + α

∑

i+j=n

GiGj +
1

1 + α
δn,1 , (5)

valid for all n ≥ 1. The convolution term corresponds to
the case where an additional individual becomes infected
— in this situation there are two infection processes, and
in the infinite population limit these two processes are
completely independent [46, 47]. Starting with G1 =
1/(1 +α), the recursion equation gives G2 = α/(1 +α)3,
G3 = 2α/(1 + α)5, etc.

We now introduce the generating function

G(z) =
∑

n≥1

Gnz
n. (6)

Using the generating function we convert the infinite set
of recursion equations (5) into the quadratic equation,
(1+α)G = αG2 +z. Out of the two solutions, the proper
one satisfies the requirement G(z = 0) = 0,

G(z) =
1 + α−

√

(1 + α)2 − 4αz

2α
. (7)

The behavior of G(z) in the limit z → 1 reveals the
basic characteristics of the infection process. The proba-
bility Gfinite that only a finite number of individuals are
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infected is given by

Gfinite =

{

1 α ≤ 1;

α−1 α > 1.
(8)

The derivation of (8) follows from (7) and
Gfinite =

∑

n≥1Gn = G(1). The threshold value
αc = 1 separates two regimes of behavior — an endemic
regime and a pandemic regime. Below the threshold,
the number of infected individuals is always finite.
Above the threshold, there is a finite probability that a
finite fraction of individuals becomes infected, and as a
consequence, the average size of the epidemic outbreak
is macroscopic, that is, proportional to the size of the
total population.

Also, the average number of infected individu-
als readily follows from the generating function, viz.
〈n〉 =

∑

n nGn = G′(1). Equation (7) gives

〈n〉 =
1

1 − α
, α < 1. (9)

As expected, the size of the outbreak diverges in the
vicinity of the threshold.

To find Gn, we expand the generating function G(z) in
powers of z. The distribution of outbreak size is a prod-
uct of an exponential and an algebraic factor, expressed
as a ratio of Gamma functions,

Gn =
1

(1 + α)
√
π

Γ
(

n− 1
2

)

Γ(n+ 1)

[

1 −
(

1 − α

1 + α

)2
]n−1

.

By using the asymptotic behavior Γ(x + a)/Γ(x) ≃ xa

as x → ∞, we conclude that at the epidemic threshold,
α = 1, the size distribution has a power-law tail

Gn ≃ (4π)−1/2 n−3/2, (10)

as n → ∞. For threshold epidemics, there is balance
between infection and recovery, as indicated by (3)–(4).
While the majority of outbreaks are small, the algebraic
behavior (10) suggests that there is a considerable likeli-
hood for large outbreaks to occur.

In the remainder of this section, we focus on the be-
havior at the epidemic threshold, α = 1. We begin with
the probability Pi(t) that there are i infected individuals
at time t. Irrespective of the infection rate, this distri-
bution function satisfies a closed evolution equation, and
for the critical α = 1 case, Pi(t) satisfies

dPi

dt
= (i− 1)Pi−1 + (i+ 1)Pi+1 − 2iPi . (11)

The initial condition is Pi(0) = δi,1. Equations (11) are
closed because in the infinite population limit, N → ∞,
the population of infected individuals does not depend on
the populations of susceptible and recovered individuals.
We comment that the master equation (11) is a discrete
diffusion equation with a diffusion coefficient equal to the
size of the infected population.

To solve (11) we use the exponential ansatz:
Pi(t) = Ψ(t) [ψ(t)]i−1 for i > 0, with the initial condi-
tions Ψ(0) = 1 and ψ(0) = 0 to assure the validity
of Pi(0) = δi,1. This ansatz reduces the infinite set
of equations (11) to two ordinary differential equations,
dψ/dt = (1 − ψ)2 and dΨ/dt = 2(ψ − 1)ψ. Solving these
coupled equations we obtain

Pi(t) =
1

(1 + t)2

(

t

1 + t

)i−1

(12)

for i > 0. Thus, the size distribution is purely exponen-
tial.

The quantity P0(t) gives the probability that the
infection process has subsided by time t. From
dP0/dt = P1 and the initial condition P0(0) = 0, we ob-
tain P0(t) = t/(1 + t). Equivalently, one can deduce this
result from the normalization requirement

∑

i≥0 Pi = 1.

Note also that the survival probability P (t), defined as
the probability that the infection remains active at time
t, is simply P (t) = 1 − P0(t), and hence, it is given by

P (t) =
1

1 + t
. (13)

In the long time limit, the survival probability decays
algebraically, P ≃ t−1.

Interestingly, the first moment of the distribution Pi is
conserved,

∑

i iPi = 1, and in this sense, the competing
processes of infection and recovery balance when α = 1.
Hence, if we restrict our attention to active outbreaks,
the average number of infected individuals grows linearly
with time, 〈i〉 = 1 + t, where 〈i〉 =

∑

i iPi/P (t).
In the long-time limit, the distribution Pi(t) has the

scaling form

Pi(t) ≃ t−2 Φ
(

i t−1
)

, Φ(ξ) = e−ξ . (14)

This scaling behavior immediately follows from (12) in
the limit i → ∞ and t → ∞ with the scaling variable
ξ = i/t kept fixed.

The master equation (11) is closed since the infected
population is decoupled from the other two populations.
In contrast, the recovered population is coupled to the
infected population. Therefore, we must analyze the joint
distribution Pi,r(t), that is, the probability there are i
infected and r recovered at time t. Of course, the joint
distribution function gives a complete description of the
state of the system and for example, Pi =

∑

r≥0 Pi,r. The
joint distribution obeys the full master equation

dPi,r

dt
= (i− 1)Pi−1,r + (i+ 1)Pi+1,r−1 − 2iPi,r (15)

and Pi,r(0) = δi,1 δr,0. In this rate equation, the first gain
term accounts for infection, while the second gain term
represents recovery. For small i and r one can compute
the joint distribution recursively: P1,0 = e−2t, P0,1 =
(1 − e−2t)/2, P1,1 = e−2t[2t− (1 − e−2t)]/2, etc. [48].
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Generally, we use the generating function

P(u, v) =
∑

i≥0

∑

r≥0

Pi,r u
i vr . (16)

By multiplying (15) by uivr and summing over all i and
r, we find that the generating function obeys

∂P
∂t

= (u2 − 2u+ v)
∂P
∂u

. (17)

The initial condition is P0 ≡ P(u, v) = u where
P0 ≡ P

∣

∣

t=0
.

We can transform equation (17) into the wave equation

∂P
∂t

=
∂P
∂w

. (18)

To establish this equation, we introduce the variable

w =

∫ u

0

du′

(u′)2 − 2u′ + v

=
1

2
√

1 − v
ln

1 +
√

1 − v − u

1 −
√

1 − v − u

1 −
√

1 − v

1 +
√

1 − v
. (19)

The solution to equation (17) is simply P0(w+ t). Since
P0 = u, we need to obtain u in terms of the variable w
and then, replace w with w + t to obtain the generating
function explicitly. From (19), the expression

u = 1 −
√

1 − v

− 2
√

1 − v

[

1 +
√

1 − v

1 −
√

1 − v
e2w

√
1−v − 1

]−1

(20)

gives P0 = u in terms of v and w. As a function of the
variables w and v, the generating function becomes

P(w, v) = 1 −
√

1 − v

− 2
√

1 − v

[

1 +
√

1 − v

1 −
√

1 − v
e2(w+t)

√
1−v − 1

]−1

.

This result is derived from (20) by replacing w with w+t.
In terms of the original variables, the generating function
is

P(u, v) = 1 −
√

1 − v − 2
√

1 − v
1 −

√
1 − v − u

D − (E − 1)u
. (21)

We obtained this result by expressing exp
[

2w
√

1 − v
]

in
terms of u. In writing (21), we also used the shorthand
notations

E = e2t
√

1−v , D = (E + 1)
√

1 − v + E − 1. (22)

For example, we can verify that the generating function
yields the size distribution of outbreaks. In the long-
time limit, the last term on the right-hand-side of (21)
vanishes since the quantities D and E are both divergent.
With the shorthand notation P∞ ≡ limt→∞ P, we have

P∞(u, v) = 1 −
√

1 − v. By substituting α = 1 into (7),
we confirm that Pi,r(t) → δi,0Gr when t→ ∞.

First, we analyze the probability distribution Πr(t).
By definition, Πr(t) is the probability to have r recovered
individuals at time t. Of course, Πr(t) =

∑

i≥0 Pi,r(t).
The distribution of recovered differs from the distribution
of infected in that in the long-time limit, it approaches a
nonzero value, Πr → Gr, whereas Pi → 0 for all i > 0.
To study the long-time asymptotic behavior, we write
Πr(t) = Gr +Hr(t). We have Hr(t) → 0 as t→ ∞. The
corresponding generating function H(v) =

∑

r≥0Hrv
r is

given by

H(v) =
2
√

1 − v

e2t
√

1−v + 1
. (23)

We obtain this expression from the joint generating func-
tion (21) by setting u = 1, H(v) = P(1, v) − P∞(1, v)
where P∞(1, v) = 1 −

√
1 − v.

According to the scaling behavior (14), the typical size
of the infected population grows linearly with time, i ∼ t.
Heuristically, dr/dt ∼ i since the recovery rate is con-
stant. Consequently, the typical size of the recovered
population is quadratic, r ∼ t2, and hence, we expect
the scaling behavior

Hr(t) ≃ t−3ϕ(r t−2). (24)

The Laplace transform of the scaling function ϕ(η) fol-
lows immediately from behavior of the generating func-
tion (23) in the limit v → 1. We take the limits v → 1
and t→ ∞ while keeping the variable b = t2(1−v) fixed.
In this limit, we have vr → e−bη and the sum over r turns
into the integral

∑

r≥0

vr → t2
∫ ∞

0

dη e−bη .

By using this scaling transformation along with Eq. (23),
we find the Laplace transform of the scaling function

∫ ∞

0

dη e−bη ϕ(η) =
2
√
b

e2
√

b + 1
. (25)

The inversion of this Laplace transform through inte-
gration in the complex plane is detailed in the Appendix
where we show that the scaling function ϕ(η) is given by

ϕ(η)=2π2
∞
∑

k=0

(

k + 1
2

)2
e−π2(k+ 1

2 )
2
η − 1

√

4πη3
. (26)

We now substitute this expression into the scaling form
(24) and observe that the algebraic factor (4π)−1/2η−3/2

and the final distribution Gr cancel each other. Thus,
the distribution Πr(t) has the same scaling form as the
distribution Hr(t),

Πr(t) ≃ t−3φ(r t−2) . (27)
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The scaling function φ(η) is given by the sum

φ(η) = 2π2
∞
∑

k=0

(

k + 1
2

)2
e−π2(k+ 1

2 )
2
η . (28)

The leading asymptotic behaviors of the scaling function
φ(η) are

φ(η) ≃
{

(4π)−1/2η−3/2 η → 0;

(π2/2)e−π2η/4 η → ∞.
(29)

The algebraic behavior in the small-η limit is consistent
with the power-law tail (10). To obtain this behavior, we
simply convert the sum in (28) into an integral. We note
that with the scaling form (27) and the small-η diver-
gence, the quantity

∑

r Πr is indeed finite. Also, the first
term in the series yields the exponential behavior in the
large-η limit. Hence, both the distribution of recovered
and the distribution of infected have exponential tails.

We now analyze the joint distribution Pi,r(t). We re-
strict our attention to active epidemics that correspond
to i > 0. Thus, we focus on the following component of
the joint generating function

F(u, v) =
∑

i≥1

∑

r≥0

Pi,ru
ivr. (30)

This component follows directly from the generating
function, F(u, v) = P(u, v) − P(0, v), and by using the
explicit solution (21), we obtain

F(u, v) =
4Eu(1 − v)

D[D − (E − 1)u]
. (31)

The scaling behaviors (14) and (27) for the single-
population distributions imply that the joint distribu-
tion function adheres to the scaling form (1) stated in
the introduction. Since the survival probability P (t) =
∑

i≥1

∑

r Pi,r(t) decays with time according to (13), the

scaling function is normalized
∫∫

dη dξΦ(ξ, η) = 1.
The above analysis suggests use of the joint Laplace

transform

f(a, b) =

∫ ∞

0

∫ ∞

0

dξ dη e−aξ−bη Φ(ξ, η), (32)

that is merely the continuous counterpart of the gener-
ating function. To obtain f(a, b) from F(u, v) given in
(31), we take the limits t → ∞, u → 1, and v → 1 while
keeping the variables

a = (1 − u) t and b = (1 − v) t2

fixed. By taking these limits, we observe that the right-
hand side of (30) becomes t−1f(a, b), and find the joint
Laplace transform in explicit form

f(a, b) =

( √
b

sinh
√
b

)2
1

a+
√
b coth

√
b
. (33)

We stress that the quantity f(a, b) describes only active
infection processes. One can verify that f(0, 0) = 1.
Moreover, in the b→ 0 limit, we have f(a, 0) = 1/(1 + a),
for which the inverse Laplace transform is immediate,
∫

dηΦ(ξ, η) = e−ξ. Indeed, we recover the scaling func-
tion Φ(ξ) in Eq. (14).

Since the inverse Laplace transform of f(a, b) with re-
spect to the variable b is immediate, we have

∫

dη e−bηΦ(ξ, η) =

( √
b

sinh
√
b

)2

e−ξ
√

b coth
√

b. (34)

The Appendix outlines how to invert this Laplace trans-
form to obtain the leading asymptotic behaviors for large-
η and small-η,

F (ξ, η) ≃







4 (1+ξ/2)3

π1/2 η7/2
exp

[

− (1+ξ/2)2

η

]

η → 0,

π2 21/4

ξ3/4
exp

[

−π2η + π
√

8ξη − ξ
]

η → ∞.

(35)
These limiting behaviors apply for a fixed value of ξ.

The function f(a, b) captures all moments of the scal-
ing function Φ(ξ, η). For example, by expanding equation
(33) as a Taylor series in the conjugate variables a and
b, f(a, b) = 1 − a − 2

3b + ab + · · · , and comparing with
the definition (32), we obtain the lowest-order moments
〈ξ〉 = 1, 〈η〉 = 2

3 , and 〈ξη〉 = 1. In particular,

〈ξη〉 > 〈ξ〉〈η〉, (36)

so there is positive correlation between the size of the
two populations. Intuitively, we expect that long-lasting
epidemic outbreaks involve large numbers of infected and
recovered, while the opposite is true for short-lived out-
breaks.

For completeness, we mention that the above anal-
ysis can be repeated for inactive outbreaks. Starting
with P(0, v) given in (21) and following the steps lead-
ing to (27), we find that the distribution P0,r(t) that
an epidemic outbreak has ended by time t and that
the size of the outbreak equals r, has the scaling form
P0,r(t) ≃ t−3φ̃

(

r t−2
)

. The scaling function φ̃(η) resem-
bles φ(η) given in (28)

φ̃(η) = 2π2
∞
∑

k=1

k2 e−π2k2η. (37)

The leading asymptotic behavior in the small-η limit
is identical to that in (29), and again, there is
exponential decay, albeit with twice the coefficient,
φ̃(η) ≃ 2π2 exp(−π2η) in the large-η limit. As expected,
inactive outbreaks dominate the size distribution of the
recovered population at large times.

IV. FINITE POPULATIONS

The zeroth and first-order moments of the distribution
Gr given in equations (8) and (9) show that the size of
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FIG. 1: The average outbreak size versus the population
size for the SIR infection process at the epidemic threshold
(α = 1). Shown are Monte Carlo simulation results repre-
senting an average over 109 independent realizations of the
infection process (circles). A line of slope 1/3 is also shown
as a reference.

the epidemic outbreak is microscopic below the epidemic
threshold, α < 1, but macroscopic above the threshold,
α > 1. These results hold for infinite populations, yet
real-world epidemic outbreaks involve finite populations,
and there is practical need for understanding how basic
characteristics such as the average size and the average
duration of the epidemic depend on the size of the pop-
ulation, N .

Finite-size effects are most pronounced in the vicinity
of the epidemic threshold. Let us consider large but finite
populations, N ≫ 1, and let us consider a scenario in
which the susceptible population has been depleted by
n, that is, s = N − n. From the very definition of the
infection process (3), we determine that the infection rate
is reduced, α→ α∗(N), with

α∗(N) = α
(

1 − n

N

)

, (38)

because the total population is finite. Clearly, as the
large “reservoir” of susceptible individuals shrinks, the
infection process weakens.

Let us now consider the average size of the outbreak for
a threshold epidemic (α = 1). We assume that there is
a maximal outbreak size M , and that the outbreak can
not exceed this size due to depletion in the number of
susceptible individuals. On the one hand, equations (38)
and (9) suggest that 〈n〉 ∼ N/M . On the other hand,
the algebraic distribution (10) gives a second estimate
〈n〉 ∼ ∑

n≤M n−1/2 ∼ M1/2 for the average size of the

outbreak. Equating these two estimates, N/M ∼ M1/2,
we conclude that M ∼ N2/3 as stated in (2). While a
naive interpretation of the effective infection rate (38)
would suggest that the cutoff is proportional to the to-
tal population, we find that threshold epidemics have a
substantially smaller upper bound.
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FIG. 2: The average outbreak duration at the epidemic
threshold versus the population size. Simulation results, ob-
tained from an average over 109 realizations (circles) are com-
pared with the reference line (1/3) ln N + C.

Using 〈n〉 ∼ N/M and M ∼ N2/3 we see that the
average size of a threshold epidemic grows as

〈n〉 ∼ N1/3. (39)

This interesting scaling law was established by Martin-
Löf [19] and it has been confirmed in several recent stud-
ies [20–24]. Figure 1 shows a numerical verification of
this behavior. For finite populations, this scaling law
holds in the neighborhood (often termed critical or scal-
ing windows) of the epidemic threshold. To estimate the
size of this neighborhood, we simply compare (39) with
(9). The size of the outbreak grows sub-linearly in the
population size as long as

|1 − α| ∼ N−1/3. (40)

Of course, this neighborhood shrinks as the size of the
population grows. Yet, for moderate populations, the
size of this neighborhood is considerable.

The scaling law (39) indicates that for finite popula-
tions, there are actually three regimes of behavior. Well
below the epidemic threshold, a finite number of individ-
uals becomes infected. Well above the threshold, a finite
fraction of the population becomes infected. In the vicin-
ity of the threshold, the size of the outbreak grows as the
1/3 power of the population size,

〈n〉 ∼











O(1) ζ → ∞,

N1/3 Y (ζ) ζ = O(1),

N ζ → −∞,

(41)

with the scaling variable ζ = N1/3(1−α). A finite value
of ζ indicates that the infection rate is in the neighbor-
hood of the threshold. (The scaling function Y (ζ) can be
extracted from Refs. [19, 21–23].)
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FIG. 3: The survival probability at the epidemic threshold.
Shown is the normalized survival probability P (t, N)/P (t)

versus the normalized duration time t/N1/3. The data corre-
sponds to an average over 108 realizations.

The duration of a threshold epidemic also adheres to a
finite-size scaling law. Since the size of the recovered pop-
ulation grows quadratically with time, r ∼ t2, as implied
for example by the scaling behavior (14), we conclude
that there is a maximal time scale T , and that the du-
ration of a near-threshold outbreak may not exceed this
scale. We can estimate the time scale T ∼ N1/3 stated in
(2), from the heuristic argument T 2 ∼M . The average
duration of the infection process follows from the survival

probability, 〈t〉 = −
∫ T

0
dt t dP/dt, and using P ∼ t−1, we

find that the average duration grows logarithmically with
time (Fig. 2),

〈t〉 ≃ 1

3
lnN . (42)

Logarithmic growth, albeit with a unit prefactor, was
predicted by Ridler-Rowe [49].

The scales M ∼ N2/3 and T ∼ N1/3 fully character-
ize the size and duration of the infection process when
α = 1. For example, the survival probability P (t,N) to
have at least one infected at time t obeys P (t,N)/P (t) →
S
(

t/N1/3
)

(Figs. 3). However, the simulations show that
the convergence to this scaling form is not uniform — it
is slow for short durations but fast at large durations. We
note that figures 3 and 4 confirm the scaling laws stated
in equation (2).

We performed numerical simulations to check the scal-
ing predictions for the case α = 1. Our numerical method
is merely a Monte Carlo procedure to solve the mas-
ter equation (15). We conveniently keep track of two
populations, s and i, from which the overall infection
rate and recovery rate are respectively Ri = si/N and
Rr = i. The probabilities Pi = Ri/(Ri + Rr) and
Pr = Rr/(Ri +Rr) that the following step involves infec-
tion or recovery are calculated and then, the populations

0 1 2 3 4 5
n/N

2/3
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0.4
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0.8
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U
n(N
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n
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4

N=10
6

N=10
8

FIG. 4: The normalized cumulative distribution
Un(N)/Un(∞) versus the normalized outbreak size n/N2/3.
The quantity Un(N) is the probability that the outbreak size
is at least n in a population of size N . The data corresponds
to an average over 106 independent realizations.

are updated accordingly,

(s, i) →
{

(s− 1, i+ 1) with probability Pi,

(s, i− 1) with probability Pr.
(43)

The infection process ends when i = 0 for the first
time. Time is updated by the inverse of the total rate
t→ t+ 1/(Ri +Rr). With this straightforward numeri-
cal procedure, we can simulate as many as 109 indepen-
dent runs in populations as large as N = 109. As shown
in figures 1 and 2, there is excellent agreement between
the numerical results and the theoretical predictions for
the average size (39) and the average duration (42).

V. DISCUSSION

We investigated various statistical properties of the
SIR infection process at a threshold infection rate. We
analyzed the rate equations for the two-population dis-
tribution function that characterizes the probability that
the system has a specified number of infected and recov-
ered individuals. Our analysis yields scaling behavior in
the asymptotic long-time limit and gives extremal prop-
erties of the joint distribution function as well as the as-
sociated single-population distributions. We used these
infinite population results to justify scaling laws for finite
populations.

Outbreaks in the vicinity of the epidemic threshold
have a distinct size, characterized by non-trivial power-
law dependence on the total population size. This scaling
behavior applies in the vicinity of the epidemic thresh-
old. The size of this neighborhood, N−1/3, is larger than
the canonical value N−1/2 expected from the traditional



8

large-size expansions or from the deterministic descrip-
tion [50]. Therefore, statistical fluctuations and finite
population effects are pronounced and may be subtle
near the epidemic threshold. We note the an identical
scaling arises near the percolation point for Erdős-Rényi
random graphs [51, 52]. Additional connections between
SIR infection processes and random graphs were reported
recently [23].

The scaling laws for the time dependence and the size
dependence are useful. For example, the scaling laws
for the critical kinetics can be used to find the epi-
demic threshold in numerical simulations of infection pro-
cesses on complex networks for which the threshold is not
known analytically. Furthermore, the number of coupled
ordinary equations needed to compute the joint distri-
bution Pi,r numerically is in principle quadratic with N .

However, the scaling laws i ∼ N1/3 and r ∼ N2/3 imply
that the relevant number of equations is much smaller,
being proportional to N .

For large but finite populations, we understand the ba-
sic scaling laws, but much less is known about finite-size
scaling functions. The only exception is the known scal-

ing function that gives the size distribution of the out-
breaks at the epidemic threshold [19, 21]. The analytic
determination of the scaling function characterizing the
duration of outbreaks near the epidemic threshold is a
challenging problem because there is no closed equation
for the total duration of the outbreak [18].

Finally, we mention that in this study we assumed
that all individuals can interact. In most applications,
the spatial [34–42] or network [43–45] structure of the
infected domain play an important role. Finding the
corresponding scaling functions for the time-dependent
behavior at the critical point or for the finite-size scaling
are also challenging open problems.
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APPENDIX A: INVERSE LAPLACE

TRANSFORMS

From Eq. (25), the scaling function ϕ(η) equals the
inverse Laplace transform

ϕ(η) =
1

2πi

∫ γ+i∞

γ−i∞
db ebη 2

√
b

e2
√

b + 1
(A1)

where the integration contour is a line parallel to the
imaginary axis in the complex b plane and γ > 0 so that
all singularities are to the left of the integration contour.

The integrand has simple poles at bk = −π2
(

k + 1
2

)2
,

k = 0, 1, 2, . . . and a branch point at the origin, and we
select a branch cut along the negative real axis so that it
does not cross the path of integration. Furthermore, we
pick a closed Bromwich contour formed by the contour
followed by a quarter of a circle of infinitely large ra-
dius, followed by the top of the branch cut with infinites-

imal half-circles around each pole and then encircling the
origin and proceeding similarly along the bottom of the
branch cut, followed by a quarter of a circle. By the
Cauchy theorem, the integral along this closed contour
vanishes. The integrals over the circles vanish and the
integrals over the branch cut can be computed to yield

ϕ(η)=2π2
∞
∑

k=0

(

k + 1
2

)2
e
−π2

“

k+
1
2

”2

η − 1

π

∫ ∞

0

dc e−cη
√
c

where the sum is proportional to the residues of poles at

bk = −π2
(

k + 1
2

)2
. Since the integral on the right-hand

side equals (4π)−1/2η−3/2, we arrive at (26).
The inverse Laplace transform of (34) with respect to

b gives the joint scaling function

F (ξ, η) =
1

2πi

∫ γ+i∞

γ−i∞
db ebη

[ √
b

sinh
√
b

]2

e−ξ
√

b coth
√

b.

To obtain the leading asymptotic behavior in the small-η
limit, given in (35), we simply evaluate the large-b be-
havior. In the opposite limit, η → ∞, the asymptotic be-
havior follows from the singularity of the Laplace trans-
form in the complex b plane that is closest to the origin.
The Laplace transform has singularities at bk = −π2k2,
k = 1, 2, . . ., so we focus on the singularity at b1 = −π2.
For a fixed ξ, the scaling function appears to decay ex-

ponentially, F (ξ, η) ∼ e−π2η as η → ∞. To establish the
complete asymptotic behavior we recall that a subdom-

inant power-law prefactor, F (ξ, η) ∼ ηm e−π2η, implies
that the Laplace transform has the algebraic singularity
(π2 +b)−m−1 as b→ −π2. In fact, the Laplace transform
has the essential singularity (we set b = −π2(1 − ǫ)2, so
that the limit b→ −π2 is equivalent to the ǫ→ 0 limit)

ǫ−2 exp
[

(ǫ−1 − 1)ξ
]

. (A2)

An essential singularity of the type eξ/ǫ corresponds to
a subdominant prefactor that is a stretched exponential,

eπ
√

8ξη. An additional power-law factor times a numer-
ical factor allow to match the singularity (A2). The re-
sulting large-η asymptotic behavior is given in (35).


