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We study steady-state properties of inelastic gases in two-dimensions in the presence of an
energy source. We generalize previous hydrodynamic treatments to situations where high and low
density regions coexist. The theoretical predictions compare well with numerical simulations in the
nearly elastic limit. It is also seen that the system can achieve a nonequilibrium steady-state with
asymmetric velocity distributions, and we discuss the conditions under which such situations occur.
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I. INTRODUCTION

Granular materials such as sand and powders have gen-
erated much interest of late. Such an ensemble of par-
ticles with macroscopic size is challenging since it may
behave as a solid, a liquid or a gas. Size separation, pat-
tern formation, avalanches, compaction and convection
are just a few examples of the wide array of observed
phenomena [1].

Flow underlies most of these phenomena and therefore,
theoretical studies so far focus on formulating a hydro-
dynamical description appropriate to sand [2,3]. These
theories, stemming from the Boltzmann Equation, de-
pend on the assumption of “molecular chaos”, i.e., the
assumption that no interparticle correlations exist. This
assumption is far from obvious. As a dissipative dynam-
ical system, a granular system has attractors in its phase
space, which may cause correlations between particles.
Under certain conditions, these attractors lead to a sin-
gularity, inelastic collapse, which can not be explained by
hydrodynamics. In one dimension, these attractors are so
strong that hydrodynamics breaks down for the entire pa-
rameter space [4,5]—in a confined geometry, all particles,
save one, form a practically stationary clump against the
elastic wall, while the remaining particle moves rapidly
back and forth between the clump and the heated wall.
Such a state clearly violates partition of energy.

In this study, we investigate the corresponding situa-
tion in two-dimensions [6,7]. We consider inelastic hard
spheres in a box where one wall is kept at a fixed tem-
perature and the other three are reflecting (see Fig. 1).
Energy input at the heated wall balances the dissipation
due to inter-particle collisions and the system can achieve
a steady state. Unlike the one-dimensional situation, the
density and the temperature profiles are smooth func-
tions of the distance from the heated wall. In the steady-
state, the momentum balance equations imply that the
pressure is constant throughout the system. Particles
move faster close to the energy source and more slowly
deeper inside the system due to energy loss. Thus the

density is greater farther away from the wall to maintain
a constant pressure.

Density variations may be a consequence of the above
mechanism or an effect of the intrinsic attractors in
the system which build up correlations among parti-
cles. Assuming that the particles are not coherent in
the quasi-elastic limit, we derive a differential equation
that describes the density variation throughout the sys-
tem. Heuristic expressions for the mean-free path, the
equation of state, and the thermal conductivity are incor-
porated into the energy flux balance equation to obtain a
closed equation describing the steady-state density pro-
files. The theory compares well with simulational results
over a wide range of densities in the quasi-elastic limit.

FIG. 1. The system of interest. The length of the system
is L, the width is W . The heated wall is at x = 0; the elastic
walls are at x = L, y = 0, and y = W .

Our theory is appropriate for a steady-state which is
very close to an equilibrium state. We expect this to be
applicable only in the nearly elastic limit. We argue that
in the complementary situation of stronger inelasticity,
hydrodynamics may still be relevant. To analyze the na-
ture of the steady-state, we study velocity distributions
throughout the system. We observe that the velocity dis-
tributions exhibit scaling. This observation is then used
to obtain a qualitative description of the behavior of the
system.
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II. THE QUASI-ELASTIC LIMIT

Granular materials are different from ordinary fluids
or gases in that the diameter of a particle may be com-
parable to the collisional mean free path. To formulate
a hydrodynamic theory, it is necessary to describe how
the mean free path, the pressure, and the thermal diffu-
sivity depend on the grain diameter, the number density,
and the temperature. In this section, we obtain heuristic
expressions for these quantities.

Let us denote the number density of grains by ρ, the
mean free path by l, and the grain diameter by d. With-
out loss of generality, we set the particle mass and the
Boltzmann constant to unity: m = kB = 1. The gran-
ular temperature can be defined as the average kinetic
energy per particle: T ≡ 1

2 〈v
2〉. This quantity is well

defined for an equilibrium state in which the particles
have a symmetric velocity distribution. In such a case,
v̄ =

√
2T , can be used as an approximate value for the

average grain speed. In our system, quantities such as
temperature, density, etc., are position dependent, and
there is not a global equilibrium. However, in the quasi-
elastic limit, we expect the system to be very close to
local thermal equilibrium.

Let x be the distance from the heated wall. In the
steady state, all quantities vary only in this transverse
direction. The energy balance equation can therefore be
written

dq

dx
+ I = 0, (1)

where q is the energy flux in the x direction. The sink
term I accounts for the energy lost per unit area per
unit time due to inelastic collisions. The energy flux is
induced by a temperature gradient, q = −κdT/dx, where
the coefficient of thermal diffusivity, κ, is positive. Con-
sequently, we find

d

dx

(
κ
dT

dx

)
= I. (2)

A. The Energy Sink

Since collisions between grains are inelastic, kinetic en-
ergy is continually transferred into heat. For simplicity
we neglect rotation and thus, the degree of inelasticity
can be parameterized by 0 ≤ r ≤ 1. When two par-
ticles collide, their tangential velocities are unchanged,
while the relative normal velocity is decreased by a fac-
tor of −r, where the negative sign merely indicates that
they move apart after a collision. Using momentum con-
servation one can write the final velocities (indicated by
primes) in terms of the initial velocities(

v′1n
v′2n

)
=

1
2

(
1− r 1 + r
1 + r 1− r

)(
v1n

v2n

)
. (3)

In the above equation, the subscript n denotes the ve-
locity component along the line connecting the centers
of particles 1 and 2. The energy lost in each collision is
therefore

∆E = −1
4

(1− r2)(v1n − v2n)2.

In this study, we focus on the quasi-elastic limit, i.e.
1 − r � 1. Physically, this limit is relevant to hard
particles such as glass or steel beads.

Using the above expression for the energy dissipated
in each collision, one can estimate the sink term, I, the
mean energy lost per unit area per unit time. Consider
a particle moving with speed v̄. During each collision,
it loses, on average, energy proportional to (1 − r2)v̄2.
In unit time, it collides roughly v̄/l times. In unit area,
there are ρ particles, and consequently

I ∝ (1− r2)v̄2 v̄

l
ρ ∝ (1− r2)ρT 3/2/l.

B. The Coefficient of Thermal Diffusivity

Suppose there is a temperature gradient in the x-
direction. As a result, there will be an energy flux along
this axis. To calculate this flux, let us consider the num-
ber of particles crossing a line perpendicular to this direc-
tion in a time interval ∆t. We define “crossing the line”
as having any part of the particle over the line during
this time interval. To cross the line within ∆t, a parti-
cle with speed v̄ must have its rightmost point v̄∆t or
closer to the line. Thus, only grains in an area (d+ v̄∆t)
to the left of the line can pass the line from the left in
∆t. In fact, only one half of these particles are mov-
ing to the right, so the number of particles crossing the
line per unit cross-sectional length in ∆t is 1

2ρ(d+ v̄∆t).
In a steady state, the number of crossing events from
each side must balance. Any energy flux is due to the
fact that particles coming from the right are at a dif-
ferent temperature (TR) than those from the left (TL)
and thus, q∆t = 1

2ρ(d + v̄∆t)(TL − TR). Consider two
grains on opposite sides of the line. Their centers are
approximately a distance (l + d) apart, so the tempera-
ture difference is roughly (l + d)dT/dx. The coefficient
of thermal conductivity is therefore κ = −q/(dT/dx) =
1
2ρ(l+d)(d+v̄∆t)/∆t. A natural choice for ∆t is the typi-
cal collision time l/v̄. This choice is small enough to avoid
multicounting and is sufficiently large to ensure that heat
transfer does occur. Our heuristic picture therefore esti-
mates the thermal diffusivity by

κ ∝ ρ(l + d)2
√
T

l
.

This is a rough approximation; the actual prefactors de-
pend on the velocity distribution of the grains. Therefore,
we generally assume

κ ∝ ρ(αl + d)2
√
T

l
.
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The energy balance equation (2) takes the form

d

dx

[
(αl + d)2

l
ρ
√
T
dT

dx

]
= (1− r2)

ρT
3
2

γl
(4)

where γ is the ratio of prefactors in the expressions for
I and κ. In the following subsections, we discuss how
to obtain the dimensionless coefficients α and γ self-
consistently. To proceed, it is necessary to relate ρ and
T through the equation of state. Additionally, the mean
free path l must be expressed in terms of ρ.

C. The Equation of State

For the system to be in a steady state, the pressure
must be constant throughout. The equation of state re-
lates the pressure and the temperature to the density.
For example, in the low density limit, the ideal gas law
holds, PV = NkBT . Using kB = 1 and ρ = N/V , one
has

P = ρT. (5)

On the other hand, in the high density limit, the mean
free path, which is simply the interparticle spacing, is
much less than the particle diameter (l � d). Denoting
the close-packing density by ρc, one finds

ρ

ρc
=

d2

(d+ l)2
≈ 1− 2l

d
. (6)

In this limit, the center of a grain is confined to an area
of the order of l2, so the entropy per particle, S, equals
ln(l2) plus a function of temperature. From Eq. (6), S
depends on density only through the term 2 ln(ρc − ρ).
Using Maxwell’s relation,(

∂P

∂T

)
1/ρ

=

(
∂S
∂ 1
ρ

)
T

=
2ρ2

ρc − ρ
,

we obtain the pressure in the limit ρ→ ρc,

P =
2ρ2T

ρc − ρ
. (7)

We therefore propose the following interpolation formula
for the pressure

P = ρT
ρc + ρ

ρc − ρ
. (8)

Indeed, in the limits of high and low density this expres-
sion reduces to (5) and (7), respectively. It is useful to
compare this expression with the van der Waal’s equa-
tion of state which takes into account long range attrac-
tion and hard core repulsion [8]. For an inelastic gas
of hard spheres, there are no long range forces, and the
van der Waal’s pressure for a two-dimensional gas reads

PvdW = ρρcT/(ρc − 2ρ) for ρ � ρc. In the low density
limit the pressure given by Eq. (8) agrees with the van
der Waal’s expression to second order in ρ/ρc. Further-
more, one can also compare (8) to Tonks’ series expan-
sion [9] for the pressure of a two-dimensional gas of hard
spheres, PTonks = ρT [1+1.814(ρ/ρc)+2.573(ρ/ρc)2]/[1−
1.307(ρ/ρc)3 + 0.307(ρ/ρc)4], valid for all densities. Over
the entire density range, the two expressions differ by
less than 1.3%. In contrast, we found that the van der
Waal’s formula is inadequate for describing the high den-
sity limit. Hence, we use the interpolation formula (8) for
the pressure.

D. The Mean Free Path

The mean free path can be expressed in terms of the
density and the diameter. In the low density limit one
has

l =
1√
8ρd

,

while in the high density limit, Eq. (6) gives

l =
ρc − ρ

2ρc
d.

Again, we use these high and low density limits to inter-
polate a general expression for the mean free path. Using
the 2D close-packing value ρc = 2/

√
3d2, we find

l ≈ 1√
8ρd

ρc − ρ
ρc − aρ

, (9)

where a = 1−
√

3/8.

E. The density equation

Eqs. (8) and (9) express the temperature and the mean
free path in terms of the density. Substituting these
expressions into Eq. (4) yields a second order differen-
tial equation for ρ. Using for convenience the variable
z ≡ ρc/ρ, we have

d

dx

 (z2 + 2z − 1)
(
αz(z − 1) +

√
32
3 (z − a)

)2

(z − a)(z − 1)1/2z3/2(z + 1)5/2

dz

dx

 =

32
3d2

1− r2

γ

z − a
(z + 1)3/2

√
z − 1
z

. (10)

This equation is complemented by the boundary condi-
tions

dz

dx

∣∣∣
x=L

= 0 and W

∫ L

0

ρc
z
dx = N, (11)
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where W is the width of the system and N is the to-
tal number of particles. The latter condition merely re-
flects conservation of particles. The former condition is
a consequence of the fact that the temperature gradient
vanishes at the elastic wall.

In principle, γ and α are two dimensionless factors
which can be calculated exactly from the velocity distri-
bution. However, this distribution is poorly understood.
Nevertheless, it is still possible to estimate these prefac-
tors by comparing the theoretical predictions of Eq. (11)
with numerical simulations in the limit of high and low
densities.

In both of these extreme cases the governing equa-
tion (10) can be solved analytically. In the high density
limit, (ρc − ρ) → 0, or equivalently, z − 1 � 1, Eq. (10)
reduces to d2

dx2

√
z − 1 = 1−r2

2γd2

√
z − 1. It is convenient to

write this equation in terms of the temperature, T (x).
From (8), T (x) ∝ z− 1 when z− 1� 1, and the temper-
ature obeys

d2

dx2

√
T (x) =

1
4ξ2

√
T (x)

with ξ ≡ d
√
γ/2(1− r2). Solving this equation subject

to the boundary condition dT/dx = 0 at x = L gives the
temperature profile

T (x) = T (L) cosh2

(
L− x

2ξ

)
.

Far from the elastic wall, L−x� ξ, the temperature de-
cays exponentially in agreement with Haff’s calculation
[2]

T (x) = T (0)e−x/ξ. (12)

Eq. (9) shows that in the high density limit, l ∝ z−1 ∝ T .
Both the temperature and the mean free path decay ex-
ponentially with the distance from the heated wall. The
decay length ξ is much larger than the mean free path.
For the continuum description to be valid, ξ must also
be much larger than the diameter of a particle, d, i.e.,

√
1− r2 �

√
γ

2
. (13)

Since the prefactor γ is of order unity, we learn that the
continuum theory is valid only in the quasi-elastic limit,√

1− r � 1. (Note that the restriction
√

1− r � 1 is
stricter than 1− r � 1.)

To test the theoretical predictions, we performed an
event-driven simulation of the system [10]. The heated
wall is implemented in such a way that for r = 1, parti-
cles have a Boltzmann velocity distribution with an av-
erage temperature equal to one. Specifically, any par-
ticle that collides with the wall at x = 0 is ejected
with a positive vx drawn from the probability distri-
bution P (vx) = vx exp(−v2

x/2) and a vy drawn from

P (vy) = exp(−v2
y/2)/

√
2π [5]. However, the behavior

of particles in the bulk of the system is independent of
the details of the boundary condition (see Fig. 8 below).
This is not surprising, but rather a necessity for a ther-
modynamic theory to be valid.

Numerical simulations confirm the exponential decay
in the quasi-elastic limit. Furthermore, the decay length
ξ can be measured for various degrees of inelasticity r (see
Fig. 2). We verified that indeed ξ ∝ (1− r2)−1/2 as sug-
gested by Eq. (12). The value of the prefactor γ ∼= 2.26
can be found from the simulations as well.

FIG. 2. The behavior of the decay length ξ in units of par-
ticle diameters as a function of 1−r2 in the high density limit.
The solid line is 1.06(1−r2)−1/2, and the diamonds are values
obtained from simulations with an average normalized density
(ρ/ρc) of approximately 0.8.

We now turn to the low density limit. Here, z � 1,
and Eq. (10) reduces to d2

dx2 z
3/2 = 16(1−r2)

γα2d2 z−1/2. As a
result,

dz

dx
= −1

η

√
z − zL
z

(14)

where η ≡ αd
√

3γ/64(1− r2), and we have used the
boundary condition of Eq. (11) and the notation zL =
z(L). Simulations show that the density near the heated
wall is significantly smaller than the density at the elastic
wall. Thus, for x� L and z � zL, we find the following
approximate solution

z(x) ≈ z0 −
x

η
.

The inverse of the density, and hence the temperature,
decays linearly with x in the low density regime near
the heated wall. That the low density decay length
η ∼ (1 − r2)−1/2 is similar to the high density decay
length ξ ∼ (1− r2)−1/2, reflects the fact that the under-
lying differential equation is second order.

In the nearly elastic case (1− r � 1), zL is close to z,
and Eq. (14) can be integrated exactly

x

η
= −

[√
z
√
z − zL + zL ln(

√
z +
√
z − zL)

]z(x)

z0
.

Comparing this prediction with low density numerical
simulations allows us to determine η at various r values
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(see Fig. 3) and verify that indeed η ∝ (1− r2)−1/2. The
constant of proportionality and the previously calculated
γ yields α ∼= 1.67.

FIG. 3. The behavior of the decay length η in units of par-
ticle diameters as a function of 1−r2 in the low density limit.
The solid line is 0.542(1− r2)−1/2, and the diamonds are val-
ues obtained from simulations with an average normalized
density (ρ/ρc) of approximately 0.1.

In the low density limit, the equation of state P = ρT ,
implies that T (x) = P

ρc
z(x). For the state to be locally

very close to equilibrium, the mean free path must be
much less than the length scale over which the tempera-
ture is changing, i.e., l� ηρc/P . This condition is√

1− r2 � α

√
γ

2
, (15)

when the temperature is of order unity. Since α and γ
are also of order unity, the hydrodynamic description is
again valid only in the quasi-elastic regime (

√
1− r � 1).

FIG. 4. Comparison of a simulation (plus signs) of 1000
particles at r = 0.99 with the numerical solution (solid lines)
to the full differential equation (10) with γ = 2.26 and
α = 1.15. The temperature is not one at the heated wall
due to the effect discussed in Section III. The horizontal axis
is the distance from the heated wall in units of the particle
diameter (d).

Our treatment so far has concentrated on either the
high or the low density limit, where analytical expressions
were possible. For systems that include both high and
low density regions, Eq. (10) can be solved numerically
using the boundary and normalization conditions (11)

and the previously calculated values for γ and α. By ex-
amining a number of simulations that include a range of
densities we determined that the optimal values for the
prefactors are γ = 2.26 and α = 1.15. While this value of
γ is consistent with the value obtained in the high den-
sity calculation, this α value is slightly lower than our
prediction. A typical system with r = 0.99 is shown in
Fig. 4, and it is seen that the predictions of hydrodynamic
theory match the numerical data over wide density vari-
ations. For this simulation, the ratio

√
2(1− r2)/γα2 is

approximately 0.1, which is not of order unity, so the
condition of Eq. (15) is satisfied.

III. NONEQUILIBRIUM STEADY STATE

The calculation in the previous section assumes that
the steady state is very close to equilibrium, and that
pressure and temperature can be used to describe the
system. This requires that condition (13) is satisfied in
the high density limit, or condition (15) is satisfied in the
low density limit.

An important question is: when does the behavior
of the system changes qualitatively? One such transi-
tion occurs when r becomes low enough for the system
to undergo inelastic collapse. Here strong correlations
and large density variations develop, and applying hy-
drodynamics becomes impossible. Even when r is slightly
higher than the critical value for inelastic collapse, the at-
tractors mentioned in the introduction may still be strong
enough to build correlations. Where this breakdown oc-
curs is determined by the degree of inelasticity, the den-
sity and the total number of particles [11]. For each pair
of values of density and total number of particles, there is
a value of r which divides two different kinds of behavior:
loose sand and coherent sand.

However, the theory developed in the previous section
is strictly for the quasi-elastic limit, 1 − r � 1, so there
may exist systems that, although elastic enough to avoid
inelastic collapse, still have r far enough from one that
the hydrodynamics do not apply. Since correlations be-
tween particles are built up through inelastic collisions,
high density regions are more liable to inelastic collapse
[11], while for low density regions, correlations are harder
to establish. Therefore, we will investigate the low den-
sity limit in order to observe the breakdown of the hy-
drodynamic description as the degree of inelasticity in-
creases.

When the temperature variation within a mean free
path is significant, the system is unable to reach local
equilibrium. Therefore, particles carrying energy away
from the heated wall cannot share this energy with the
slow particles returning from the higher density region
near the elastic wall. This inefficient mixing leads to a
temperature gap – the average energy of particles with
vx > 0 is greater than that of the particles with vx < 0
(see Fig. 5). Furthermore, near the heated wall, the tem-
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perature drops by approximately 15% over a mean free
path, which suggests that such a system will be unable
to reach local thermal equilibrium (see Fig. 6).

FIG. 5. The difference in temperature for particles with
positive velocities (solid line) and with negative velocities
(dashed line). The data is from a simulation of 1500 particles
with r = 0.95 and total area fraction 0.01.

FIG. 6. The mean free path, i.e., the average distance until
the next collision for particles at a given position. The dip
near the heated wall is due to collisions with the wall. The
data is from the same simulation used in Fig. 5. Both the
mean free path (l) and the position (x) are in units of particle
diameters (d).

The probability distribution functions for vx (the ve-
locity perpendicular to the heated wall) provide an illu-
minating way to measure this deviation from equilibrium
(see Fig. 7). Note the asymmetry: the vx > 0 tail is
longer than the vx < 0 tail. This is consistent with our
understanding that the vx > 0 particles have more en-
ergy than the vx < 0 ones. A rough quantification of the
deviation from equilibrium is provided by condition (15):
when

√
2(1− r2)/γα2 is of order unity, the theory breaks

down. For r = 0.95 (the value used in the Figures), this
quantity is approximately 0.3. Note that this condition
involves r only and is not sensitive to the local density
ρ. This suggests that the behavior of regions of the sys-
tem with different densities should be similar. In fact,
we observed that the velocity distribution function obeys
scaling (see Fig. 8), i.e.,

P (vx, x) =
1

g(x)
φ

(
vx
g(x)

)
. (16)

The function φ is independent of boundary conditions
(see Fig. 8). Thus 〈vnx (x)〉 ∝ gn(x), where the constant
of proportionality depends only on the shape of the func-
tion φ. Note that this shape will depend on r, the degree
of inelasticity; the more inelastic the particles are, the
more skewed the velocity distribution is. The probability
distribution for the y-component of the velocity behaves
similarly:

P (vy, x) =
1

g(x)
ψ

(
vy
g(x)

)
. (17)

but here ψ is a symmetric, nearly Gaussian, function.
Additionally, the same velocity scale g(x) characterizes
the transverse and the longitudinal velocity distributions.
Therefore, while at each position x there is no longer a
single hydrodynamic temperature, there is a well defined
characteristic velocity scale, g(x), so that the granular
temperature, 1

2 〈v
2
x + v2

y〉, is proportional to g2(x). This
scaling suggests that, although the system may deviate
significantly from equilibrium, it can still be treated using
some of the tools of the previous sections.

Specifically, return to the equation for energy bal-
ance (1): dq/dx = −I, where I is the energy loss due
to collisions per unit time per unit area, and q is the en-
ergy flux, the heat transfer per unit cross-sectional length
per unit time. As discussed previously,

I ∝ (1− r2)dρ2v3 ∝ ρ2g3,

while the heat flux is approximately

q = 〈(1
2
ρv2)vx〉 ∝ ρg3.

Conservation of momentum flux suggests that ρg2 is con-
stant, and the energy balance equation gives

dg

dx
∝ −g−1, (18)

which indicates that g2, and hence the temperature, de-
pends linearly on x. This prediction is consistent with
our simulational results (Fig. 9).

FIG. 7. The probability distributions for vx at various posi-
tions x = L/5, L/2, 4L/5, where L is the length of the system
(1330 particle diameters in this case). The simulations are for
a system of 1500 particles with area fraction 0.01 at r = 0.95.
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FIG. 8. The scaling distribution φ(z) = P (vx, x)g(x).
The data of Fig. 7 have been rescaled according to
Eq. (16), so three sets of data are from various positions,
x = L/5(+), L/2(∗), 4L/5(�), in a system with the usual en-
ergy enput at x = 0. The plot also includes probability dis-
tributions from a simulation of a system that is identical to
that used in Fig. 7 but with a different type of forcing at
the heated wall. Data from this simulation is displayed for
x = 7L/10(4), 4L/5(2).

IV. CONCLUSION

In this work, we examined the steady-state behavior of
a weakly inelastic two-dimensional driven granular sys-
tem. We found that a hydrodynamic formulation pro-
vides a satisfactory description of the near-equilibrium
behavior of the system in the quasi-elastic limit. We ex-
tended Haff’s theory to the low density limit and found
that the corresponding temperature profile varies linearly
in space. For slightly higher inelasticities, the system is
no longer close to equilibrium in the low density limit.
However, the scaling behavior of the velocity distribu-
tions suggests that a hydrodynamic treatment can still
be useful in describing the system.

In this non-equilibrium regime, we found that the par-
ticle velocity distributions were non-Gaussian. Indeed,
deviations from normal distributions have been observed
in theoretical [10,12,13] and experimental studies [14].
In addition to this variation in the velocity distributions,
systems of this sort can produce highly inhomogeneous
spatial distributions, as has been noted elsewhere in one
[4,5] and two [7,15] dimensions. A recent experimental
study examined the spatial distribution of hard particles
in two dimensions in the presence of an energy input [16].
Their data is in qualitative agreement with our theoreti-
cal predictions, and inhomogeneous spatial distributions
reminiscent of Fig. (1) are observed.
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FIG. 9. Characteristic velocity scale as a function of posi-
tion. Here we plot 〈(v2

x + v2
y)1/2〉 ∝ g(x) (the dashed line).

This data was obtained from the simulation used to make
Fig. 7 and the values for g(x) were used to do the rescaling in
Fig. 8. We also plot 〈v2

x + v2
y〉 ∝ g2(x) (the solid line) to show

that it is a roughly linear function of position, as predicted
by Eq. (18).
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[7] S. E. Esipov and T. Pöschel, “Boltzmann equation and

granular hydrodynamics,” preprint.
[8] H. Hayakawa, S. Yue, and D. C. Hong, Phys. Rev. Lett.

75, 2328 (1995).
[9] L. Tonks, Phys. Rev. 50, 955 (1936).

[10] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619
(1993).

[11] S. McNamara and W. R. Young, Phys. Rev. E 53, 5089
(1996).

[12] Y. D. Lan and A. D. Rosato, Phys. Fluids 7, 1818 (1995).
[13] Y. H. Taguchi and H. Takayasu, Europhys. Lett. 30, 499

(1995).
[14] S. Warr, G. T. H. Jaques, and J. M. Huntley, Powder

Tech. 81, 41 (1994).
[15] S. McNamara and J.-L. Barrat, “The energy flux into a

fluidized granular medium at a vibrating wall,” preprint.
[16] A. Kudrolli, M. Wolpert, and J. P. Gollub, “Cluster for-

mation due to collisions in granular material,” preprint.

7


