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Towards granular hydrodynamics in two dimensions
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We study steady-state properties of inelastic gases in two dimensions in the presence of an energy source.
We generalize previous hydrodynamic treatments to situations where high and low density regions coexist. The
theoretical predictions compare well with numerical simulations in the nearly elastic limit. It is also seen that
the system can achieve a nonequilibrium steady state with asymmetric velocity distributions, and we discuss
the conditions under which such situations oc¢81063-651X97)01604-§
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I. INTRODUCTION tem, which build up correlations among particles. Assuming
that the particles are not coherent in the quasielastic limit, we
Granular materials such as sand and powders have gendaterive a differential equation that describes the density varia-
ated much interest of late. Such an ensemble of particles withon throughout the system. Heuristic expressions for the
macroscopic size is challenging since it may behave as &ean-free path, the equation of state, and the thermal con-
solid, a liquid, or a gas. Size separation, pattern formationductivity are incorporated into the energy flux balance equa-
avalanches, compaction, and convection are just a few estion to obtain a closed equation describing the steady-state
amples of the wide array of observed phenomiiija density profiles. The theory compares well with simulational
Flow underlies most of these phenomena and, thereforéesults over a wide range of densities in the quasielastic
theoretical studies so far focus on formulating a hydrodydimit.
namical description appropriate to sg@g3]. These theories, ~ Our theory is appropriate for a steady state, which is very
stemming from the Boltzmann equation, depend on the asclose to an equilibrium state. We expect this to be applicable
sumption of “molecular chaos,” i.e., the assumption that noonly in the nearly elastic limit. We argue that in the comple-
interparticle correlations exist. This assumption is far frommentary situation of stronger inelasticity, hydrodynamics
obvious. As a dissipative dynamical system, a granular syshay still be relevant. To analyze the nature of the steady
tem has attractors in its phase space, which may cause cditate, we study velocity distributions throughout the system.
relations between particles. Under certain conditions, thes#é/e observe that the velocity distributions exhibit scaling.
attractors lead to a singularity, inelastic collapse, which canThis observation is then used to obtain a qualitative descrip-
not be explained by hydrodynamics. In one dimension, thestion of the behavior of the system.
attractors are so strong that hydrodynamics breaks down for
the entire parameter spalgg5]—in a confined geometry, all
particles, save one, form a practically stationary clump Il. THE QUASIELASTIC LIMIT

against the elastic wall, while the remaining particle moves Granular materials are different from ordinary fluids or

rapidly back and forth between the clump and the heate@ases in that the diameter of a particle may be comparable to

wall. Such a state clearly violates partition of energy. the collisional mean free path. To formulate a hydrodynamic
In this study, we investigate the corresponding situation inheory, it is necessary to describe how the mean free path,

two dimension$6,7]. We consider inelastic hard spheres in athe pressure, and the thermal diffusivity depend on the grain
box where one wall is kept at a fixed temperature and the

other three are reflectinsee Fig. 1 Energy input at the

heated wall balances the dissipation due to interparticle col- elastic wall

lisions and the system can achieve a steady state. Unlike the o O %0 PBIRFI0
one-dimensional situation, the density and the temperature o o ©rs O§>o O

profiles are smooth functions of the distance from the heated o ©0 oo d%%%%oéégoo Pos| o
wall. In the steady state, the momentum balance equationsz o © oo 95 050+ P O&Cp &
imply that the pressure is constant throughout the system.g o b % 5 90 OOO SICReN %&%D%% 5
Particles move faster close to the energy source and more‘g o o O O%o 80%00%30%0 0 i
slowly deeper inside the system due to energy loss. Thus the= |, 0© 50° Soo.0 © 5o OOO&O@ g~
density is greater farther away from the wall to maintain a o 0%8 % 000 oééoo@ooo
constant pressure. ° © © 000790 07" 0620909

Density variations may be a consequence of the above Tesm omysefs

mechanism or an effect of the intrinsic attractors in the sys-

FIG. 1. The system of interest. The length of the systeln ibe
width is W. The heated wall is ak=0; the elastic walls are at
*Electronic address: grossman@cs.uchicago.edu x=L, y=0, andy=W.

1063-651X/97/564)/420Q(7)/$10.00 55 4200 © 1997 The American Physical Society



55 TOWARDS GRANULAR HYDRODYNAMICS IN TWO DIMENSIONS 4201

diameter, the number density, and the temperature. In thiaverage, energy proportional to €12)v2. In unit time, it
section, we obtain heuristic expressions for these quantitiegollides roughlyv/I times. In unit area, there ageparticles,
Let us denote the number density of grainsphyhe mean  and consequently
free path byl, and the grain diameter ky. Without loss of
generality, we set the particle mass and the Boltzmann con-
stant to unity:m=kg=1. The granular temperature can be
defined as the average kinetic energy per particle:
=3(v?). This quantity is well defined for an equilibrium
state in which the particles have a symmetric velocity distri- i o o
bution. In such a cas@= 2T, can be used as an approxi- Suppose there is a temperature gradient |mhqecthn.
mate value for the average grain speed. In our system, quaf'S @ result, there will be an energy flux along this axis. To
tities such as temperature, density, etc., are positiofaiculate this flux, let us consider the number of particles
dependent, and there is not a global equilibrium. However, if’0SSing a line perpendicular to this direction in a time inter-
the quasielastic limit, we expect the system to be very clos¥@l At. We define “crossing the line” as having any part of
to local thermal equilibrium. the partlclg over the line _durlng- this time interval. To cross
Let x be the distance from the heated wall. In the steadyn€ line within At, a particle with speed must have its
state, all quantities vary only in this transverse direction. Thdightmost poin At or closer to the line. Thus, only grains in

1%
|m(1—r%57Tpm(1—r%pTW%L

B. The coefficient of thermal diffusivity

energy balance equation can therefore be written as an areag+vAt) to the left of the line can pass the I_ine from
the left in At. In fact, only one half of these particles are
dq moving to the right, so the number of particles crossing the
&+ =0, (1) line per unit cross-sectional length it is 3p(d+vAt). In a

steady state, the number of crossing events from each side
. _ N . must balance. Any energy flux is due to the fact that particles
whereq is the energy flux in the& direction. The sink term coming from the right are at a different temperatufis)

| accounts for the energy lost per unit area per unit time du@ - . ihose from the left T) and thus, gAt=_2p(d

. . o . . ’ 2
to inelastic coI_I|S|ons. The energy flux is mducedi py a tem'+v_At)(TL—TR). Consider two grains on opposite sides of
perature _grad_le_ntq= ._KdT./(.jX’ where the coeff|C|e'nt of the line. Their centers are approximately a distariced)
thermal diffusivity, «, is positive. Consequently, we find apart, so the temperature difference is roughly
(I+d)dT/dx. The coefficient of thermal conductivity is

=1. ) thereforex=—q/(d T/dx) = 3p(l +d)(d+vAt)/At. A natu-

ral choice forAt is the typical collision timé/v. This choice

is small enough to avoid multicounting and is sufficiently
large to ensure that heat transfer does occur. Our heuristic

) o _ ) o picture therefore estimates the thermal diffusivity by
Since collisions between grains are inelastic, kinetic en-

ergy is continually transferred into heat. For simplicity we p(I+d)2ﬁ

neglect rotation and thus, the degree of inelasticity can be KE—

parametrized by &r=<1. When two particles collide, their

tangential velocities are unchanged, while the relative norThis is a rough approximation; the actual prefactors depend
mal velocity is decreased by a factor efr, where the nega- on the velocity distribution of the grains. Therefore, we gen-
tive sign merely indicates that they move apart after a colli-erally assume

sion. Using momentum conservation one can write the final

A. The energy sink

velocities(indicated by primesin terms of the initial veloci- p(al +d)2\/f
ties K | '
(Uin) _1f1-r 14r Uln) @ The energy balance equati¢®) takes the form
)2 1+r 21— '
Yan F/\van df(al+d)? _dT , pT?
_ _ _ d_l—pﬁd_ =(1-r%) i (4)
In the above equation, the subscriptdenotes the velocity X X Y

component along the line connecting the centers of particles . . . .
1 and 2. The energy lost in each collision is therefore wherev is the ratio of prefactors in the expressions lf@nd
. In the following subsections, we discuss how to obtain the

AE=— (1 r2)(0yy—vgn)? dimengipnless coefficients and y self-consistently. To pro-
4 n n ceed, it is necessary to relggeandT through the equation of
state. Additionally, the mean free pdtmust be expressed in

In this study, we focus on the quasielastic limit, €. tarms ofp.

1-r<1. Physically, this limit is relevant to hard particles
such as glass or steel beads.

Using the above expression for the energy dissipated in
each collision, one can estimate the sink tdrnthe mean For the system to be in a steady state, the pressure must
energy lost per unit area per unit time. Consider a particlde constant throughout. The equation of state relates the
moving with speedv. During each collision, it loses, on pressure and the temperature to the density. For example, in

C. The equation of state
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the low density limit, the ideal gas law holdBV=NkgT. Pe—p
Usingkg=1 andp=N/V, one has | = % d.
Cc
P=pT. (5)

Again, we use these high and low density limits to interpo-
date a general expression for the mean free path. Using the

On the other hand, in the high density limit, the mean fre ) ) X ) )
dwo-dimensional close-packing valye=2/\/3d?, we find

path, which is simply the interparticle spacing, is much les
than the particle diameterl€d). Denoting the close-

packing density by, , one finds _ L pep 9)
\/gpd pc—ap
P d? 2
E‘(d+|)?”1_ﬁ' ®  \wherea=1- 378
In this limit, the center of a grain is confined to an area of the E. The density equation

order ofl?, so the entropy per particlé, equals In¢) plus a
function of temperature. From E¢f), S depends on density
only through the term 2Ip{—p). Using Maxwell's relation,

Equations(8) and (9) express the temperature and the
mean free path in terms of the density. Substituting these
expressions into Eq4) yields a second order differential
(&P) 4S 202 equation for p. Using for convenience the variable

= —\| = , z=p./p, we have
w | L] PP

aT

ol d [(Z+2z-D[az(z—1)+y32/3z-a)]* dz
dx (z—a)(z—1)Y%2%7(z+1)5? dx

we obtain the pressure in the limit— p.,
321-r* z-a z—1

2P2T. 0 " 3d® y (z+1)%2N z
Pc—p

(10

This equation is complemented by the boundary conditions
We therefore propose the following interpolation formula for

. dz L
the pressure: 1 20 andw| 2odx= N, (12)
dx oL 0Z
popT PP 8
=P pe—p ®  wherew is the width of the system arid is the total number

of particles. The latter condition merely reflects conservation
Indeed, in the limits of high and low density this expressionof particles. The former condition is a consequence of the
reduces ta5) and (7), respectively. It is useful to compare fact that the temperature gradient vanishes at the elastic wall.
this expression with the van der Waal's equation of state, In principle, y and @ are two dimensionless factors,
which takes into account long range attraction and hard corehich can be calculated exactly from the velocity distribu-
repulsion[8]. For an inelastic gas of hard spheres, there aréion. However, this distribution is poorly understood. Never-
no long range forces, and the van der Waal’s pressure for teless, it is still possible to estimate these prefactors by
two-dimensional gas readsP,qw=pp.T/(p.—2p) for  comparing the theoretical predictions of E4.1) with nu-
p<pe. In the low density limit the pressure given by E§)  merical simulations in the limit of high and low densities.
agrees with the van der Waal’s expression to second order in In both of these extreme cases the governing equation
plp.. Furthermore, one can also compare ).to Tonks’  (10) can be solved analytically. In the high density limit,
series expansiof9] for the pressure of a two-dimensional (pc—p)—0, or equivalentlyz—1<1, Eq. (10) reduces to
gas of hard spheres, Proue=pT[1+1.814p/p.)  (d%/dx?)\z—1=[(1—r?)/2yd?]\yz—1. It is convenient to
+2.573(p/pe)?)/[1—1.307(p/ pc) 3+ 0.307(/pc)*], valid  write this equation in terms of the temperatufgx). From
for all densities. Over the entire density range, the two ex£q. (8), T(x)xz—1 when z—1<1, and the temperature
pressions differ by less than 1.3%. In contrast, we found thadbeys
the van der Waal's formula is inadequate for describing the

2
high density limit. Hence, we use the interpolation formula as 1
(8) for the pressure. 32V T 452\/T(X),
D. The mean free path with £=d/y/2(1-r?). Solving this equation subject to the

. boundary conditiod T/dx=0 atx=L gives the temperature
The mean free path can be expressed in terms of the deB‘rofiIe

sity and the diameter. In the low density limit one has

L—x
1 T(x)=T(L)cosﬁ(—>.

I=——, 2¢
V8pd
Far from the elastic walllL —x> ¢, the temperature decays
while in the high density limit, Eq(6) gives exponentially in agreement with Haff's calculatipa,
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FIG. 3. The behavior of the decay lengthin units of particle
diameters as a function of-1r? in the low density limit. The solid
line is 0.542(+r?) Y2 and the diamonds are values obtained
from simulations with an average normalized densii¥p(¢) of ap-
proximately 0.1.

FIG. 2. The behavior of the decay lengthin units of particle
diameters as a function of-4r2 in the high density limit. The solid
line is 1.06(1-r?) %2 and the diamonds are values obtained from
simulations with an average normalized densjiyp) of approxi-
mately 0.8.

_ y where 7=ad\/3y/64(1-r?), and we have used the bound-
TOO=T(0)e ™. (12 ary condition of Eq(11) and the notatiorz, =z(L). Simu-

Equation(9) shows that in the high density limitecz— 1 lations show that the density. near the heatgd wall is signifi-

«T. Both the temperature and the mean free path decay egantly smaller than the density atl the elastlc_: wall. Thug, for

ponentially with the distance from the heated wall. The deX<L andz>z_, we find the following approximate solution

cay length¢ is much larger than the mean free path. For the X

continuum description to be valif must also be much Z(X)~zq— —.

larger than the diameter of a partidei.e., 7

The inverse of the density, and hence the temperature, de-

1-re< \/: (13)  cays linearly withx in the low density regime near the heated
2 wall. That the low density decay length~(1—r?)"? is
similar to the high density decay length-(1—r?)" 2 re-
flects the fact that the underlying differential equation is sec-
ond order.

In the nearly elastic case (Ir<1), z, is close toz, and
Eqg. (14) can be integrated exactly,

Since the prefactoty is of order unity, we learn that the
continuum theory is valid only in the quasielastic limit,
V1—r<1. (Note that the restriction/1—r<1 is stricter
than 1-r<1.)

To test the theoretical predictions, we performed an
event-driven simulation of the systefh0]. The heated wall X
is implemented in such a way that for 1, particles have a —=—[Vz\z—z +zIn(Vz+ \/Z_ZL)EE’X)-

Boltzmann velocity distribution with an average temperature

equal to one. Specifically, any particle that collides with thecomparing this prediction with low density numerical simu-
wall at x=0 is ejected with a positive, drawn from the |ations allows us to determing at variousr values(see Fig.
probability distribution P(v,)=v,exp(-vg2) and avy  3) and verify that indeedy(1—r2) Y2 The constant of

drawn fromP(v,) = exp(~v’/2)/J27 [5]. However, the be- proportionality and the previously calculategt yields
havior of particles in the bulk of the system is independent ofy=1.67.

the details of the boundary condititﬁse_e Fig. 8 beloy This ~In the low density limit, the equation of stafe=pT,
is not surprising, but rather a necessity for a thermodynamigmplies thatT(x)=(P/p.)z(x). For the state to be locally
theory to be valid. very close to equilibrium, the mean free path must be much

Numerical simulations confirm the exponential decay inless than the length scale over which the temperature is
the quasielastic limit. Furthermore, the decay lengtlan be  changing, i.e.] < 7p./P. This condition is
measured for various degrees of inelastigitysee Fig. 2
We verified that indeedo(1—r?) "2 as suggested by Eq. 5 \/;

(12). The value of the prefactoy=2.26 can be found from 1I-ri<ay/3
the simulations as well.

We now turn to the low density limit. Here>1, and EqQ. when the temperature is of order unity. Sineeand y are
(10) reduces to @?/dx?)z%?=[16(1-r?)/ya?d?]z Y2 As  also of order unity, the hydrodynamic description is again
a result, valid only in the quasi-elastic regime/t —r<1).

Our treatment so far has concentrated on either the high or
dz 1 [z-z the low density limit, where analytical expressions were pos-

dx n z '’ (14) sible. For systems that include both high and low density

(15
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FIG. 5. The difference in temperature for particles with positive
velocities (solid line) and with negative velocitiesdashed ling
ticles atr =0.99 with the numerical solutio¢solid lineg to the full The data are from a simulation of 1500 particles with0.95 and
differential equation(10) with y=2.26 anda=1.15. The tempera- total area fraction 0.01.
ture is not one at the heated wall due to the effect discussed in Sec.

Ill. The horizontal axis is the distance from the heated wall in unitspi|t up through inelastic collisions, high density regions are
of the particle diameterd). more liable to inelastic collapdd 1], while for low density

) i ) regions, correlations are harder to establish. Therefore, we
regions, Eq(10) can be solved numerically using the bound- jj| investigate the low density limit in order to observe the
ary and normalization conditiortd 1) and the previously cal-  preakdown of the hydrodynamic description as the degree of
culated values foy anda. By examining a number of simu- inelasticity increases.
lations that include a range of densities we determined that \when the temperature variation within a mean free path is
the optimal values for the prefactors arg=2.26 and  gjgnjficant, the system is unable to reach local equilibrium.
a=1.15. While this value ofy is consistent with the value Therefore, particles carrying energy away from the heated
obtained in the high density calculation, this value is  \aj| cannot share this energy with the slow particles return-
slightly lower than our prediction. A typical system with jng from the higher density region near the elastic wall. This
r=0.99 is shown in Fig. 4, and it is seen that the predictionsnefficient mixing leads to a temperature gap—the average
of hydrodynamic theory match the numerical data over widenergy of particles withy,>0 is greater than that of the
density variations. For this simulation, the ratio particles withv,<0 (see Fig. 5. Furthermore, near the
V2(1-r%)/ya* is approximately 0.1, which is not of order heated wall, the temperature drops by approximately 15%
unity, so the condition of Eq(15) is satisfied. over a mean free path, which suggests that such a system will
be unable to reach local thermal equilibrisee Fig. 6.

The probability distribution functions far, (the velocity
gerpendicular to the heated walbrovide an illuminating

The calculgﬂon in the previous _’septlon assumes that thway to measure this deviation from equilibriusee Fig. 7.
steady state is very close to equilibrium, and that Pressurg ' the asvmmetry: the.>0 tail is longer than the
and temperature can be used to describe the system. This y y: x 9

requires that conditioril3) is satisfied in the high density
limit, or condition (15) is satisfied in the low density limit.

An important question is: When does the behavior of the
system changes qualitatively? One such transition occurs
whenr becomes low enough for the system to undergo in- - 7
elastic collapse. Here strong correlations and large density
variations develop, and applying hydrodynamics becomesZ
impossible. Even when is slightly higher than the critical ~ “T ]
value for inelastic collapse, the attractors mentioned in the
Introduction may still be strong enough to build correlations. 20l ,
Where this breakdown occurs is determined by the degree of
inelasticity, the density and the total number of particles
[11]. For each pair of values of density and total number of % ps 00 po 500
particles, there is a value af which divides two different x/d
kinds of behavior: loose sand and coherent sand.

However, the theory developed in the previous section is |G, 6. The mean free path, i.e., the average distance until the
strictly for the quasielastic limit, r <1, so there may exist next collision for particles at a given position. The dip near the
systems that, although elastic enough to avoid inelastic coheated wall is due to collisions with the wall. The data are from the
lapse, still have far enough from one that the hydrodynam- same simulation used in Fig. 5. Both the mean free pgtlarfd the
ics do not apply. Since correlations between particles argosition (x) are in units of particle diametersly.

FIG. 4. Comparison of a simulatiofplus sign$ of 1000 par-

[ll. NONEQUILIBRIUM STEADY STATE

I L
1000 1200
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1.0 =
I~ ~
Y o8 o=
— 8 ~ —
g =
—~~ n N~ —_—
) -~ a
>;< ; 0.6~ ~—_ )
Z Q ~~_ gx
~ ° ~
O 0.4 ™~ _
> 2 >~ ~
g(x) >
f— AN —|
0.2 N
\
0.0 1 ! I | I I
o] 200 400 600 800 1000 1200
x/d
FIG. 7. The probability distributions far, at various positions FIG. 9. Characteristic velocity scale as a function of position.

x=L/5,L/2,4./5, whereL is the length of the systef1330 particle  Here we plot((vi+vi)*?g(x) (the dashed line These data

diameters in this cageThe simulations are for a system of 1500 Were obtained from the simulation used to make Fig. 7 and the
particles with area fraction 0.01 at=0.95. values forg(x) were used to do the rescaling in Fig. 8. We also plot

(vi+vd)eeg?(x) (the solid ling to show that it is a roughly linear
v4<0 tail. This is consistent with our understanding that thefunction of position, as predicted by E(L8).

v,>0 particles have more energy than thg<0 ones. A | . )
rough quantification of the deviation from equilibrium is pro- tionality depends only on the shape of the functibnNote

vided by condition(15): when \2(1—r2)/ya? is of order that this shape vyill depend_cm the degree of inelasticity;
unity, the theory breaks down. For=0.95(the value used in € more inelastic the particles are, the more skewed the
the figures, this quantity is approximately 0.3. Note that this velocity distribution is. The probability _dlstrlbutlon for the
condition involvesr only and is not sensitive to the local y component of the velocity behaves similarly:

densityp. This suggests that the behavior of regions of the

system with different densities should be similar. In fact, we P(uy,X)=——1 l) (17
observed that the velocity distribution function obeys scaling 9(x) "19(x)
(see Fig. 8 i.e.,

but herey is a symmetric, nearly Gaussian function. Addi-

v ) tionally, the same velocity scatg{x) characterizes the trans-
X

9(x)

(16)  verse and the longitudinal velocity distributions. Therefore,
while at each positiox there is no longer a single hydrody-
namic temperature, there is a well defined characteristic ve-
locity scale, g(x), so that the granular temperature,
%(v§+v§), is proportional tog?(x). This scaling suggests
that, although the system may deviate significantly from
equilibrium, it can still be treated using some of the tools of
the previous sections.

Specifically, return to the equation for energy balatie
dg/dx=—1, wherel is the energy loss due to collisions per

1
P(vx,X)=W¢(

The function¢ is independent of boundary conditiofsee
Fig. 8. Thus{vy(x))=g"(x), where the constant of propor-

1.0000 F

0.1000 =

B unit time per unit area, and is the energy flux, the heat
0 transfer per unit cross-sectional length per unit time. As dis-
X 0.0100 )
o § cussed previously,
E: L
i —r2dA 230 1203
oomoz-ﬁ I (1=r9)dpv = pg”,
R while the heat flux is approximately
k3
* I 1 1 | | 1 1
o,ooow_s -2 -1 0 1 2 3 4 5 q:<(%pU2)UX>°<p93.

v,/ g(x)
Conservation of momentum flux suggests tpgf is con-
FIG. 8. The scaling distributios(z) = P(v, ,x)g(x). The data  Stant, and the energy balance equation gives
of Fig. 7 have been rescaled according to B@), so three sets of d
data are from various positionsx=L/5(+),L/2(*), and _goc _g—l (18)
4L/5( <), in a system with the usual energy enpuxat0. The plot dx ’
also includes probability distributions from a simulation of a system
that is identical to that used in Fig. 7 but with a different type of Which indicates thag?, and hence the temperature, depends
forcing at the heated wall. Data from this simulation are displayedinearly onx. This prediction is consistent with our simula-
for x=7L/10(A) and 4./5(00). tional results(Fig. 9).
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IV. CONCLUSION can produce highly inhomogeneous spatial distributions, as
. . . has been noted elsewhere in ¢dAes] and two[7,15] dimen-
In this work, we examined the steady-state behavior of Zions. A recent experimental study examined the spatial dis-

weakly inelastic two—dlmenspnal dr|ve'n granu]ar SYSM.i ution of hard particles in two dimensions in the presence
We found that a hydrodynamic formulation provides a satis-

o A ; of an energy inpufl16]. Their data are in qualitative agree-

e e o e S e ment il ou thereial precictons, and homagencovs
o ' .~ ’spatial distributions reminiscent of Fig. 1 are observed.
to the low density limit and found that the corresponding
temperature profile varies linearly in space. For slightly
highgr inelasticities, _the.sy.stem is no longer clqse to equ'ilib— ACKNOWLEDGMENTS
rium in the low density limit. However, the scaling behavior
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