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Towards granular hydrodynamics in two dimensions
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We study steady-state properties of inelastic gases in two dimensions in the presence of an energy source.
We generalize previous hydrodynamic treatments to situations where high and low density regions coexist. The
theoretical predictions compare well with numerical simulations in the nearly elastic limit. It is also seen that
the system can achieve a nonequilibrium steady state with asymmetric velocity distributions, and we discuss
the conditions under which such situations occur.@S1063-651X~97!01604-8#

PACS number~s!: 05.20.Dd, 47.50.1d, 81.05.Rm
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I. INTRODUCTION

Granular materials such as sand and powders have ge
ated much interest of late. Such an ensemble of particles
macroscopic size is challenging since it may behave a
solid, a liquid, or a gas. Size separation, pattern format
avalanches, compaction, and convection are just a few
amples of the wide array of observed phenomena@1#.

Flow underlies most of these phenomena and, theref
theoretical studies so far focus on formulating a hydro
namical description appropriate to sand@2,3#. These theories
stemming from the Boltzmann equation, depend on the
sumption of ‘‘molecular chaos,’’ i.e., the assumption that
interparticle correlations exist. This assumption is far fro
obvious. As a dissipative dynamical system, a granular s
tem has attractors in its phase space, which may cause
relations between particles. Under certain conditions, th
attractors lead to a singularity, inelastic collapse, which c
not be explained by hydrodynamics. In one dimension, th
attractors are so strong that hydrodynamics breaks down
the entire parameter space@4,5#—in a confined geometry, al
particles, save one, form a practically stationary clu
against the elastic wall, while the remaining particle mov
rapidly back and forth between the clump and the hea
wall. Such a state clearly violates partition of energy.

In this study, we investigate the corresponding situation
two dimensions@6,7#. We consider inelastic hard spheres in
box where one wall is kept at a fixed temperature and
other three are reflecting~see Fig. 1!. Energy input at the
heated wall balances the dissipation due to interparticle
lisions and the system can achieve a steady state. Unlike
one-dimensional situation, the density and the tempera
profiles are smooth functions of the distance from the hea
wall. In the steady state, the momentum balance equat
imply that the pressure is constant throughout the syst
Particles move faster close to the energy source and m
slowly deeper inside the system due to energy loss. Thus
density is greater farther away from the wall to maintain
constant pressure.

Density variations may be a consequence of the ab
mechanism or an effect of the intrinsic attractors in the s
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tem, which build up correlations among particles. Assumin
that the particles are not coherent in the quasielastic limit, w
derive a differential equation that describes the density var
tion throughout the system. Heuristic expressions for th
mean-free path, the equation of state, and the thermal c
ductivity are incorporated into the energy flux balance equ
tion to obtain a closed equation describing the steady-st
density profiles. The theory compares well with simulationa
results over a wide range of densities in the quasielas
limit.

Our theory is appropriate for a steady state, which is ve
close to an equilibrium state. We expect this to be applicab
only in the nearly elastic limit. We argue that in the comple
mentary situation of stronger inelasticity, hydrodynamic
may still be relevant. To analyze the nature of the stea
state, we study velocity distributions throughout the system
We observe that the velocity distributions exhibit scaling
This observation is then used to obtain a qualitative descr
tion of the behavior of the system.

II. THE QUASIELASTIC LIMIT

Granular materials are different from ordinary fluids o
gases in that the diameter of a particle may be comparable
the collisional mean free path. To formulate a hydrodynam
theory, it is necessary to describe how the mean free pa
the pressure, and the thermal diffusivity depend on the gra

FIG. 1. The system of interest. The length of the system isL, the
width is W. The heated wall is atx50; the elastic walls are at
x5L, y50, andy5W.
4200 © 1997 The American Physical Society
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55 4201TOWARDS GRANULAR HYDRODYNAMICS IN TWO DIMENSIONS
diameter, the number density, and the temperature. In
section, we obtain heuristic expressions for these quanti

Let us denote the number density of grains byr, the mean
free path byl , and the grain diameter byd. Without loss of
generality, we set the particle mass and the Boltzmann c
stant to unity:m5kB51. The granular temperature can b
defined as the average kinetic energy per particle:T
[ 1

2^v
2&. This quantity is well defined for an equilibrium

state in which the particles have a symmetric velocity dis
bution. In such a case,v̄5A2T, can be used as an approx
mate value for the average grain speed. In our system, q
tities such as temperature, density, etc., are posi
dependent, and there is not a global equilibrium. However
the quasielastic limit, we expect the system to be very cl
to local thermal equilibrium.

Let x be the distance from the heated wall. In the stea
state, all quantities vary only in this transverse direction. T
energy balance equation can therefore be written as

dq

dx
1I50, ~1!

whereq is the energy flux in thex direction. The sink term
I accounts for the energy lost per unit area per unit time
to inelastic collisions. The energy flux is induced by a te
perature gradient,q52kdT/dx, where the coefficient of
thermal diffusivity,k, is positive. Consequently, we find

d

dx S k
dT

dxD5I . ~2!

A. The energy sink

Since collisions between grains are inelastic, kinetic
ergy is continually transferred into heat. For simplicity w
neglect rotation and thus, the degree of inelasticity can
parametrized by 0<r<1. When two particles collide, thei
tangential velocities are unchanged, while the relative n
mal velocity is decreased by a factor of2r , where the nega-
tive sign merely indicates that they move apart after a co
sion. Using momentum conservation one can write the fi
velocities~indicated by primes! in terms of the initial veloci-
ties

S v1n8v2n8 D 5
1

2 S 12r 11r

11r 12r D S v1nv2n
D . ~3!

In the above equation, the subscriptn denotes the velocity
component along the line connecting the centers of parti
1 and 2. The energy lost in each collision is therefore

DE52 1
4 ~12r 2!~v1n2v2n!

2.

In this study, we focus on the quasielastic limit, i.e
12r!1. Physically, this limit is relevant to hard particle
such as glass or steel beads.

Using the above expression for the energy dissipate
each collision, one can estimate the sink termI , the mean
energy lost per unit area per unit time. Consider a part
moving with speedv̄. During each collision, it loses, on
is
s.
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average, energy proportional to (12r 2) v̄2. In unit time, it
collides roughlyv̄/ l times. In unit area, there arer particles,
and consequently

I}~12r 2!v̄2
v̄
l

r}~12r 2!rT3/2/ l .

B. The coefficient of thermal diffusivity

Suppose there is a temperature gradient in thex direction.
As a result, there will be an energy flux along this axis.
calculate this flux, let us consider the number of partic
crossing a line perpendicular to this direction in a time int
val Dt. We define ‘‘crossing the line’’ as having any part o
the particle over the line during this time interval. To cro
the line within Dt, a particle with speedv̄ must have its
rightmost pointv̄Dt or closer to the line. Thus, only grains i
an area (d1 v̄Dt) to the left of the line can pass the line from
the left in Dt. In fact, only one half of these particles a
moving to the right, so the number of particles crossing
line per unit cross-sectional length inDt is 1

2r(d1 v̄Dt). In a
steady state, the number of crossing events from each
must balance. Any energy flux is due to the fact that partic
coming from the right are at a different temperature (TR)
than those from the left (TL) and thus, qDt5 1

2r(d
1 v̄Dt)(TL2TR). Consider two grains on opposite sides
the line. Their centers are approximately a distance (l1d)
apart, so the temperature difference is rough
( l1d)dT/dx. The coefficient of thermal conductivity is
thereforek52q/(dT/dx)5 1

2r( l1d)(d1 v̄Dt)/Dt. A natu-
ral choice forDt is the typical collision timel / v̄. This choice
is small enough to avoid multicounting and is sufficien
large to ensure that heat transfer does occur. Our heur
picture therefore estimates the thermal diffusivity by

k}
r~ l1d!2AT

l
.

This is a rough approximation; the actual prefactors dep
on the velocity distribution of the grains. Therefore, we ge
erally assume

k}
r~a l1d!2AT

l
.

The energy balance equation~2! takes the form

d

dx F ~a l1d!2

l
rAT

dT

dxG5~12r 2!
rT3/2

g l
, ~4!

whereg is the ratio of prefactors in the expressions forI and
k. In the following subsections, we discuss how to obtain
dimensionless coefficientsa andg self-consistently. To pro-
ceed, it is necessary to relater andT through the equation o
state. Additionally, the mean free pathl must be expressed in
terms ofr.

C. The equation of state

For the system to be in a steady state, the pressure m
be constant throughout. The equation of state relates
pressure and the temperature to the density. For exampl
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4202 55E. L. GROSSMAN, TONG ZHOU, AND E. BEN-NAIM
the low density limit, the ideal gas law holds,PV5NkBT.
Using kB51 andr5N/V, one has

P5rT. ~5!

On the other hand, in the high density limit, the mean f
path, which is simply the interparticle spacing, is much le
than the particle diameter (l!d). Denoting the close-
packing density byrc , one finds

r

rc
5

d2

~d1 l !2
'12

2l

d
. ~6!

In this limit, the center of a grain is confined to an area of
order ofl 2, so the entropy per particle,S, equals ln(l2) plus a
function of temperature. From Eq.~6!, S depends on density
only through the term 2ln(rc2r). Using Maxwell’s relation,

S ]P

]T D
1/r

5S ]S

]
1

r
D
T

5
2r2

rc2r
,

we obtain the pressure in the limitr→rc ,

P5
2r2T

rc2r
. ~7!

We therefore propose the following interpolation formula f
the pressure:

P5rT
rc1r

rc2r
. ~8!

Indeed, in the limits of high and low density this expressi
reduces to~5! and ~7!, respectively. It is useful to compar
this expression with the van der Waal’s equation of sta
which takes into account long range attraction and hard c
repulsion@8#. For an inelastic gas of hard spheres, there
no long range forces, and the van der Waal’s pressure f
two-dimensional gas readsPvdW5rrcT/(rc22r) for
r!rc . In the low density limit the pressure given by Eq.~8!
agrees with the van der Waal’s expression to second ord
r/rc . Furthermore, one can also compare Eq.~8! to Tonks’
series expansion@9# for the pressure of a two-dimension
gas of hard spheres, PTonks5rT@111.814(r/rc)
12.573(r/rc)

2]/ @121.307(r/rc)
310.307(r/rc)

4], valid
for all densities. Over the entire density range, the two
pressions differ by less than 1.3%. In contrast, we found
the van der Waal’s formula is inadequate for describing
high density limit. Hence, we use the interpolation formu
~8! for the pressure.

D. The mean free path

The mean free path can be expressed in terms of the
sity and the diameter. In the low density limit one has

l5
1

A8rd
,

while in the high density limit, Eq.~6! gives
e
s

e

,
re
e
a

in

-
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e
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l5
rc2r

2rc
d.

Again, we use these high and low density limits to interp
late a general expression for the mean free path. Using
two-dimensional close-packing valuerc52/A3d2, we find

l'
1

A8rd

rc2r

rc2ar
, ~9!

wherea512A3/8.

E. The density equation

Equations~8! and ~9! express the temperature and t
mean free path in terms of the density. Substituting th
expressions into Eq.~4! yields a second order differentia
equation for r. Using for convenience the variabl
z[rc /r, we have

d

dx F ~z212z21!@az~z21!1A32/3~z2a!#2

~z2a!~z21!1/2z3/2~z11!5/2
dz

dxG
5

32

3d2
12r 2

g

z2a

~z11!3/2
Az21

z
. ~10!

This equation is complemented by the boundary conditio

dz

dxU
x5L

50 andWE
0

Lrc
z
dx5N, ~11!

whereW is the width of the system andN is the total number
of particles. The latter condition merely reflects conservat
of particles. The former condition is a consequence of
fact that the temperature gradient vanishes at the elastic w

In principle, g and a are two dimensionless factors
which can be calculated exactly from the velocity distrib
tion. However, this distribution is poorly understood. Neve
theless, it is still possible to estimate these prefactors
comparing the theoretical predictions of Eq.~11! with nu-
merical simulations in the limit of high and low densities.

In both of these extreme cases the governing equa
~10! can be solved analytically. In the high density lim
(rc2r)→0, or equivalently,z21!1, Eq. ~10! reduces to
(d2/dx2)Az215@(12r 2)/2gd2#Az21. It is convenient to
write this equation in terms of the temperature,T(x). From
Eq. ~8!, T(x)}z21 when z21!1, and the temperature
obeys

d2

dx2
AT~x!5

1

4j2
AT~x!,

with j[dAg/2(12r 2). Solving this equation subject to th
boundary conditiondT/dx50 atx5L gives the temperature
profile

T~x!5T~L !cosh2S L2x

2j D .
Far from the elastic wall,L2x@j, the temperature decay
exponentially in agreement with Haff’s calculation@2#,
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55 4203TOWARDS GRANULAR HYDRODYNAMICS IN TWO DIMENSIONS
T~x!5T~0!e2x/j. ~12!

Equation ~9! shows that in the high density limit,l}z21
}T. Both the temperature and the mean free path decay
ponentially with the distance from the heated wall. The d
cay lengthj is much larger than the mean free path. For t
continuum description to be valid,j must also be much
larger than the diameter of a particled, i.e.,

A12r 2!Ag

2
. ~13!

Since the prefactorg is of order unity, we learn that the
continuum theory is valid only in the quasielastic limi
A12r!1. ~Note that the restrictionA12r!1 is stricter
than 12r!1.!

To test the theoretical predictions, we performed
event-driven simulation of the system@10#. The heated wall
is implemented in such a way that forr51, particles have a
Boltzmann velocity distribution with an average temperatu
equal to one. Specifically, any particle that collides with t
wall at x50 is ejected with a positivevx drawn from the
probability distribution P(vx)5vxexp(2vx

2/2) and a vy
drawn fromP(vy)5exp(2vy

2/2)/A2p @5#. However, the be-
havior of particles in the bulk of the system is independent
the details of the boundary condition~see Fig. 8 below!. This
is not surprising, but rather a necessity for a thermodynam
theory to be valid.

Numerical simulations confirm the exponential decay
the quasielastic limit. Furthermore, the decay lengthj can be
measured for various degrees of inelasticityr ~see Fig. 2!.
We verified that indeedj}(12r 2)21/2 as suggested by Eq
~12!. The value of the prefactorg>2.26 can be found from
the simulations as well.

We now turn to the low density limit. Here,z@1, and Eq.
~10! reduces to (d2/dx2)z3/25@16(12r 2)/ga2d2#z21/2. As
a result,

dz

dx
52

1

h
Az2zL

z
, ~14!

FIG. 2. The behavior of the decay lengthj in units of particle
diameters as a function of 12r 2 in the high density limit. The solid
line is 1.06(12r 2)21/2, and the diamonds are values obtained fro
simulations with an average normalized density (r/rc) of approxi-
mately 0.8.
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e
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e
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whereh[adA3g/64(12r 2), and we have used the bound
ary condition of Eq.~11! and the notationzL5z(L). Simu-
lations show that the density near the heated wall is sign
cantly smaller than the density at the elastic wall. Thus, f
x!L andz@zL , we find the following approximate solution

z~x!'z02
x

h
.

The inverse of the density, and hence the temperature,
cays linearly withx in the low density regime near the heate
wall. That the low density decay lengthh;(12r 2)21/2 is
similar to the high density decay lengthj;(12r 2)21/2 re-
flects the fact that the underlying differential equation is se
ond order.

In the nearly elastic case (12r!1), zL is close toz, and
Eq. ~14! can be integrated exactly,

x

h
52@AzAz2zL1zLln~Az1Az2zL!#z0

z~x! .

Comparing this prediction with low density numerical simu
lations allows us to determineh at variousr values~see Fig.
3! and verify that indeedh}(12r 2)21/2. The constant of
proportionality and the previously calculatedg yields
a>1.67.

In the low density limit, the equation of stateP5rT,
implies thatT(x)5(P/rc)z(x). For the state to be locally
very close to equilibrium, the mean free path must be mu
less than the length scale over which the temperature
changing, i.e.,l!hrc /P. This condition is

A12r 2!aAg

2
, ~15!

when the temperature is of order unity. Sincea and g are
also of order unity, the hydrodynamic description is aga
valid only in the quasi-elastic regime (A12r!1).

Our treatment so far has concentrated on either the high
the low density limit, where analytical expressions were po
sible. For systems that include both high and low dens

FIG. 3. The behavior of the decay lengthh in units of particle
diameters as a function of 12r 2 in the low density limit. The solid
line is 0.542(12r 2)21/2, and the diamonds are values obtaine
from simulations with an average normalized density (r/rc) of ap-
proximately 0.1.
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4204 55E. L. GROSSMAN, TONG ZHOU, AND E. BEN-NAIM
regions, Eq.~10! can be solved numerically using the bound-
ary and normalization conditions~11! and the previously cal-
culated values forg anda. By examining a number of simu-
lations that include a range of densities we determined th
the optimal values for the prefactors areg52.26 and
a51.15. While this value ofg is consistent with the value
obtained in the high density calculation, thisa value is
slightly lower than our prediction. A typical system with
r50.99 is shown in Fig. 4, and it is seen that the prediction
of hydrodynamic theory match the numerical data over wid
density variations. For this simulation, the ratio
A2(12r 2)/ga2 is approximately 0.1, which is not of order
unity, so the condition of Eq.~15! is satisfied.

III. NONEQUILIBRIUM STEADY STATE

The calculation in the previous section assumes that th
steady state is very close to equilibrium, and that pressu
and temperature can be used to describe the system. T
requires that condition~13! is satisfied in the high density
limit, or condition ~15! is satisfied in the low density limit.

An important question is: When does the behavior of th
system changes qualitatively? One such transition occu
when r becomes low enough for the system to undergo in
elastic collapse. Here strong correlations and large densi
variations develop, and applying hydrodynamics become
impossible. Even whenr is slightly higher than the critical
value for inelastic collapse, the attractors mentioned in th
Introduction may still be strong enough to build correlations
Where this breakdown occurs is determined by the degree
inelasticity, the density and the total number of particles
@11#. For each pair of values of density and total number o
particles, there is a value ofr , which divides two different
kinds of behavior: loose sand and coherent sand.

However, the theory developed in the previous section i
strictly for the quasielastic limit, 12r!1, so there may exist
systems that, although elastic enough to avoid inelastic co
lapse, still haver far enough from one that the hydrodynam-
ics do not apply. Since correlations between particles ar

FIG. 4. Comparison of a simulation~plus signs! of 1000 par-
ticles atr50.99 with the numerical solution~solid lines! to the full
differential equation~10! with g52.26 anda51.15. The tempera-
ture is not one at the heated wall due to the effect discussed in Se
III. The horizontal axis is the distance from the heated wall in units
of the particle diameter (d).
at
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built up through inelastic collisions, high density regions ar
more liable to inelastic collapse@11#, while for low density
regions, correlations are harder to establish. Therefore,
will investigate the low density limit in order to observe the
breakdown of the hydrodynamic description as the degree
inelasticity increases.

When the temperature variation within a mean free path
significant, the system is unable to reach local equilibrium
Therefore, particles carrying energy away from the heat
wall cannot share this energy with the slow particles retur
ing from the higher density region near the elastic wall. Th
inefficient mixing leads to a temperature gap—the avera
energy of particles withvx.0 is greater than that of the
particles with vx,0 ~see Fig. 5!. Furthermore, near the
heated wall, the temperature drops by approximately 15
over a mean free path, which suggests that such a system
be unable to reach local thermal equilibrium~see Fig. 6!.

The probability distribution functions forvx ~the velocity
perpendicular to the heated wall! provide an illuminating
way to measure this deviation from equilibrium~see Fig. 7!.
Note the asymmetry: thevx.0 tail is longer than the

c.

FIG. 5. The difference in temperature for particles with positiv
velocities ~solid line! and with negative velocities~dashed line!.
The data are from a simulation of 1500 particles withr50.95 and
total area fraction 0.01.

FIG. 6. The mean free path, i.e., the average distance until t
next collision for particles at a given position. The dip near th
heated wall is due to collisions with the wall. The data are from th
same simulation used in Fig. 5. Both the mean free path (l ) and the
position (x) are in units of particle diameters (d).
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55 4205TOWARDS GRANULAR HYDRODYNAMICS IN TWO DIMENSIONS
vx,0 tail. This is consistent with our understanding that th
vx.0 particles have more energy than thevx,0 ones. A
rough quantification of the deviation from equilibrium is pro-
vided by condition~15!: whenA2(12r 2)/ga2 is of order
unity, the theory breaks down. Forr50.95~the value used in
the figures!, this quantity is approximately 0.3. Note that this
condition involvesr only and is not sensitive to the local
densityr. This suggests that the behavior of regions of th
system with different densities should be similar. In fact, w
observed that the velocity distribution function obeys scalin
~see Fig. 8!, i.e.,

P~vx ,x!5
1

g~x!
fS vx

g~x! D . ~16!

The functionf is independent of boundary conditions~see
Fig. 8!. Thus^vx

n(x)&}gn(x), where the constant of propor-

FIG. 7. The probability distributions forvx at various positions
x5L/5,L/2,4L/5, whereL is the length of the system~1330 particle
diameters in this case!. The simulations are for a system of 1500
particles with area fraction 0.01 atr50.95.

FIG. 8. The scaling distributionf(z)5P(vx ,x)g(x). The data
of Fig. 7 have been rescaled according to Eq.~16!, so three sets of
data are from various positions,x5L/5(1),L/2(*), and
4L/5(L), in a system with the usual energy enput atx50. The plot
also includes probability distributions from a simulation of a system
that is identical to that used in Fig. 7 but with a different type o
forcing at the heated wall. Data from this simulation are displaye
for x57L/10(n) and 4L/5(h).
e

e

g

tionality depends only on the shape of the functionf. Note
that this shape will depend onr , the degree of inelasticity;
the more inelastic the particles are, the more skewed
velocity distribution is. The probability distribution for the
y component of the velocity behaves similarly:

P~vy ,x!5
1

g~x!
cS vy

g~x! D , ~17!

but herec is a symmetric, nearly Gaussian function. Add
tionally, the same velocity scaleg(x) characterizes the trans
verse and the longitudinal velocity distributions. Therefor
while at each positionx there is no longer a single hydrody
namic temperature, there is a well defined characteristic
locity scale, g(x), so that the granular temperature
1
2^vx

21vy
2&, is proportional tog2(x). This scaling suggests

that, although the system may deviate significantly fro
equilibrium, it can still be treated using some of the tools
the previous sections.

Specifically, return to the equation for energy balance~1!:
dq/dx52I , whereI is the energy loss due to collisions pe
unit time per unit area, andq is the energy flux, the hea
transfer per unit cross-sectional length per unit time. As d
cussed previously,

I}~12r 2!dr2v3}r2g3,

while the heat flux is approximately

q5^~ 1
2rv2!vx&}rg3.

Conservation of momentum flux suggests thatrg2 is con-
stant, and the energy balance equation gives

dg

dx
}2g21, ~18!

which indicates thatg2, and hence the temperature, depen
linearly onx. This prediction is consistent with our simula
tional results~Fig. 9!.

f
d

FIG. 9. Characteristic velocity scale as a function of positio
Here we plot ^(vx

21vy
2)1/2&}g(x) ~the dashed line!. These data

were obtained from the simulation used to make Fig. 7 and
values forg(x) were used to do the rescaling in Fig. 8. We also pl
^vx

21vy
2&}g2(x) ~the solid line! to show that it is a roughly linear

function of position, as predicted by Eq.~18!.
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IV. CONCLUSION

In this work, we examined the steady-state behavior o
weakly inelastic two-dimensional driven granular syste
We found that a hydrodynamic formulation provides a sa
factory description of the near-equilibrium behavior of t
system in the quasielastic limit. We extended Haff’s theo
to the low density limit and found that the correspondi
temperature profile varies linearly in space. For sligh
higher inelasticities, the system is no longer close to equi
rium in the low density limit. However, the scaling behavi
of the velocity distributions suggests that a hydrodynam
treatment can still be useful in describing the system.

In this nonequilibrium regime, we found that the partic
velocity distributions were non-Gaussian. Indeed, deviati
from normal distributions have been observed in theoret
@10,12,13# and experimental studies@14#. In addition to this
variation in the velocity distributions, systems of this so
da
a
.
-

y

-

c

s
al

t

can produce highly inhomogeneous spatial distributions
has been noted elsewhere in one@4,5# and two@7,15# dimen-
sions. A recent experimental study examined the spatial
tribution of hard particles in two dimensions in the presen
of an energy input@16#. Their data are in qualitative agree
ment with our theoretical predictions, and inhomogeneo
spatial distributions reminiscent of Fig. 1 are observed.
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