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We investigate records in a growing sequence of identical and independently distributed random
variables. The record equals the largest value in the sequence, and our focus is on the increment,
defined as the difference between two successive records. We investigate sequences in which all
increments decrease monotonically, and analyze the case where the random variables are drawn from
a uniform distribution with compact support. We find that the fraction IN of sequences that exhibit
this property decays algebraically with sequence length N , namely IN ∼ N−ν as N → ∞, and obtain
the exponent ν = 0.317621 . . . using analytic methods. We also study the record distribution and
the increment distribution. Whereas the former is a narrow distribution with an exponential tail,
the latter is broad and has a power-law tail characterized by the exponent ν. Empirical analysis
of records in the sequence of waiting times between successive earthquakes is consistent with the
theoretical results.
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I. INTRODUCTION

Records, the largest observed values in a sequence of
data points [1–7], have long been a topic of interest —
anybody who has watched the Olympics will appreciate
that much of the suspense lies in seeing if a new world
record will be set. Records are a useful tool for char-
acterization of complex systems [8, 9], and the study of
records and their statistical properties has proved valu-
able in a wide swathe of disciplines, ranging from climate
science [10–13] and hydrology [14] to economics [15–17].

Recent investigations concerning the statistical me-
chanics of records [18–22] reveal rich and interesting phe-
nomenology associated with the effects of round-off errors
on record statistics [23, 24] as well as first-passage behav-
ior [25, 26] of record sequences [27]. Here, we introduce a
first-passage characteristic that probes how records im-
prove with time, and demonstrate its usefulness for anal-
ysis of empirical data.

The theory of extreme value statistics is a well-
developed subject. The most basic quantity in this the-
ory is the distribution of the largest variable among a set
of random variables, all drawn independently from the
same parent distribution [3–7]. There are three classes
of extreme value distributions: (i) The Weibull class,
where the tail of the parent distribution decays faster
than an exponential; (ii) The Gumbel class where the
tail of the parent distribution is exponential; and (iii)
The Fréchet class where the tail of the parent distribu-
tion decays slower than an exponential.

Tracking an observable over time, one sees the genera-
tion of a sequence of records, each new record improving
upon the previous one by some finite amount. For suffi-
ciently large sequences, the average improvement in the
record: (i) decreases in the Weibull class, (ii) approaches
a constant in the Gumbel class, and (iii) increases in the
Frećhet class [5, 6].

Our study focuses on the uniform distribution with

FIG. 1: Illustration of a sequence with monotonically dimin-
ishing increments between records. Records are indicated by
filled circles, and the rest of the variables, by open circles. The
vertical arrows to the left of a record indicate the magnitudes
of the respective increment.

compact support which belongs to the Weibull class.
When the random variables are drawn from a compact
distribution, the average improvement in the record di-
minishes with each new record [5, 6]. In this study we
ask: how likely we are to see only shrinking improvements
over previous records?

Consider an evolving sequence of N identical and in-
dependently distributed random variables. The first el-
ement of this sequence is, by definition, a record. Each
subsequent element is a record if it is greater than the pre-
vious record. Moreover, a new record improves upon the
existing one by some increment, defined as the difference
between the two records. We study the probability IN

that all increments decrease monotonically (see Fig. 1),
and our main result is the scaling law

IN ∼ N−ν (1)

which holds in the large-N limit. When the random vari-
ables are drawn from a compact, uniform distribution, we
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obtain analytically the exponent

ν = 0.317621 . . . . (2)

Our definition of incremental records involves the cur-
rent record and the previous record, or alternatively, the
current record and the current increment. Consequently,
the theoretical analysis requires the joint distribution of
these two variables. Interestingly, the record and the in-
crement become uncorrelated in the large-N limit, such
that the joint distribution is a product of the record dis-
tribution and the increment distribution. The former
distribution is exponential, but the latter is broad and
has power-law tail.

The rest of this paper is organized as follows. In section
II, we examine the record distribution, and show that it
is the same regardless of whether one considers the set
of all records sequences or just the subset of incremental
ones. Next, we study the increment distribution which in
turn requires the full joint distribution of records and in-
crements (section III). We obtain the increment distribu-
tion in the scaling limit, and derive the scaling exponent
ν as a byproduct. In Section IV, we measure the fraction
of incremental records for the sequence of waiting times
between large earthquakes, and observe good agreement
with the theoretical results. We conclude in Section V.

II. RECORD DISTRIBUTION

Let us consider a sequence of uncorrelated random
variables,

{X1,X2, . . . ,XN}. (3)

Each variable Xi ≥ 0 is independently drawn from the
probability distribution function ρ(X), with the normal-
ization

∫

∞

0
dXρ(X) = 1. In many applications, includ-

ing the earthquake example discussed in section IV, new
variables are constantly added to the dataset. Hence, we
may view the sequence (3) as evolving with the variable
N playing the role of time [28].

The record xi equals the largest variable in a sub-
sequence of length i. A newly added variable sets a record
if it is larger than the previous record,

xN+1 =

{

xN xN ≥ XN+1,

XN+1 XN+1 > xN ,
(4)

for N ≥ 1 with x0 = 0. The first variable necessarily sets
a record, x1 = X1, and by definition, the records increase
monotonically, xN+1 ≥ xN .

We focus on the simplest case of a uniform distribution
with support in a finite interval, taken without loss of
generality as the unit interval,

ρ(X) =

{

1 0 ≤ X ≤ 1,

0 1 < X.
(5)
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FIG. 2: Geometric representation of incremental sequences of
length two. The shaded area represents sequences {X1, X2}
with incremental records and current record x2 < x.

This distribution is relevant for waiting times between
successive earthquakes (see section IV).

The cumulative record distribution RN (x) equals the
probability that the record xN is smaller than x. This
distribution is simply

RN (x) = xN . (6)

Indeed, by substituting (5) into R1(x) =
∫ x

0
dX ρ(X) we

have R1(x) = x, and further, for the Nth record to be
smaller than x, all N variables must be smaller than x.

Since the variables are identical and independently dis-
tributed, every one of the N variables is equally likely
to be the largest. Hence, the probability that the Nth
variable sets a record equals 1

N
, and consequently, the

average number of records equals the harmonic num-
ber 1 + 1

2
+ 1

3
+ · · · + 1

N
. The slow logarithmic growth

of this sum demonstrates that when N becomes large,
new records are few and far between [29–31].

Further, we expect that the improvements made with
each new record diminish with time. The increment, de-
fined as the difference between the new record and the old
record, quantifies such improvements. Together with the
current record xN we also track the current increment

yN defined by

yN+1 =

{

yN xN+1 = xN ,

xN+1 − xN xN+1 > xN ,
(7)

for N ≥ 1. Again, y1 = x1 since the first variable is a
record.

In this study, we restrict our attention to the subset of
sequences where all increments decrease monotonically,

y1 ≥ y2 ≥ y3 ≥ · · · ≥ yN . (8)

If this inequality holds, the sequence of records
{X1,X2, . . . ,XN} is said to be incremental. We are in-
terested in the probability IN that a record sequence of
length N is incremental. Essentially, we require that the
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FIG. 3: The normalized cumulative distribution
FN (x)/FN (1) for N ≤ 4. The circles represents results
of Monte Carlo simulations and the lines show the corre-
sponding monomials xN .

quantity yN − yN+1 remains non-negative. In this sense,
the condition (8) defines a first-passage process, and the
quantity IN is analogous to a survival probability [25].

As a preliminary step, we analyze the distribution of
incremental records. Specifically, we define the cumu-
lative density FN (x) as the fraction of sequences that:
(i) have incremental records, namely, satisfy the condi-
tion (8), and (ii) have a record smaller than x, that is,
xN < x. Of course, IN ≡ FN (x = 1).

When N = 1, we have F1(x) = R1(x) and hence,
I1 = 1. When N = 2, the two-variable sequence
{X1,X2} corresponds to a point inside the unit square
(figure 2). If X1 > X2, the record sequence is neces-
sarily incremental. Otherwise, the sequence is incremen-
tal if and only if X2 − X1 ≤ X1. Accordingly, the lines
X2 = X1 and X2 = 2X1 divide the unit square into three
triangles, in two of which the condition (8) holds. To ob-
tain the probability F2(x) that an incremental sequence
has record x2 ≤ x, we overlay a square of area x2 onto
the unit square. The overlap between this square and the
two relevant triangles is a trapezoid with height x, and
bases x and x/2 (figure 2). The area of this trapezoid
gives the cumulative record density

F2(x) =
3

4
x2, (9)

and hence, I2 = 3
4
.

This illuminating example suggests that generally,

FN (x) = IN xN . (10)

Indeed, when N = 3, in addition to the planes X2 = X1,
X2 = 2X1, and similarly, X3 = X1 and X3 = 2X1, there
is a fifth plane X3 − X2 = X2 − X1 that corresponds
to three distinct records. These planes specify a polyhe-
dron with volume F3(x) = 47

72
x3, embedded inside a cube

of volume x3; The condition (8) holds inside this poly-
hedron. In general, the hyperplanes defined by (8) are
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FIG. 4: The scaling function governing the records. The cir-
cles represent results of Monte Carlo simulations for the frac-
tion U(s) of incremental sequences with scaled record (1−x)N
that is larger than s. Also shown for reference is the predic-
tion U(s) = exp(−s) that follows from Eq. (11).

invariant under the transformation Xi → aXi. Conse-
quently, the cumulative distribution equals the volume
of an N -dimensional polyhedron, embedded in an N -
dimensional hypercube of volume xN . This geometric
argument and the normalization FN (1) = IN support
equation (10) (numerical confirmation is shown in fig-
ure 3). Remarkably, the normalized distribution function
FN (x)/FN (1) is identical to RN (x) given in (6). Hence,
records in incremental sequences and records in all se-
quences are characterized by identical distribution func-
tions.

Our main focus is the asymptotic behavior in the limit
N → ∞ where the cumulative density (10) follows the
scaling form (figure 4)

FN (x) ≃ IN e−s, s = (1 − x)N. (11)

To obtain this form, we simply rewrite
xN = [1 − (1 − x)]N and consider the limits N → ∞
and x → 1 with the scaling variable s = (1 − x)N
being finite. Thus, the term xN implies that the record
distribution is exponential [32, 33].

III. INCREMENT DISTRIBUTION

As evident from the definitions (4) and (7), the in-
crement is coupled to the record. Hence, further analy-
sis requires the joint record-increment distribution. We
study the probability density SN (x, y), defined such that
SN (x, y) dx dy is the probability that the record xN lies in
the infinitesimal range (x, x+dx) and similarly, the incre-
ment yN is in the range (y, y+dx). Of course, the proba-
bility density SN (x, y) refers to incremental records, and
since y < x, the fraction of incremental sequences is the
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following integral of the joint density,

IN =

∫ 1

0

dx

∫ x

0

dy SN (x, y). (12)

The probability density satisfies the recursion equation

SN+1(x, y) = x SN (x, y) +

∫ x−y

y

dy′ SN (x − y, y′) (13)

for N > 1, with S1(x, y) = δ(x − y) as the first el-
ement is necessarily a record. The first term on the
right-hand side of (13) accounts for cases where the old
record holds. The integral term accounts for situations
where the old record, which necessarily equals x − y, is
surpassed by a new record; The lower integration limit
enforces the monotonicity condition (8). Starting with
S1(x, y) = δ(x−y) we find S2(x, y) = xδ(x−y)+Θ(x−2y)
from which I2 = 3/4 is recovered.

To study the asymptotic behavior for large N , we
convert the recursion equation (13) into the integro-
differential equation

∂SN (x, y)

∂N
= −(1− x)SN (x, y) +

∫ x−y

y

dy′ SN (x− y, y′).

(14)
To obtain this equation, we subtract SN (x, y) from both
sides of (13) and then replace the difference SN+1 − SN

with the derivative ∂SN/∂N .
The scaling behavior (11) shows that 1 − x ∼ N−1.

Moreover, the integral term in (14) implies that, simi-
larly, the increment is inversely proportional to sequence
length, y ∼ N−1. Hence, we anticipate the scaling form

SN (x, y) ≃ IN N2 Ψ(s, z), z = y N. (15)

The normalization (12) sets the prefactor IN N2 and
implies that the scaling function Ψ(s, z) is normalized,
∫

∞

0

∫

∞

0
ds dz Ψ(s, z) = 1. If we integrate the joint scal-

ing function over the scaled increment, we should recover
the distribution of the scaled record, given in (11),

∫

∞

0

dz Ψ(s, z) = e−s. (16)

Next, we substitute (15) along with IN ≃ AN−ν as
in (1) into the evolution equation (14), and find that the
scaling function satisfies

(

2−ν+s+s
∂

∂s
+z

∂

∂z

)

Ψ(s, z) =

∫

∞

z

dz′Ψ(s+z, z′). (17)

Remarkably, this rather involved integro-differential
equation admits a separation-of-variables solution

Ψ(s, z) = e−s φ(z). (18)

This form is consistent with Eq. (16) when the scaling
function φ(z) that characterizes the distribution of incre-
ments, is normalized,

∫

∞

0
dz φ(z) = 1. The factorizing

form (17) implies that records and increments become
uncorrelated in the limit N → ∞, an assumption that is
supported by the numerical simulations (see below).

By substituting the factorizing form (18) into the gov-
erning equation (17), we obtain the integro-differential
equation

z
dφ(z)

dz
+ (2 − ν)φ(z) = e−z

∫

∞

z

φ(z′)dz′. (19)

We can convert this first-order equation for φ(z) into a
second order ordinary differential equation for its inte-
gral, Φ(z) =

∫

∞

z
dz′ φ(z′),

z
d2Φ(z)

dz2
+ (2 − ν)

dΦ(z)

dz
+ e−zΦ(z) = 0. (20)

The two boundary conditions are Φ(0) = 1 and
Φ′(0) = −1/(2 − ν). The former follows from the fact
that φ(z) is normalized, and the second boundary condi-
tion follows from equation (19) itself.

Equation (20) has two independent solutions. In the
large-z limit, the rightmost term in Eq. (20) vanishes,
and consequently, one of these solution approaches a con-
stant, Φ(z) → C, while the other decays algebraically,

Φ(z) ∼ zν−1. (21)

The former solution is not physical because the scaling
function φ(z) vanishes in the limit z → ∞. The ex-
ponent ν plays the role of an “eigenvalue” of equation
(20). Due to the exponential term e−z, a series expan-
sion of Φ(z) is not helpful. Numerically, we integrate
(20) with a trial value νtry. When νtry 6= ν, the solution
approaches a nonzero constant C ≡ C(νtry) 6= 0 when
z → ∞. Only when νtry equals the eigenvalue ν, does
this constant vanish C(ν) = 0, and the physical solution
(21) is realized. We used the Adams method [34] to per-
form the numerical integration and the bisection method
[35] to find the root of the equation C(ν) = 0. The result
ν = 0.31762101 . . . quoted in (2) follows.

Equation (21) implies that the increment distribution
decays algebraically for sufficiently large increments. Let
PN (y)dy be the probability that an incremental sequence
has latest increment in the range (y, y + dy). The prob-
ability density PN (y) follows from the joint density,

PN (y) =

∫ 1

y

dx SN (x, y). (22)

By substituting the scaling behavior (15) with the fac-
torizing form (18) into the integral, we find that the in-
crement density has the scaling form

PN (y) ≃ IN N φ(z). (23)

The scaling function φ(z) is simply φ(z) = −Φ′(z).
Therefore, using the algebraic tail (21), we find
φ(z) ∼ zν−2. Hence, the increment density decays al-
gebraically,

PN (y) ∼ N−1yν−2, (24)
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FIG. 5: The fraction of incremental sequences versus sequence
length. The quantity IN , measured from Monte Carlo simu-
lations is compared with the theoretical result (1)-(2). The
numerical results are obtained from 108 independent realiza-
tions.

for sufficiently large increments y ≫ N−1.

The algebraic decay (24) matches our expectation that
is based on a simple heuristic argument. The probabil-
ity that the first element is largest equals N−1. Since
a sequence with only one record is incremental, we ex-
pect that PN (1) ∼ N−1. This behavior agrees with (24).
Hence, from the extreme case of a single record that is
nearly maximal, y ≈ 1, we can derive the algebraic be-
havior (24) from the scaling behavior (23) together with
(1).

It is natural to compare the subset of sequences that
have incremental records with the complete ensemble of
all record sequences [5, 36]. The above heuristic argu-
ment, combined with the fact that FN (x = 1) ≡ 1, yields

P̃N (y) ∼ N−1y−2 for all record sequences. Further, let

Φ̃(z) be the probability that the scaled increment y N−1

for all record sequences is larger than z. By setting the
lower bound of integration in (13) to zero and repeating
the steps leading to (20), it is straightforward to show
that the factorization property holds and subsequently
obtain the scaling function Φ̃(z) = (1 − e−z)/z. The

two tails −dΦ̃(z)/dz ≃ z−2 and P̃N (y) ∼ N−1y−2 are
consistent.

We performed numerical simulations to test the above
predictions. In each simulation run, the initial record and
the initial increment are respectively set as x0 = 0 and
y0 = 1. Then at each step a random number in the range
[0 : 1] is drawn [35]. The record and the increment are
calculated from (4) and (7) respectively. This elementary
step is iterated as long as the monotonicity condition
yN+1 ≤ yN is satisfied, but the run is aborted when
this condition is violated for the first time. For example,
the quantity IN is measured as the fraction of such runs
where at least N + 1 random numbers where generated.

Results of these Monte Carlo simulations confirm the
theoretical prediction. First, as shown in figure 5, the
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FIG. 6: The cumulative distribution of increments. Shown is
the probability Φ(z) that the scaled increment yN is larger
than the scaling variable z. The simulation results were ob-
tained by generating 107 independent increments for a se-
quence of length N = 106. The theoretical result represents
a numerical solution of (20) with ν given by Eq.(2).

fraction of incremental sequences decays algebraically as
in equations (1)-(2). Second, as shown in figure 6, the
probability Φ(z) that the scaled increment yN is larger
than z agrees with the predictions of equation (20), with
the exponent ν specified in (2). Finally, we also confirmed
directly that the record and the increment become uncor-
related, that is, 〈(1−x)y〉/〈1−x〉〈y〉 → 1 when N → ∞.

IV. EMPIRICAL STUDY

Records are a basic feature of a data set, as for exam-
ple, the record high and record low specify the span of
the set. It is natural to ask whether the statistical mea-
sures introduced in this study are useful as a data analysis
tool. We believe that the notion of incremental records is
a sensible measure of performance [27], especially since it
involves no prior knowledge of how the random variables
are distributed. Also, determining whether a sequence in-
cludes only incremental records is straightforward. There
is a difficulty, however. In practice, a very large num-
ber of data points is required to accurately measure the
fraction IN because this survival probability decays as a
power-law.

Here, we analyze inter-event times between succes-
sive earthquakes. In ref. [27], it was demonstrated that
the average number of records in inter-event times is a
straightforward test for whether powerful earthquakes oc-
cur randomly in time and follow Poisson statistics [37–
39]. Inter-event times are not bounded from above, but
they are bounded from below, by zero. Given that our
theoretical analysis applies to bounded random variables,
rather than studying increments in the record high, we
studied decrements in the record low. As the transfor-
mation XN → 1 − XN shows, the behavior (1)-(2) also
characterizes decrements in record lows.
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Our dataset lists the event times for the ≈ 189, 000
earthquakes with magnitude M > 4 [40] that occurred
worldwide during the years 1984− 2012 [41]. From these
event times, the sequence (3) of inter-event times is con-
structed as a list of the waiting times between consecutive
earthquakes (zero waiting times are ignored). Our pro-
cedure for determining IN from this data set is to treat
N consecutive data points as an independent sequence,
and then calculate the fraction of these which have only
incremental records. That is to say, when calculating I1

we consider each individual element of the full data set
to be a sequence of length 1, when calculating I2 each
consecutive pair of events to be a distinct sequence of
length 2, and so forth.

As Fig. 7 shows, we observe scaling behavior which
closely matches the theoretical predictions (1)-(2). The
measured exponent is remarkably close to the theoretical
value

νdata = 0.30 ± 0.03. (25)

As discussed in the conclusions, the tail of the distribu-
tion function from which the random variables are drawn
controls ν [27]. Moreover, the empirical results show that
the fraction of incremental records is a sensible quantity
in the context of data analysis, and provide an example
where the fraction IN decays algebraically.

V. CONCLUSIONS

In conclusion, we studied the probability that all
records in a sequence of random variables are incremen-
tal. In our definition, a record is incremental if it im-
proves upon the previous record by a yet smaller amount.
For compact distributions, we found two scaling laws:
one for the probability that a sequence is incremental,
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FIG. 8: The exponent ν versus the parameter µ characterizing
the parent distribution ρ(X) in (26).

and one for the distribution of increments. A single scal-
ing exponent underlies both of these scaling laws. In-
terestingly, even for the simplest case of identical and
independently distributed random variables, drawn from
a uniform distribution, this scaling exponent is nontriv-
ial. Using an empirical analysis of earthquake data, we
demonstrated that statistics of incremental records are a
sensible tool for data analysis.

Our theoretical analysis involved the joint distribution
of record value and increment size. Initially, these two
variables are perfectly correlated, but as the sequence
grows, the correlation between these two variables dimin-
ishes, and it eventually vanishes. This key observation
allows us to solve for the full distribution of records and
increments in the scaling limit and obtain as a byproduct
the scaling exponent.

Our study concerns an ensemble of sequences for which
improvements in records diminish steadily with time. It
is useful to compare statistical properties of records and
increments for this restricted ensemble of sequences with
the corresponding behavior for the full ensemble of se-
quences [28]. Our findings show that the most basic char-
acteristic, the record, does not distinguish between these
two ensembles, yet, differences in the record are a more
sensitive measure whose distribution does differentiate
between the two.

In a recent related study, it was shown that another
measure for performance, the probability that records
always remain above their expected average, is also char-
acterized by a nontrivial scaling exponent [27]. Taken
together, these two closely related studies indicate that
there is a family of first-passage exponents [42] that char-
acterize extreme statistics.

An interesting challenge is to generalize the above re-
sults to arbitrary distributions, both compact and non-
compact. Numerically, we also studied the general class
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of compact distribution functions with algebraic tail

ρ(X) =

{

µ(1 − X)µ−1 0 ≤ X ≤ 1,

0 1 < X.
(26)

The simulations show that the exponent ν varies contin-
uously with the parameter µ (figure 8). Qualitatively,
this behavior is in line with the results of several other
studies showing that the tail of the distribution ρ governs
scaling laws for extreme statistics [27, 43, 44].

Our preliminary theoretical and numerical studies
show that if µ 6= 1, the increment and the record re-
main coupled, even in the limit N → ∞, and that this
behavior applies to the ensemble of all sequences as well
as for the subset of incremental sequences [45]. There-
fore, the general case (26) is much more challenging than
the uniform case (5).

Figure (8) shows that the exponent µ increases with
ν. This behavior suggests that the power-law behavior
(1) applies only within the Weibull class, and that the
fraction of incremental records decays much faster for
the Gumbel and Fréchet classes. Indeed, our preliminary

numerical simulations suggest that for the Poisson distri-
bution ρ(X) = exp(−X), the tail of the fraction IN is log-
normal. The faster than power-law decay in the Gumbel
and Fréchet classes reflects the fact that increments be-
have differently in these classes. For the Fréchet class,
the fraction of sequences with monotonically increasing
increments is of interest.

In closing, first-passage behavior of record increments
exhibits rich behavior, and it will be quite interesting
to generalize the results above, and to characterize the
behavior for all three classes of extreme value statistics.
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