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We study an elementary two-player card game where in each round players compare cards and
the holder of the card with the smaller value wins. Using the rate equations approach, we treat the
stochastic version of the game in which cards are drawn randomly. We obtain an exact solution for
arbitrary initial conditions. In general, the game approaches a steady state where the card value
densities of the two players are proportional to each other. The leading small value behavior of the
initial densities determines the corresponding proportionality constant, while the next correction
governs the asymptotic time dependence. The relaxation toward the steady state exhibits a rich
behavior, e.g., it may be algebraically slow or exponentially fast. Moreover, in ruin situations where
one player eventually wins all cards, the game may even end in a finite time.
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Numerous phenomena in social and economic sciences
involve multiple interacting agents. The interaction be-
tween these agents often leads to exchange of quanti-
ties such as capital, goods, political opinions, etc. [1–5].
Games are widely employed in modelling collective be-
havior especially in the context of economics [6], with
recent examples ranging from evolution of trading strate-
gies in a stock market [7–9] to bidding in auctions [10].
Games can often be regarded as many body exchange
processes resembling collision processes [11], and there-
fore their dynamics may be described by suitably adapted
kinetic theories [12]. Here, we investigate a stochastic
null strategy card game. By considering the “thermody-
namic limit” where the initial number of cards is infinite,
we show that rate equations provide a natural framework
for analyzing game dynamics.

This study was motivated by a recent auction bidding
model where two agents compare bids. The agent offer-
ing the smaller bid wins, and the second agent replaces
the losing bid with a randomly drawn bid [10]. This auc-
tion model demonstrates the utility of rate equations in
describing game dynamics. The corresponding rate equa-
tions admit a family of steady state solutions and numeric
integration shows that the dynamics selects one partic-
ular solution [10]. In this study, we consider a natural
simplification of this model which is characterized by ad-
ditional conservation laws. We show that the dynamics
become analytically tractable, and we relate the selection
criteria to extremal statistics of the initial conditions.

Our toy auction model is nothing but a stochastic
adaptation of the elementary card game “war”. This
two-player game is defined as follows. Each player starts
with a certain number of cards. At each round players
draw a card randomly from their deck and compare the
card values. The holder of the card with the smallest
value wins the round and gets both cards. This is re-
peated ad infinitum or until one of the players gains all
cards. We primarily consider continuous distributions of

card values where there is a winner in each round.
Our main result is that one specific aspect of the initial

card distribution, namely the small value extremal statis-
tics governs the dynamics of the game. Let us denote by
A and B the two players, and let the initial card value
densities be a0(x) and b0(x), respectively. In the long
time limit, a steady state is approached with the card
value densities of both players being equal to a fraction
of the total card value density. For instance, the limiting
card value density of player A is a∞(x) = α[a0(x)+b0(x)].
While a family of steady state solutions characterized by
the parameter 0 ≤ α ≤ 1 is in principle possible, the
leading small value behavior of the initial distributions
selects a specific value α = limx→0

a0(x)
a0(x)+b0(x) . Moreover,

the next leading correction determines how the system
approaches the steady state. The corresponding time de-
pendent behavior may be algebraic or exponential. Inter-
esting behaviors also occur when one player captures all
cards. In this case, the game duration may be finite or in-
finite. Additionally, using numerical simulations we show
that the theoretical predictions concerning the game du-
ration extend to deterministic realizations of the game.

Let the initial numbers of cards of player A whose val-
ues lie in the range (x, x+dx) be NA(x)dx (and similarly
for B), and let the total number of cards be N . We shall
take the thermodynamic limit NA(x), NB(x), N → ∞
and focus on a(x, t) and b(x, t), the densities of cards
with value x at time t for players A and B, respectively.
These densities evolve according to the rate equations

∂

∂t
a(x, t) = R(x, t),

∂

∂t
b(x, t) = −R(x, t), (1)

with the gain (loss) term R(x, t) given by

R =
1

A(t)B(t)

[
b(x, t)

∫ x

0

dy a(y, t)− a(x, t)
∫ x

0

dy b(y, t)
]
.

Here

A(t) =
∫ ∞

0

dx a(x, t), B(t) =
∫ ∞

0

dx b(x, t) (2)
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are the fraction of cards possessed by players A and B,
respectively. Clearly,

A(t) +B(t) = 1. (3)

The rate equations (1) reflect the nature of the game as
the rate by which player A gains (loses) cards of value
x is proportional to the fraction of his opponent’s cards
with value larger (smaller) than x. As mentioned above,
there is always a winner as the cards are never identi-
cal when the value x is continuous (the complementary
discrete case is treated separately). The overall factor
[A(t)B(t)]−1 ensures that on average, every opposing pair
of cards comes into play once per unit time. The min-
imal card value was tacitly set to zero as the process is
invariant under the transformation x→ x+ const.

Besides the obvious conservation law (3), two other
conservation laws underlie the process. First, the total
number of cards of a given value is conserved,

a(x, t) + b(x, t) = u0(x), (4)

where u0(x) = a0(x) + b0(x) is the initial total density
(a0(x) ≡ a(x, t = 0), and similarly for B). Second,
the density of the minimal card value remains constant
throughout the evolution: a(0, t) = a0(0).

To determine the steady state behavior we introduce
the cumulative distributions A(x, t) =

∫ x
0
dy a(y, t) and

B(x, t) =
∫ x

0
dy b(y, t). These cumulative distributions

satisfy A′/A = B′/B in the long time limit. Therefore,
A∞(x) ∝ B∞(x), and consequently, the limiting card
value densities, a∞(x) = A′∞(x) and b∞(x) = B′∞(x), are
proportional to each other. The conservation law (4) im-
plies that each limiting card density equals a fraction of
the total card value density

a∞(x) = αu0(x), b∞(x) = (1− α)u0(x). (5)

In principle, for a given total card value density u0(x),
there is a family of steady state solutions characterized
by the parameter α which lies in the range 0 ≤ α ≤ 1.
Moreover, initial conditions where the densities are pro-
portional to each other, do not evolve regardless of α.
Still, for a given initial condition a specific α is se-
lected. The selected α is easily found for a class of ini-
tial conditions with non-vanishing minimal card densi-
ties, u0(0) > 0. Consider the density of the smallest-
value cards (x = 0). Equation (5) gives a∞(0) = αu0(0),
while the second conservation law implies a∞(0) = a0(0),
and hence α = a0(0)/[a0(0) + b0(0)]. This simple argu-
ment demonstrates that the density of the smallest-value
cards governs the outcome of the game. In the follow-
ing, we solve for the full time dependent behavior and
show that in general, the small-x asymptotics of the two
distributions dictates the magnitude of α.

To solve the time dependent behavior, we make two
simplifying transformations. First, the overall rate by

which the exchange occurs [A(t)B(t)]−1 can be absorbed
into a modified time variable τ , defined via

τ =
∫ t

0

ds [A(s)B(s)]−1
. (6)

The second transformation essentially reduces any total
density u0(x) to a uniform density by introducing the
variable ξ

ξ =
∫ x

0

dy u0(y). (7)

The transformed card value densities, ā(ξ, τ) and b̄(ξ, τ),
are found from the relations ā(ξ, τ) dξ = a(x, t) dx and
b̄(ξ, τ) dξ = b(x, t) dx. Clearly, the transformed densities
satisfy ā(ξ, τ) = a(x, t)/u0(x) and b̄(ξ, τ) = b(x, t)/u0(x).
In the following, we shall omit the bar. The conservation
law (4) becomes

a(ξ, τ) + b(ξ, τ) = 1, (8)

i.e., the transformed total density is uniform on the in-
terval [0,1] (note that Eqs. (3) and (7) imply 0 ≤ ξ ≤ 1).

The above transformations simplify the evolution
equations, and given the linear dependence (8), it suf-
fices to solve for a

∂

∂τ
a(ξ, τ) = b(ξ, τ)

∫ ξ

0

dη a(η, τ)− a(ξ, τ)
∫ ξ

0

dη b(η, τ).

Replacing b(ξ, τ) with 1 − a(ξ, τ) linearizes this equa-
tion ∂

∂τ a(ξ, τ) =
∫ ξ

0
dη a(η, τ)− ξa(ξ, τ), and differentiat-

ing with respect to ξ yields further simplification(
∂

∂τ
+ ξ

)
∂

∂ξ
a(ξ, τ) = 0. (9)

Integrating over τ and then over ξ we arrive at our pri-
mary result, the exact time dependent solution for arbi-
trary initial conditions:

a(ξ, τ) = α+
∫ ξ

0

dη a′0(η) e−ητ . (10)

Hereinafter we utilize the notations a0(ξ) ≡ a(ξ, τ = 0),
a′0(ξ) ≡ d

dξa0(ξ), and α = a0(ξ = 0).
Let us again consider the steady state. In the long time

limit τ → ∞, the integral in (10) vanishes and the den-
sities become uniform a(ξ, τ) → α and b(ξ, τ) → 1 − α.
Hence, in terms of the original variable x, both densi-
ties are proportional to u0(x) according to Eq. (5), with
α = a0(ξ = 0) = a0(x = 0)/u0(x = 0). Even when u0(x)
vanishes or diverges as x → 0, the parameter α is well-
defined and using l’Hopital rule, it is given by

α = lim
x→0

a0(x)
a0(x) + b0(x)

. (11)
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Thus, if the two distributions exhibit different leading be-
haviors, say limx→0 b0(x)/a0(x) = 0, then player A even-
tually ruins playerB. Hence, from the x→ 0 asymptotics
of the initial densities one can infer which of the family
of solutions (5) is eventually selected by the dynamics.

We now study the approach to the steady state. First,
we analyze the temporal behavior of the total fractions of
cards possessed by each player. For example, the fraction
of cards possessed by player A is A(τ) =

∫ 1

0
dξ a(ξ, τ).

Combining this with Eq. (10) we obtain

A(τ) = α+
∫ 1

0

dξ (1− ξ) a′0(ξ) e−ξτ . (12)

While the steady state behavior is determined by the
leading small argument behavior of a0(ξ), the relaxation
toward the final state is governed by the correction to
the leading behavior. Let us consider the following small
argument behavior

a0(ξ) ' α+ γξδ ξ → 0, (13)

with δ > 0. Substituting this into Eq. (12) we arrive at
a simple power-law behavior: A(τ)− α ' γΓ(δ + 1)τ−δ

where Γ(a) is the Gamma function.
In terms of the actual time variable t, a richer variety

of behaviors is exhibited. First, suppose that the system
approaches an active steady state, i.e., 0 < α < 1. Then
from Eq. (6) we obtain t→ α(1− α)τ , and therefore the
above asymptotics of A(τ) becomes

A(t)− α ' Ct−δ, t→∞ (14)

with C = γΓ(δ + 1)[α(1− α)]δ. Hence, when the system
reaches the active steady state the approach is generally
algebraic.

Next, suppose that one player, say A, eventually ruins
the opponent, i.e., α = 1. Then dt/dτ ∼ B(τ) ∼ τ−δ and
consequently, t ∼ τ1−δ. Therefore, for δ ≤ 1 representing
weak initial advantage of the eventual winner, the game
duration is infinite:

1−A(t) ∼
{
t−

δ
1−δ δ < 1;

e−const×t δ = 1.
(15)

In the complementary situation of strong initial advan-
tage for the eventual winner, δ > 1, the game duration is
finite:

A(tf ) = 1. (16)

The terminal time can be determined from the integral
tf =

∫∞
0
dτA(τ) [1−A(τ)]. Using Eq. (12) and recalling

that α = 1 yields this time as an explicit function of the
initial conditions

tf = −
∫ 1

0

dξ
1− ξ
ξ

a′0(ξ) (17)

−
∫ 1

0

∫ 1

0

dξ1 dξ2
(1− ξ1)(1− ξ2)

ξ1 + ξ2
a′0(ξ1) a′0(ξ2).

For example, the initial density a0(ξ) = 1 − ξ2 yields
tf = 2

15 + 16
15 ln 2 ≈ 0.87269. Additionally, the time de-

pendent approach toward the final state is algebraic,

1−A(t) ∼ (tf − t)
δ
δ−1 , (18)

sufficiently close to the terminal time t → tf . As ex-
pected, the density decreases linearly with time when the
disparity between the two players becomes very large in
the limit δ →∞.

Thus if the system approaches a trivial steady state
with one player winning all cards, the temporal behavior
can be algebraically slow or exponentially fast. Moreover,
every positive power can be realized. Remarkably, if the
initial disparity between the two players is sufficiently
large, the game ends in a finite time. Interestingly, such
disparity is expressed solely in terms of the density of the
cards with the smallest value while the initial densities of
the rest of the cards are irrelevant to the game outcome.

Next, we analyze the time dependent evolution of the
entire card value density. Evaluating the leading behav-
ior of the density (10) in the long time limit, we find that
the density exhibits a boundary layer structure

a(ξ, τ)− α '
{
γξδ ξ � τ−1;
γΓ(δ + 1)τ−δ ξ � τ−1.

(19)

Thus, the initial densities of cards whose values exceed
the (decreasing) threshold value ξ0 ∼ τ−1 are already
forgotten, the density a(ξ, τ) is uniform and the remnant
relaxation is indistinguishable from the relaxation of the
total fraction of cards A(τ). In contrast, cards whose val-
ues are smaller than the threshold value ξ0 ∼ τ−1 have
yet to exchange hands and hence, are still dominated by
the initial distribution.

We now briefly discuss the case where the number of
card values is finite, say equals to k. Here, rounds may
end in a draw and in such a case both players simply keep
their cards. Mathematically, the card value densities are
discrete distributions

a(x, t) =
k∑

n=1

an(t)δ(x− xn), (20)

b(x, t) =
k∑

n=1

bn(t)δ(x− xn),

with x1 = 0 and xn < xn+1. The discrete version of the
rate equations can be written and solved directly using
a series of transformation which mimics the ones used
above. Instead, we shall substitute the initial conditions
(20) into the general continuous case solution (10).

Denote by un(t) = un(0) = an(0) + bn(0) the total
(time-independent) concentration of the value xn. The
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variable ξn =
∑n−1
m=1 um(0) plays the role of ξ and the

time variable τ remains as in Eq. (6). The solution (10)
reads

an(τ)
un(0)

=
a1(0)
u1(0)

+
n∑

m=2

(
am(0)
um(0)

− am−1(0)
um−1(0)

)
e−ξmτ . (21)

Since all terms in the summation eventually vanish, the
two players card densities approach a limiting distri-
bution which is proportional to the initial distribution
an(∞) = αun(0) with α = a1(0)/u1(0), in accordance
with Eq. (11). In general, the approach to the steady
state is exponential. We first discuss the case 0 < α < 1.
Since A∞ = α, we have t → α(1 − α)τ asymptotically.
Hence, the relaxation toward the steady state is expo-
nential

A(t)− α ∼ e−const×t. (22)

In the complementary case when one player wins all
cards, α = 1, the approach is dominated by the first non-
vanishing term in the summation, namely, the first non-
vanishing bn(0). In this case, dt/dτ ∝ exp(−const × τ),
and consequently, the game duration is finite as in
Eq. (16). Thus the behavior in the discrete case is differ-
ent from the continuous case in that the time dependent
behavior is generally exponential. An additional differ-
ence is that when one player captures all cards, the game
duration is always finite.
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FIG. 1. Duration of the game as a function of the num-
ber of cards N . Shown is Tf , the number of rounds a game
lasts on average. The results represent an average over 104

realizations. A line of slope 2 is plotted for reference.

All previous results apply to games with an infinite
number of cards. We now discuss how to adapt these re-
sults to realistic situations when both players start with
a finite number, say N , cards. Note that the time unit
used earlier corresponds to approximately N2 rounds in

the actual game (fluctuations are of order N and thus
can be ignored when N is sufficiently large). For the
case δ > 1 one therefore predicts a duration

Tf ∼ N2, (23)

where Tf is the number of rounds. The duration in the
marginal δ = 1 case can be estimated using the aver-
age time it takes for player B to get down to one card
B(t) = N−1. Utilizing the exponential decay of B(t), we
find that there is an additional logarithmic dependence,
Tf ∼ N2 lnN , in this case.

Results of Monte Carlo simulations are consistent with
these predictions. In the simulations, each player starts
with N cards whose values are drawn from a uniform
distribution in the range 0 < x < 1. Eventually, the
player holding the smallest-value card wins. Our theory
describes the stochastic realization of the game where
cards are drawn randomly from the deck. We also ex-
amined the deterministic case where the card order is
fixed throughout the game. In this version, the win-
ner of a round places both cards at the bottom of the
deck. In both cases, we find diffusive terminal times
as in Eq. (23). Nevertheless, the two cases differ with
the stochastic game ending faster than the determinis-
tic one (see Fig. 1). Additionally, we find that fluctua-
tions in the terminal time are proportional to the mean:
〈T 2
f 〉 − 〈Tf 〉2 ∝ 〈Tf 〉2.
In closing, we studied a stochastic two-player card

game using the rate equations approach. We found that
extremal characteristics of the initial conditions select a
particular steady state out of a family of possible solu-
tions. Eventually, the card value densities of the players
become proportional to each other. However, the players
generally possess different overall number of cards and
it is even possible that one player gains all cards. The
approach toward the steady state exhibits rich behavior.
Large value cards tend to equilibrate faster than small
value cards, and the distribution develops a boundary
layer structure. The time dependent behavior of the to-
tal fractions of card possessed by each player is algebraic
in cases where an active steady state is approached. In
the complementary case where one player gains all cards,
the game may end in a finite or an infinite time. The rela-
tive initial advantage of the winner, characterized by the
correction to the leading extremal behavior, determines
the game duration in this case.
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