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We review recent results on random fragmentation of multidimensional objects. In addition to
the obvious volume conservation, these processes exhibit an infinite number of hidden conservation
laws. The fragment size distribution is characterized by an infinite number of scales and thus,
exhibits multiscaling. Nevertheless, the volume distribution function shows ordinary scaling, i.e., it
is characterized by a single scale.
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Fragmentation underlies a number of physical, chem-
ical, and geological processes, such as polymer degrada-
tion, atomic collisions cascades, energy cascades in turbu-
lence, martensitic transformations, multivalley structures
of the phase space of disorder systems, meteor impacts,
etc. [1-8] The fragmented quantity in such processes are
diverse: mass, momentum, energy, or area. A charac-
teristic feature of these cascade processes is that frag-
ments continue splitting independently. One simplifying
assumption used in most theoretical studies is that frag-
ments may be described properly by a single variable, say
their mass or size [9-15]. However, in many cases, more
than one variable may be necessary. Below, we review re-
cent results concerning fragmentation with multiple vari-
ables [16-22]. We generalize the random scission model
to higher dimension and solve it analytically. Using the
moments of the fragment size distribution, we show that
the process exhibits many interesting properties such as
multiscaling and the existence of an infinite number of
hidden conservation laws. We also discuss applications of
the model to arbitrary dimensions, homogeneous break-
age kernels, and stochastic fractals.

The random scission model [5,9,10] is the simplest real-
ization of a fragmentation process, where the distribution
of fragments of length x, P (x, t), satisfies the integro-
differential equation

∂P (x, t)
∂t

= −xP (x, t) + 2
∫ ∞
x

dyP (y, t). (1)

The negative term on the right-hand side represents loss
due to binary breakups. Since fragmentation is uniform,
the corresponding loss rate is proportional to the frag-
ment size. The gain term accounts for the increase of
fragments of size x due to breakups of longer fragments.
The asymptotic solution to equation (1) can be written
in a scaling form

P (x, t) ' C

〈x〉2
Φ
(
x

〈x〉

)
, (2)

with 〈x〉 ' t−1 and the scaling function Φ(z) = e−z. The
constant C =

∫
dxP (x, 0) ensures conservation of the to-

tal mass. The random scission process is equivalent to

uniform deposition of points on a one-dimensional inter-
val. Indeed, every deposition of such a “crack” leads to
fragmentation of the underlying segment.

FIG. 1. The fragmentation process.

The following process is a natural generalization to two
dimensions: a fragmentation event takes place at a ran-
dom internal point of the rectangle and gives birth to four
smaller rectangles as illustrated in Figure 1. The distri-
bution function P (x1, x2; t) describing rectangles of size
x1 × x2 is governed by the following linear rate equation
[16-19]

∂P (x1, x2; t)
∂t

= −x1x2P (x, t) + 4
∫ ∞
x1

∫ ∞
x2

dy1dy2P (y1, y2; t).

(3)

A simple integration of this equation shows that the to-
tal area is conserved,

∫∞
0

∫∞
0
dx1dx2x1x2P (x1, x2; t) =

const. The average number of fragments N(t) = N(0)+3t
is readily found. The rate of creation of rectangles reflects
the fact that 3 additional rectangle are created in each
fragmentation event. It is useful to introduce the double
Mellin transform (or alternatively the moments) of the
distribution function P (x1, x2; t),

M(s1, s2; t) =
∫ ∞

0

∫ ∞
0

dx1dx2x
s1−1
1 xs2−1

2 P (x1, x2; t)

(4)

The rate equation (3) implies the following rate equation
for the moments,

∂M(s1, s2; t)
∂t

=
(

4
s1s2

− 1
)
M(s1 + 1, s2 + 1; t). (5)

A surprising feature of Eq. (5) is that it implies the ex-
istence of an infinite number of conservation laws. The
moments M(s∗1, s

∗
2; t) with s∗1 and s∗2 satisfying s∗1s

∗
2 = 4
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are time independent. Thus, in addition to the conser-
vation of the total area A ≡ M(2, 2; t), there are an in-
finite number of hidden conserved integrals. These in-
tegrals are in fact responsible for the absence of scal-
ing solutions to Eq. (3). Indeed, the scaling solution
P (x1, x2; t) = twQ(tzx1, t

zx2), implies an infinite amount
of scaling relations, w = z(s∗1 + s∗2) at s∗1s

∗
2 = 4, which

cannot be satisfied by the scaling exponents, w and z.
Although an exact solution for the moment in terms

of generalized hypergeometric functions is possible [17-
19], we present an alternative technique for obtaining
the asymptotic behavior of the moments [17]. Asymp-
totically, the moments depend algebraically on time

M(s1, s2; t) ' A(s1, s2)t−α(s1,s2). (6)

Substituting this form into Eq. (5) gives the difference
equations α(s1, s2) + 1 = α(s1 + 1, s2 + 1). Addition-
ally, the conservation laws imply that α(s∗1, s

∗
2) = 0 when

s∗1s
∗
2 = 4. Solving the difference equation subject to the

boundary constraint gives α(s∗1+k, s∗2+k) = k. Thus, the
exponent α can be easily obtained by solving a quadratic
equation:

α(s1, s2) =
1
2

[
s1 + s2 −

√
(s1 − s2)2 + 16

]
. (7)

To see the nontrivial structure of the moments, con-
sider the average value of xn1

1 xn2
2 defined by

〈xn1
1 xn2

2 〉 =

∫∞
0

∫∞
0
dx1dx2x

n1
1 xn2

2 P (x1, x2; t)∫∞
0

∫∞
0
dx1dx2P (x1, x2; t)

(8)

or equivalently, by 〈xn1
1 xn2

2 〉 = M(n1 +
1, n2 + 1; t)/M(1, 1; t). For example, the ratio
〈xn1xn2 〉/〈xn1 〉〈xn2 〉 ∼ t

√
n2+16−4 is time dependent, while

for a scaling distribution such a ratio should approach
a constant. Furthermore, the moments of the length
〈ln〉 ≡ 〈xn1 〉 ≡ 〈xn2 〉 can be found as well

〈ln〉 ∼ t−(n+4−
√
n2+16)/2. (9)

Only in the limit n → 0, the leading behavior 〈ln〉 ∼
t−n/2 follows an ordinary scaling behavior, as the expo-
nent n/2 is linear in n. The general n dependence is more
complicated. For example, 〈l〉 ∼ t−(5−

√
17)/2 ∼ t−.438,

and 〈l2〉 ∼ t−(3−
√

5) ∼ t−.764. Note that the average
length decays slower than the square root of the average
area,

√
〈x1x2〉 ∼ t−1/2. We observe that the distribution

function P (x1, x2; t) in the two-dimensional random scis-
sion model does not approach a scaling form in the long-
time limit. However, since all the moments still show a
power-law behavior, we conclude that the model exhibits
a multiscaling asymptotic behavior.

The moments provide an almost complete analytical
description of the fragmentation process. However, a
snapshot of the system at the later stages remains intrigu-
ing (see Fig. 2). This unexpectedly rich pattern arising in

such a simple process can be viewed as a consequence of
the fact that the process is not fully self-similar. Instead,
the pattern is formed of sets of different scales which are
spatially interwoven. Fig. 2 also shows that a number
of rectangles have large aspect ratio. Indeed, the nth

moment of the aspect ratio,

〈(x1/x2)n〉 ∼ t
√
n2+4−2 |n| < 1, (10)

is a growing function of time. In other words, rectangles
tend to break into thin and long rectangles.

FIG. 2. Realization of the fragmentation process on a unit
square at t = 1000

Let us consider the area distribution function, P (A, t),
with P (A, t) =

∫∞
0

∫∞
0
dx1dx2δ(x1x2 − A)P (x1, x2; t).

The corresponding “diagonal” moments M(s; t) ≡
M(s, s; t) can be evaluated from the general solution
M(s, t) ∼ t2−s. Consequently, 〈An〉 ∼ 〈A〉n ∼ t−n,
indicating that the area distribution function reaches a
scaling form asymptotically,

P (A, t) ' t2Φ2(At). (11)

The exact scaling function is given by Φ2(z) =
6
∫ 1

0
dζ
(

1
ζ − 1

)
e−z/ζ , and has the following limiting be-

haviors

Φ2(z)→
{

6z−2e−z, if z � 1,
6 ln(1/z), if z � 1. (12)

Similar to the random scission model, large areas are ex-
ponentially suppressed. However, in contrast with the
one-dimensional case, there is a weak logarithmic cusp in
the limit of small areas.

The above results can be easily generalized to d di-
mensions. In the generalized version of the random
scission model, each fragmentation event results in 2d
fragments. We denote the moments by M(s; t) with
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s ≡ (s1, . . . , sn) and assume a power-law dependence,
M(s; t) ∼ t−α(s). The exponents satisfy the recursion
relation α(s) + 1 = α(s + 1), with 1 = (1, . . . , 1). Mean-
while, the exponents should also reflect the hidden con-
served integrals, i.e., α(s∗) = 0 on the hypersurface s∗,
where Πjs

∗
j = 2d. The solution to the recursion relations

satisfying the boundary conditions is given by the formal
expression

α(s) = α(s∗ + k1) = k. (13)

Hence, the problem is reduced to finding roots of the al-
gebraic equation Πj [sj − α(s)] = 2d. Since this equation
is of degree d, an analytic solution is feasible only for
d ≤ 4.

All features found for the two-dimensional case such
as multiscaling occur for higher dimensions as well. For
example, nonuniversal behavior is found for the various
moments of the length distribution. In the limit d � 1,
we find that the moments decay asymptotically according
to

〈ln〉 ∼ t−2 ln(1+n/2)/d. (14)

The n dependence is logarithmic in contrast to the lin-
ear dependence expected for scaling distributions. The
diagonal exponents α(s, . . . , s) = 2− s indicate that the
volume distribution exhibits scaling P (V, t) ' t2Φd(V t).
The limiting behavior of the scaling function can be eval-
uated as well

Φd(z) ∼
{
z−2e−z, z � 1,
lnd−1(1/z), z � 1. (15)

While the power law behavior is general, the logarithmic
cusp occurs for d > 1. We conclude that the volume dis-
tribution generally obeys scaling, while for d > 1 other
geometric characteristics such as the length, the surface
area, etc. obey multiscaling.

One can also consider shape-dependent fragmenta-
tion rates and study homogeneous kernels K = xm ≡
xm1

1 · · ·xmdd (the case m = 1 corresponds to the random
scission model). When mi > 0, this generalization also
results in multiscaling of the fragment distribution. The
moments M(s∗) with Πj(s∗j + mj − 1) = 2d are con-
served. Asymptotically, moments depend algebraically
upon time, M(s; t) ∼ t−α(s), and the exponents can be
found by solving the equation Πj [s∗j+mj−1−α(s)] = 2d.
The kernel K plays the role of the volume V as it ex-
hibits regular scaling, P (K, t) = t2Φ(Kt), or equiva-
lently, 〈Kn〉 ∼ 〈K〉n ∼ t−n. Of course, other geometric
properties show multiscaling.

The special situation where the kernel is a homoge-
neous function of the volume K = V λ is of particular
interest. The total number of fragments N(t) ≡ M(1; t)
grows according to N(t) ∼ t1/λ. Hence, the case λ = 0
is critical, and the number of fragments grows exponen-
tially in time. Finally, for λ < 0, the shattering transi-
tion takes place: the total volume decreases monotoni-
cally and the total number of fragments reaches infinity

within an infinitesimally small time interval. Moreover, a
finite fraction of the volume breaks into zero-volume rect-
angles. This phenomenon is well known in the context of
one-dimensional fragmentation [11,12] and has been ex-
amined in the context of two-dimensional fragmentation
as well [19].

The above techniques are useful in a number of prob-
lems. Surprisingly, one can map random sequential ad-
sorption of needles in 2D to a multifragmentation prob-
lem. Using a rate equation similar to equation (3), the
needle density is found n(t) ∼ t

√
2−1 [16]. A recently

suggested model for martensitic transformations can also
be reduced to a two-dimensional fragmentation process
where only two fragments are created at each event. Al-
though the rate equations are different, the moment tech-
nique is still applicable and the resulting behavior is sim-
ilar: the length multiscales, while the area scales [4,20].
Stochastic counterparts of canonical fractals such as the
Cantor set and the Serpinsky gasket can also be consid-
ered using multifragmentation techniques, and one can
obtain expressions for the fractal dimension and other
multifractal properties [21,22].

In conclusion, fragmentation processes in spatial di-
mensions larger than one exhibit multiscaling in the long-
time limit. Specifically, the length distribution function
has moments that scale algebraically in time with an infi-
nite number of independent length scales, while the area
distribution function is characterized by a single length
scale. The volume distribution function also exhibits a
weak logarithmic singularity near the origin.
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